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SUMMARY

Large biobank repositories of clinical conditions and medications data open op-
portunities to investigate the phenotypic disease network. We present a graph
embedded topic model (GETM). We integrate existing biomedical knowledge
graph information in the form of pre-trained graph embedding into the
embedded topic model. Via a variational autoencoder framework, we infer pa-
tient phenotypic mixture by modeling multi-modal discrete patient medical re-
cords. We applied GETM to UK Biobank (UKB) self-reported clinical phenotype
data, which contains 443 self-reported medical conditions and 802 medications
for 457,461 individuals. Compared to existing methods, GETM demonstrates
good imputation performance.With amore focused application on characterizing
pain phenotypes, we observe that GETM-inferred phenotypes not only accu-
rately predict the status of chronic musculoskeletal (CMK) pain but also reveal
known pain-related topics. Intriguingly, medications and conditions in the cardio-
vascular category are enriched among the most predictive topics of chronic pain.

INTRODUCTION

The advent of electronic health records (EHR) has started to transform the way healthcare data are re-

corded and used in clinical practice and in research settings. Besides free-form clinical text, most modern

healthcare centers now routinely collect structured EHR data describing comprehensive aspects of care,

including diagnosis, medications, treatments, laboratory test results, and other measures. Deriving

coherent phenotypes from these EHR data is crucial in downstream phenome-wide association analyses

(PheWAS) and may greatly improve the power of detecting genetic associations using the genome-wide

association (GWA) approach (McCoy et al., 2017). Besides better characterizing known phenotypes (e.g.,

through comorbidities or the demographics of age-of-onset), mining phenomic data also has the potential

to reveal novel combinations of diseases and other variables of potential etiological interest. This will help

identify specific strata of study subjects most at risk for disease or targeted for specific drug recommenda-

tions. Despite these promises, clinical phenotype data sources remain underused (Jensen et al., 2012). As

genotype and deep phenotype data become increasingly available through consortia or large govern-

ment-funded cohorts such as the UK Biobank (UKB) (Bycroft et al., 2018) and the 100,000 Genomes Project

(Turnbull et al., 2018), there is an urgent need for an automatic and accurate phenotyping tool to accelerate

novel disease comorbidity discoveries and improve the yield of GWA studies for complex phenotypes and

diseases in humans.

Amongmanymachine learning approaches, topic models (Blei et al., 2003a) stand out as a particularly well-

adapted framework for automatic phenotyping. They are extremely efficient at modeling sparse and

discrete data such as text documents. Topic models were originally developed to discover patterns of

word usages from corpuses of text documents by accomplishing two related tasks: (1) inferring a set of

latent categorical distributions over the vocabulary (i.e., topics); (2) using these latent topic distributions

to infer topic mixture memberships of each document, thereby connecting them under similar topical

themes. In our context, we consider EHR as our documents and the diagnostic and medication codes as

our vocabulary.

Several topic methods were developed recently for effectively mining EHR data (Li et al., 2020; Song et al.,

2021). However, most existing topic models are unable to incorporate existing biomedical knowledge
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graphs, which manifest in several forms such as disease taxonomy and drug classification systems. Knowl-

edge Graph Embedding LDA (KGE-LDA) (Yao et al., 2017) models the distribution of the word embedding

learned from TransE (Bordes et al., 2013) on a words-by-words relational graph. Latent-feature LDA

(Nguyen et al., 2015) and Embedded Topic Model (ETM) (Dieng et al., 2019) use the word embedding

to compose the topic distribution. These methods were applied to standard benchmark corpus data

and only works with one data modality as opposed to the multimodal patient electronic medical record

data (e.g., disease conditions and medications). In addition, except for ETM, the aforementioned topic

models use traditional inference algorithms (e.g., Gibbs sampling or mean-field variational inference) to

infer topic distributions. Therefore, these models have limited flexibility to capture the non-linear

connections between observed EHR codes and the underlying patient phenotypes.

In this paper, we present a graph-embedded topic model (GETM) for learning phenotypes from heteroge-

neous EHR data by leveraging biomedical graph information. As the main method contribution, GETM

seamlessly integrates two existing models: ETM (Dieng et al., 2019) and node2vec (Grover and Leskovec,

2016). Briefly, we first use node2vec to learn the condition and medication embeddings based on their

taxonomic information; then, we incorporate these embeddings into the ETM, which tri-factorizes the

individuals-by-conditions/medications matrix into individuals-by-topics, topics-by-embedding, and

embedding-by-conditions/medications matrices. The distribution of the individuals-by-topics is approxi-

mated by the output of a feedforward neural network using the amortized variational inference technique

while fixing the embedding-by-conditions/medications matrices to the node2vec-learned node embed-

ding from conditions/medications taxonomical graphs, respectively.

As a proof-of-concept, we applied GETM to UKB phenotype data, where 457,461 individuals of European

descent from across the United Kingdom were deeply phenotyped through extensive self-report based

questionnaires for about 443 well-defined phenotype conditions and 802 active ingredients of medications

(Bycroft et al., 2018). We then turned to a more focused analysis on predicting and characterizing different

pain phenotypes. Chronic pain is the result of dysfunction of the nociceptive circuitry leading to sustained

perception of pain. Chronic pain is highly prevalent in aging populations affecting up to 50 % of older

adults (> 65 years old) (Fayaz et al., 2016a) and decreases the overall mental and emotional health of

affected individuals (Dueñas et al., 2016). Using GETM, we provide a refreshing view of pain phenotypes,

considered as CMK pain, chronic pain by body site, non-specific acute and chronic pain, and the transition

from acute to chronic pain by making use of phenotype data from subsequent visits on a subset of the UKB

study population. By correlating the inferred GETM-topics and pain phenotypes across the UKB subjects,

we discover not only the known pain-related conditions and medications among the highly predictive

topics but also novel combinations after removing labels of known pain-related conditions and analgesics.
RESULTS

Graph embedded topic model overview

GETM models the distribution of medications and conditions as discrete clinical features for each individ-

ual. For a given study subject, the expected rate of each feature is determined by both the logistic-normal

latent subject’s topic mixture and the point-estimate latent topic distributions over the features. The goal

of GETM is to approximately infer the distributions of these latent variables. To this end, we carry out an

amortized variational inference (Kingma and Welling, 2014) in two steps (Figure 1). In the first step, to infer

the topic mixture of a given patient, we provide to a feedforward neural network (i.e., the encoder) the bi-

nary vector of the individual’s observed discrete features. We then sample the topic mixture from a varia-

tional Gaussian distribution with the mean and SD computed by the encoder. In the second step, we

decode the sampled topic mixture back to the original conditions and medications. We used two linear

decoders each with separate topic/feature embeddings for medications and conditions, respectively.

Specifically, each decoder tri-factorizes the individuals-by-features matrix respectively into individuals-

by-topics (q), topics-by-embeddings (a(t)), and embeddings-by-features (medication or condition) (rðtÞ)
matrices ðt ˛ fmed; condgÞ. Notably, the two linear decoders share the patient-level topic mixture q,

whereas a(t) and r(t) are learned separately. Importantly, the medication embedding r(med) and condition

embedding r(cond) are pretrained by node2vec (Grover and Leskovec, 2016) from the taxonomic tree-struc-

tured graphs of conditions and medications while the two sets of topic embedding counterparts (a(med),

a(cond)) are directly learned from the UKB participant data by GETM. This tri-factorization design allows

for exploring topics, study subjects and relationships among conditions and medications in a highly inter-

pretable way.
2 iScience 25, 104390, June 17, 2022



Figure 1. Overview of Graph-embedded topic model and its application on UKB phenotype data

The UKB data consists of 443 conditions and 802 medications for 457,461 individuals. We developed GETM to model these data although our GETM can be

applied to other datasets as well.

(A) GETM training. GETM is a variational autoencoder (VAE) model. The neural network encoder takes individuals’ condition and medication information as

input and produces the variational mean m and variance s2 for the patient topic mixtures q. The decoder is linear and consists of two tri-factorizations. One

learns medication-defined topic embedding aðmedÞ and medication embedding rðmedÞ. The other learns condition-specific topic embedding aðcondÞ and the

condition embedding rðcondÞ. We separately pre-train (B) the embedding of medications rðmedÞ and (C) the embedding of conditions rðcondÞ using node2vec

(Grover and Leskovec, 2016) based on their structural meta-information. This is done learning the node embedding that maximizes the likelihood of the tree-

structured relational graphs of conditions and medications.
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Topic quality evaluation

Using data from the UKB on 457,461 individuals of European descent from the baseline visit, we trained

GETM to obtain the topic embedding and conditions/medications embedding (i.e., a(t), r(t), respectively).

As a qualitative exploratory analysis, we visualized these embeddings usingUMAP (Figure 2). For illustration

purposes, we picked five topics representing diverse conditions andmedications and observed that the top

features under these topics belong to coherent categories of conditions or medications. For example, top

medications atenolol, bisoprolol, metoprolol, nebivolol, and carvedilol in topic 32 all belong to cardiovas-

cular-systemmedications (Figure 2D), while topic 32 is assigned to the cluster mainly composed of medica-

tions from the same category (Figure 2B). Moreover, the top five conditions from topic eight are all from the

musculoskeletal/trauma category, whereas the top five medications from topic eight are all from the

dermatological category. In contrast, ETMwithout using the Knowledge-Graph (KG)-informed embedding

produced less interpretable topics, each covering heterogeneous categories (Figure S1). Thus, GETM

allows for the identification of related features from sparse, heterogeneous data in a data-driven manner.

Given that we are leveraging embeddings of conditions and medications learned from their taxonomic

graphs, we expected a higher quality of topics to be inferred by GETM compared to baseline models
iScience 25, 104390, June 17, 2022 3



Figure 2. Visualizing the topic embedding and feature embedding learned by GETM on the UK Biobank data

The analysis was based on results from the GETM model with both condition and medication embedding that are KG-informed using 75 topics (Table S1).

(A) Visualizing the embedding of topics and conditions. Because of the shared embedding space, we applied a single UMAP to project and visualize the

condition embedding rðcondÞ and topic embedding aðcondÞ.
(B) Visualizing the embedding of topics and medications. Similarly, we applied a single UMAP to visualize medication embedding rðmedÞ and topic

embedding aðmedÞ. The solid dots on the UMAP plot are the features, and the asterisks are the topics. The points are colored by corresponding category of

condition and medication or annotated by its topic number. Visualizing the UMAP in this way allows us to examine (1) the similarity among topics, (2) the

similarity among features, and (3) the similarity between topics and features. As indicated by the arrows, we identified five topics on each UMAP and

displayed their top features in panel c and d.

(C and D) Heatmap visualization of select topics. We generated heatmaps for the top five conditions and the top fivemedications with the highest probability

b
ðcondÞ
k and b

ðmedÞ
k under each of the five topics. The color intensity displays proportionally the probabilities. The color bars on the right indicate the

categories of the conditions and medications. All four panels share the same color legend of the categories.
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that do not use or use only partial graph embeddings. Topic quality was quantified as the product of topic

coherence and topic diversity (Dieng et al., 2019) (STAR Methods). For ease of reference, we listed the nine

models that we compared in Table S1. We first evaluated the quality of the medication-defined topic

(Table S4). To evaluate the medication topic coherence unbiasedly, we used an external set of 59

expert-curated medication categories (STAR Methods) that were not part of the medication taxonomy

we used in training the graph embedding for our GETM model.

We repeated our experiments 5 times each time with a different random initialization for each model and

evaluated the resulting topic coherence, topic diversity, and topic quality. Overall, we observed the highest

average topic quality (Figure 3 and Table S4) for the 50-topic GETM that used the graph embeddings for

both the conditions andmedications (i.e., GETM in Table S1). Statistically, GETM is significantly better than
4 iScience 25, 104390, June 17, 2022



Figure 3. Medication-specific topic quality evaluation

We experimented with GTEM as well as five baseline models (Table S1) with four predefined number of topics. To compute statistical significance between

GETM and the baseline methods, we ran each model 5 times on the full UK Biobank data each with a different random initialization. The line plot displays the

topic coherence, topic diversity, and topic quality, where the error bar indicates the standard deviations over the five experiments.
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all of the baseline methods at p value < 0.01 (one-sided t-test) except for GETM-medOnly, compared to

which GETM is better at p value < 0.05 (one-sided t-test). Therefore, the results suggest the benefits of us-

ing KG-informed medication embeddings in improving topic quality.

GETM-medEmbOnly confers slightly higher topic coherence but much poorer topic diversity for medica-

tions compared to GETM. This is possibly because the condition embedding directly learned from the UKB

data provides complementary supports to inferring more coherent medication topics compared to the no-

de2vec-pre-trained condition embedding from the taxonomy. Note that topic coherence measures each

topic separately, whereas topic diversity measures the differences among topics. Both metrics are impor-

tant. For instance, a model that generates a set of very similar topic distributions each with high topic

coherent score is much less useful than a model that generates a set of diverse topic distributions each

with slightly lower topic coherence score.

We evaluated condition-derived topic quality (Figure S2). Owing to the lack of external condition

categories, we calculated topic coherence based on whether the top conditions from each topic were

present in the same patients. One caveat of this approach is that a patient rarely exhibits multiple con-

ditions from the same category and that many conditions can be mutually exclusive within the same pa-

tient. For example, asthma and COPD as shown in our GETM topic 60 in Figure 2B are rarely observed in

the same patient despite the common physiological connection between them. This is reflected in the

low topic coherence among the methods. Nonetheless, we found that the GETM with pre-trained em-

beddings of both medications and conditions (Table S1) dominate other models among three out of

four model settings in terms of the overall topic quality scores (Table S5). GETM-medEmbOnly confers

much poorer topic coherence for conditions (Table S5). This suggests an overall benefit of transferring

the pre-trained embedding for both conditions and medications to the GETM when modeling the

UKB data.

GETM reveals known or potentially novel condition-medication relations from UKB data

We compared the total number of unique known pairs between medications and conditions that were

identified by the five models (Tables 1 and S1). The full GETM extracted most pairs of correlated conditions

andmedications illustrated by topic number 50 (161 pairs), 75 (175 pairs), and 100 (203 pairs). We examined

some of the topics with high condition-medication associations based on pharmacological knowledge

(Figures 2B and 2D). For instance, in topic 32, the top medication bisoprolol is known to be used to treat

the top condition heart failure under that topic. Under topic 60, the top medication salmeterol is often pre-

scribed to treat asthma and chronic obstructive airways (COPD) https://go.drugbank.com/, which are the

top conditions under that topic. Interestingly, although the medication solifenacin in topic 59 is not known

to be indicative of depression according to DrugBank, recent research shows potential for solifenacin,
iScience 25, 104390, June 17, 2022 5
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Table 1. Number of known pairs between conditions and medications

Algorithm

Topic #

15 50 75 100

Number of matched pairs

ETM-both-flat 53 84 119 132

ETM-both-multi 63 86 105 126

GETM-condEmbOnly 62 118 159 162

GETM-medEmbOnly 65 135 171 178

GETM 61 161 175 203

We mapped our medications and conditions identifiers to CTD and DrugBank databases to obtain known connections be-

tween them. For each topic inferred, we generated nine condition-medication pairs from the top three conditions and the top

threemedications. Among these pairs, we calculated the number of known pairs (Table S1). Higher numbers imply more clin-

ically meaningful topics inferred by the algorithm.
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along with other muscarinic antagonists, in treating patients with depression through drug repurposing

(Wróbel et al., 2020; Oliveira et al., 2020).
GETM accurately imputes UKB conditions and medications

To further ascertain the overall utility of GETM, we used GETM to reconstruct randomly masked 50% of the

medications or conditions of each test individual. As a baseline, we used the observed condition or medi-

cation prevalence from the training data to impute the masked feature in the test individuals. We have also

experimented with the ablated models listed in Table S1. Among all models, the full GETM conferred the

lowest reconstruction errors for both conditions (Table 2) and medications (Table S6) using 100 topics with

� 5% improvement over the second best method. The improvements are largely attributed to the use of

KG-informed embeddings compared to the ablated ETM model that learns these embeddings from the

data.

Moreover, we also evaluated GETM in its ability to recapitulate the medication data using only the condi-

tion information bymasking all medication information of the test individuals. The full GETM outperformed

all other models and gave the lowest reconstruction error (14.6125), the highest precision at top five pre-

dicted hits (precision@5) (0.2612), and the highest recall@5 (0.5787) (Tables 3 and 4). The upper bounds,

which were obtained from the GETM trained on unmasked test data, achieved reconstruction error of

11.4936, precision@5 of 0.4226, and recall@5 of 0.8027. Interestingly, we found out that on average

around 44 % of the unobserved medications from the top 10 predicted medications by GTEM in fact

have a treatment effect based on condition-medication association information extracted from Compara-

tive Toxicogenomics Database (CTD) http://ctdbase.org/ and DrugBank https://go.drugbank.com/. In

particular, we took a closer look at the three best predicted patients and three worse predicted patients

by GETM (Figure 4). As expected, among the best predicted patients, the top 10 predicted medications

by GETM contain mostly observed medications, which are known to match the subset of the

conditions of these three patients. Although most top predicted medications were not observed for the

worst three predicted patients, they were known to treat the observed conditions for these patients.
CMK pain prediction

We sought to investigate the predictive ability of reported past conditions and current medications on pain

experience in the UKB using GETM. We first focused on CMK pain because it has the highest number of

positive cases. Using logistic regression (LR), we evaluated the predictive accuracy of the inferred topic

mixture on CMK pain in terms of area under the receiver operating characteristic (AUROC) curve and

area under the precision-recall curve (AUPRC). We used GETM with 128 topics for this experiment for

the reason of its high performance on the validation dataset (Figure S3). As a baseline (i.e., the raw model),

we trained another LR model that directly used all of the 443 conditions and 802 medications. We also

sought to investigate the relative improvements of GETM over standard topic modeling after removing

obvious conditions or medications for CMK pain. We experimented with six different ways of filtering

out features based on ORs or expert knowledge (STAR Methods).
6 iScience 25, 104390, June 17, 2022
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Table 2. Reconstructing 50% masked conditions

Algorithm

Topic #

15 50 75 100

Reconstruction Error

ETM-condOnly 5.89 5.56 5.39 5.80

GETM-condOnly 5.76 5.33 5.05 4.93

ETM-both_multi 5.08 5.09 4.80 4.96

GETM-condEmbOnly 5.12 4.84 4.55 4.40

GETM-medEmbOnly 5.06 4.86 4.75 4.58

GETM 4.69 4.84 4.45 4.34

Proportion 8.69

We split the UKB data into 80% training and 20% test. For the test data, we randomlymasked 50%of the values such that each

test patient would have 50% of their conditions and medications observed. We then reconstructed the matrix with learned

q;a and r. The reconstruction error (i.e., negative log-likelihood) was calculated for the held-out data. Same condition data

was used for all algorithms. For ETM-both-multi, GETM-condEmbOnly, GETM-medEmbOnly and GETM, the same models

and data were used as for the medication reconstruction Table S6. Description of the algorithm names are in Table S1. As

another baseline method, we evaluated the performance of filling in masked conditions based on their overall proportion

over all of the UKB population.
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Predictive performance using the original features (i.e., unfiltered) and the filtered features is summarized

in Figure 5. From these results, we observed that (1) The GETM topic mixture (GETM, Table S1) achieved

larger AUROC and larger AUPRC across all feature filtering regimes (i.e., no filter plus the six filtering rules;

Table S2); (2) As we removed more pain-related signature conditions and medications, the performance of

using raw features dropped more drastically than that using the patient topic mixtures. In other words, the

relative improvement of using patient topic mixtures over using raw data increased as we removed more

indicative conditions and medications. In particular, GTEM conferred a larger than 40% improvement over

the baseline when using the fewest conditions and medications (i.e., m579c322: filtered feature set 7) in

contrast to less than 5% improvement over the baseline when using all features (m802c443: filtered feature

set 1; Figure 5 and Table S2). These results echo the superior imputation performance of GETM we

observed previously. This is because GETM uses the pre-trained graph embedding and inferred topic

mixture to compensate for the information loss from the feature removals. Nonetheless, the absolute

values of AUROC and AUPRC are not high. We discussed these results as limitations of the study in the

Discussion section.
Table 3. Medication imputation

Algorithm

Topic #

15 50 75 100

Medication Recovery Error

Upper bound 12.25 11.24 11.50 11.50

ETM-both-flat 18.51 19.85 19.81 20.06

GETM-both-multi 14.99 14.88 14.94 15.05

GETM-condEmbOnly 15.24 14.95 14.95 14.96

GETM-medEmbOnly 15.18 14.88 14.90 14.88

GETM 14.82 14.65 14.61 14.65

Themedication data was masked for test individuals. In contrast to themedication reconstruction experiments (Table S6), we

masked the entire medications for the test patients. We imputed their medication data using the inferred q from their con-

dition data only and the learned embedding aðmedÞ and rðmedÞ. The reconstruction error (i.e., negative log-likelihood) was

calculated. The upper bounds were obtained using reconstruction errors calculated from unmasked test data using GETM

(GETM, Table S1). Description of the algorithm names are in Table S1.

iScience 25, 104390, June 17, 2022 7



Table 4. Medication imputation accuracy

Algorithm

Topic #

15 50 75 100 15 50 75 100

recall@5 precision@5

Upper bound 0.6672 0.7943 0.8027 7862 0.3342 0.4084 0.4226 0.4049

ETM-both-flat 0.4397 0.4486 0.4667 0.4614 0.1901 0.2109 0.2111 0.2162

GETM 0.5543 0.5639 0.5568 0.5388 0.2479 0.2516 0.2504 0.2417

GETM-condEmbOnly 0.5479 0.5664 0.5670 0.5647 0.2373 0.2524 0.2493 0.2486

GETM-medEmbOnly 0.5519 0.5722 0.5668 0.5716 0.2440 0.2533 0.2521 0.2532

GETM 0.5692 0.5787 0.5732 0.5753 0.2504 0.2612 0.2606 0.2578

The imputation procedures were the same as in Table 3. We calculated the precision and recall at the top five imputed med-

ications for each individual. The upper bounds were calculated from unmasked test data using GETM (GETM, Table S1).
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CMK pain-related conditions and medications

We then investigated the most pain-related conditions and medications based on LR coefficients and

calculated overlapping proportions with physician-curated lists (Figure 6). In comparison with the overlap-

ping proportions from ETM and odds ratio calculation, GETM identified a much greater proportion of

known pain-related conditions among the top conditions and medications under these topics (36.7%

from top 10 conditions, 33.3% from top 30 conditions and 30.0% from top 50 conditions) and medications

(60.0% from top 10 medications, 33.3% from top 30 medications and 32.0% from top 50 medications) in the

provided lists. This suggests that GETM improves the ability to extract otherwise hidden associations,

which could identify pain-related comorbidities. Therefore, GETM does not only confer superior

performance but higher model explainability from its inferred topics.

We also had a close look at the three most positively associated topics and three most negatively associ-

ated topics to CMK pain based on learnedu (Figure 7A). This analysis showed that topics 56, 34, and 51 are

strongly positively associated with CMK pain and topics 73, 68, 89 are strongly negatively associated with

CMK pain, respectively. For each topic, we examined their semantic meaning according to the top condi-

tions and top medications (Figures 7B and 7C). Particularly, topics 56 and 34 contained musculoskeletal

system conditions and medications, which are clinically meaningful because they are highly related to

CMK pain. In particular, prolapsed disc or slipped disc as a condition is painful, and ibuprofen is an

analgesic in the NSAID (non-steroidal anti-inflammatory drug) class.

Topic 51 is in the cardiovascular category, and the top medication acetylsalicylic acid (aspirin), also an

NSAID, is prescribedmore frequently and typically at lower doses for its cardioprotective properties in pre-

vention of stroke and heart attacks; it acts as a ‘‘blood thinner’’. Dipyridamole inhibits blood clot formation

and therefore prevents potential consequences of blood clotting. The top condition under topic 51 is high

cholesterol, which is a known and common risk factor for atherosclerosis. Atherosclerosis is a process of

deposition of fatty material in the walls of arteries, and this thickening leads to an increase in stroke and

heart attack risk. Thus, although the two medications are not directly used as a cure for the condition of

high cholesterol, by way of atherosclerosis, high cholesterol leads to higher risk for other cardiovascular

outcomes and the medications are used to prevent those outcomes (Al-Ghamdi et al., 2021).

Contrary to the risk topics, the protective topics identified combinations of medications and conditions

that did not yield as straightforward pairings or links. Topic 73 is one of the top three negatively predictive

topics of CMK pain. Its top medications identified were ramipril, lisinopril and enalapril, which are angio-

tensin-converting enzyme (ACE) inhibitors, used to treat high blood pressure and may be used in response

to heart failure or heart attack. Incidentally, all conditions under topic 73 may be categorized as allergic or

atopic with hayfever contributing the most.

This finding suggests that a particular subset of individuals suffering from allergic conditions, whose immu-

nity is therefore skewed, and who are also undergoing cardiovascular treatment, are at lower risk for CMK

pain. The implication of immune mechanisms in chronic pain manifestation is well known, where
8 iScience 25, 104390, June 17, 2022



Figure 4. Illustration of GETM for medication imputation through examples of study subjects

(A) The three best-matched study subjects displayed as three barplot panels on the left. We chose three best-matched individuals for whom our imputed

medications matched well with the observed medications.

(B) The three worst-matched individuals displayed as three barplot panels on the right. The y axis represents the predicted probability of the medications on

the x axis. The numbers on the top of each bar represents the patient’s observed conditions that are known to be treated by the corresponding medication

under the bar. Inset in each panel lists the conditions names corresponding to the numbers on top of each bar. Blue bars indicate observed medications in

the patient, and red bars indicate unobserved medications.
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proinflammatory states are associated with chronic pain (Baral et al., 2019). In addition, high blood pressure

is the most common indication for ACE inhibitors (Heran et al., 2008). It is known to have analgesic effects

that persist with treatment (Ghione, 1996; Makovac et al., 2020). Thus, hypertension related analgesia

would help explain this negative predictive topic.

Another negatively predictive topic of CMK pain, topic 89, is limited to women given the top medication,

conjugated estrogens. The top condition, hypertension, as seen previously, is known to have analgesic ef-

fects. Sex hormones including estrogensmodulate pain, and estrogens have been found to have neuropro-

tective, antinociceptive properties. These could explain the protective association observed here on CMK

pain. Indeed, estrogens are known to influence chronic pain conditions (Chen et al., 2021). These combi-

nations of medications and conditions within topics could lead to new CMK pain etiology hypotheses

for further exploration.
iScience 25, 104390, June 17, 2022 9



Figure 5. Performance of logistic regression (LR) for CMK pain

We trained LR models using q obtained from GETM (Table S1) with 128 topics as input to predict CMK pain. The baseline

LR model directly used the raw condition and medication data as input. We iterated through seven feature filtering

schemes with different filtered condition sets andmedication sets as indicated by x axis (details in Table S2 and described

in STAR Methods Section 8). Barplot displays the AUROC and AUPRC across these experiments.
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Characterizing diverse pain types by topic analysis

We extended our analysis from CMK to predicting several other definitions of pain phenotypes,

including acute pain, the acute to chronic pain transition for a subset of UKB individuals, chronic pain

at specific body sites (neck/shoulder, hip, back, stomachache/abdominal, knee, headache, face) and

chronic pain all over body. We used three different feature filtering regimes to progressively remove

obvious pain-type predictors (STAR Methods). Logistic regression using the GETM’s topic mixture

conferred larger AUROC and larger AUPRC values across all three feature filtering regimes (Figure 8

and Table S1). We then examined the relative contributions of the medication/condition categories

for each pain type (Figure S5; STAR Methods). The results we have presented in the following sections

came from at least one of the three feature filtering regimes as highlighted in Figure S5. In addition to

the defined categories, we used the Anatomical Therapeutic Chemical (ATC) classification system to

consider the contribution of the medication subclass analgesics, which has a direct relationship with

pain. By considering the implication of condition and medication categories in predicting different

pain phenotypes, we were able to identify expected trends and to consider and interpret unexpected

findings.

Overall, the acute and acute-to-chronic transition displayed similar trends. Here the acute-to-chronic tran-

sition is defined such that non-site specificMSK acute pain observed at the first visit turned into chronic pain

as diagnosed at the following visit of the UKB individuals. As an example, low positive prediction from an-

algesics and high negative contribution were seen for acute pain (Figure 9).

As expected, the category from the literature that displays the highest levels of chronic pain comorbid-

ities, neurology/eye/psychiatry (conditions) and nervous system (medications) contributed the most to

prediction of chronic pain, particularly headache and face pain (Figures S5A-I and S5B-I). Endocrine/dia-

betes (conditions) exhibited a highly prominent contribution for the acute phenotype classification (Fig-

ure S5A-II). Immunological/systemic disorders showed a strong contribution for protection from acute

pain (Figure S5C-I). Gastrointestinal/abdominal (conditions) and alimentary tract and metabolism (med-

ications) showed an expected higher positive proportion of contribution toward stomach/abdominal

pain prediction compared to other chronic pain types (Figure S5A-III).

Knee pain compared to face pain and headache exhibited a sharp contrast in predictive compositions

(Figures S6A and S6B). Interestingly, obesity-related medication categories such as systemic hormonal

preparations excluding sex hormones and insulins exhibited the highest protective contribution for chronic

knee pain (Figures S7D–S7I). Chronic knee pain also had the highest positive contribution toward the pre-

diction of cardiovascular condition and no negative contribution (Figures S6A-I and S6C-I). A similar but

less striking pattern was observed for hip pain (Figures S6A-II, S6C-II). For headache and face pain, this

trend was reversed with the highest protective contribution and lowest positive contribution by cardiovas-

cular conditions (Figures S6A-III and S6C-III).
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Figure 6. Analysis of CMK-pain-related conditions and medications

(A) Logistic regression using patient topic mixture q˛RD3K of D individuals and K topics to predict CMK pain as a binary

outcome.

(B) Importance score computation for medications and conditions. Taking the inner product of the regression coefficients

uu ˛R13K and bðmedÞ ˛RK3M from GETM (GETM, Table S2), we obtained the importance scores of predicting CMK pain

as vðmedÞ ˛R13M and vðcondÞ ˛R13C for medications and conditions, respectively.

(C) Proportions of known CMK-related conditions based on a physician-compiled list.

(D) Proportions of known CMK-related medications based on a physician-compiled list of analgesic medications.

Comparisons relate to two baselines: (1) Using ETMwhich treated conditions andmedications as the same type of feature

(i.e., ETM-both-flat, Table S1). For this baseline, we selected the top medications and conditions from the resulting v˛
R13ðM +CÞ. (2) Odds Ratio (STAR Methods Section 8).
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Intriguingly, the cardiovascular medications category exhibited a strong negative prediction of 0.7 across

all chronic pain phenotypes but not acute pain (Figure 9). This suggests that topics containing cardiovas-

cular medications, other than analgesics, had a protective effect against chronic pain. Headache, andmore

specifically migraine, has a known vascular etiological component. Nonetheless, the patterns seen across

all chronic pain phenotypes are similar, indicating a more general chronic pain protective effect for cardio-

vascular medications.
DISCUSSION

Large biobanks with clinical data such as the UKB are valuable resources enabling greater understanding of

factors impacting the manifestation and treatment regimens of complex diseases such as chronic pain.

However, the sparsity, heterogeneity and sheer size of these data pose challenges when restricted to a clas-

sical statistical toolbox. The typical biomedical researcher is hindered from taking full advantage of these

invaluable data resources. As a result, most investigations focus on one or a small subset of related diseases

(Groen et al., 2020; Song et al., 2020; Singh et al., 2019). In the present study, we developedGETM tomodel

all self-reported conditions andmedications among 457,461 UKB subjects. Our main focus is to understand

the comorbidity among the UKB subjects in relation to pain-related phenotypes. By introducing the knowl-

edge graph and simultaneously training different types of features, GETM was able to infer more coherent

topics compared to the ablated models without using the KG embedding (Tables 1 and S4). In contrast to

the topic modeling without the graph embedding, this allows for better interpretation of the disease topics

and any findings related to certain topics with clearer clinical grounds.

As demonstrated using UKB data, GETM achieved superior performance in imputing 50% of the observed

conditions (Table 2) and 50% of the observed medications over all test individuals (Table 3) as well as in
iScience 25, 104390, June 17, 2022 11



Figure 7. Topic analysis for CMK pain

(A) The most predictive CMK pain topics. Based on the logistic regression coefficients of predicting CMK pain u (Figure 6A), we chose three topics with the

highest coefficients and three topics with the most negative coefficients. Each bar is composed of condition and medication category.

(B and C) The top conditions and medications under the six most predictive topics. Same as in Figure 2, the color bars on the right indicate the categories of

the conditions and medications.
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imputing the entire medication records based only on the conditions records of test individuals (Table 4).

Many top unobserved medications predicted by GETM also exhibit known connections with the observed

conditions of the subject (Figure 4). Importantly, GETM offers excellent model interpretability and can be

used to discover meaningful disease comorbidities and disease-medication combinations via topic anal-

ysis (Figure 2).
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Figure 8. Prediction performance of 10 pain types

Logistic regression was trained to predict 10 pain types as indicated in the x axis. We experimented with three different filtered feature sets of conditions and

medications: (1) all (m802c443): non-filtered conditions and medications, (2) general (m680c351): physician-curated general pain-related conditions and

medications were filtered, and (3) least: physician-curated and conditions and medications based on with odds ratios were filtered. Details of the data

filtering were described in Table S2.
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In a focused analysis to predict chronic musculoskeletal (CMK) pain, the same logistic regression (LR) clas-

sifier using GETM-inferred topic mixtures conferred robustly and consistently higher AUROC and AUPRC

compared to using the raw features (Figure 5). The top conditions and medications under the most

predictive topics are enriched for elements from the physician-curated condition list and medication list,
iScience 25, 104390, June 17, 2022 13



Figure 9. Contributions of cardiovascular-related conditions and medications to 12 pain types

The importance weights of cardiovascular conditions and medications in predicting the 12 pain types were calculated by the sum of their topic probabilities

weighted by the linear regression coefficients across all topics (STAR Methods). Descriptions of the names of these pain types are in Table S3. The results for

the cardiovascular category were based on the filtered sets, where the known pain-related conditions andmedications based on a physician curated list were

removed. The results of analgesic category (anlgsc_med) were based on the non-filtered set, as only full set contains analgesic medications. All of the

importance weights from other filtering schemes were displayed in Figure S5.
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respectively (Figure 6). In addition, the most predictive CMK pain topics contained top conditions and

medications that were strongly associated with CMK pain (Figure 7), implying their potential usage as phe-

notyping markers. In addition, the GETM topic mixtures are robust to the removal of clinically obvious con-

ditions andmedications (Figure 5). This is reflected in the larger relative improvements over the LR classifier

that operates on the raw (filtered) features. This implies its utility in predicting predisposition for CMK pain

for those individuals with no reported pain symptoms. We observed consistent quantitative performance

when extending to other pain types (Figure 8).

Several existing methods utilize topic models to findmeaningful latent topics from electronic health record

(EHR) data using structured administrative data such as the ICD codes (Li et al., 2020; Song et al., 2021). In

contrast, we demonstrated the utility of GETM on the less structured and more sparse self-reported ques-

tionnaire information from the UKB including 443 conditions and 802 medications. We expect that GETM

would work equally well if not better on more structured EHR data and leave that to future exploration.

Indeed, although we used UKB data and focused on pain phenotypes as a case study, our approach is a

generalizable and highly efficient method that can be used to characterize other phenotypes in the UKB

or from other similarly scaled biobanks.

We now discuss the epidemiological implications of our results on the pain analysis in the context of

existing studies. Our findings identified intriguing links between cardiovascular medications and their

protective effect for chronic (but not acute) pain that stood out as particularly predictive compared

with other medication or condition categories (Figure 9). In addition, cardiovascular conditions were

negatively predictive for headache and face pain particularly. Recent meta-analyses have attempted to

quantify the relationship between cardiovascular conditions and chronic pain (Fayaz et al., 2016b;

Oliveira et al., 2019), but their relevance to our findings is low. Neither of these nor the studies that
14 iScience 25, 104390, June 17, 2022
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were included in the meta-analyses explicitly quantified the effects of taking medications. In addition, the

direction of causality focused on chronic pain as a risk factor for cardiovascular outcomes, including mor-

tality, and did not consider reverse causality; authors cited diversity in outcomes and in chronic pain tax-

onomy making meta-analysis results generally inconclusive (Fayaz et al., 2016b). The more recent meta-

analysis was more limited in scope, estimating that people with CMK pain were 1.91 times more likely to

report having a cardiovascular disease compared with those without CMK pain with statistical signifi-

cance (Oliveira et al., 2019).

The dominance of the predictive effect of cardiovascular medications across chronic pain phenotypes

leads to several avenues for further exploration. The specifics of what medications and what conditions

are found in individually highly predictive topics would need to be explored in further detail. In addition,

further analyses are needed to identify whether more specific subcategories of cardiovascular medica-

tions drove the strong cardiovascular medications predictive component. The extent of similarity across

specific medications within and across topics, such as common mechanisms of action, would be of partic-

ular interest. Several medications united by a common mechanism would have a higher potential for

generalizability beyond the limited population subsets represented by individual items or topics. This

was illustrated by our focused analysis on CMK pain, where the predictive medications identified in

the top protective topic (Figures 7B and 7C, Topic 73) were all ACE inhibitors. Given that the most com-

mon indication for this medication class is hypertension, perhaps one of the protective cardiovascular

medication effects at play was hypertension-associated hypoalgesia, especially because the hypoalgesia

effect is maintained even if the hypertension is treated (Ghione, 1996; Suarez-Roca et al., 2019). Barore-

ceptor sensitivity is the most studied specific mechanism (Ghione, 1996; Suarez-Roca et al., 2019). Hyper-

tension-associated hypoalgesia manifests through a range of phenotypes from pain sensitivity to pain

chronification, with higher blood pressure associated with lower pain sensitivity or lesser chronification.

This has been demonstrated in both animal experimental and human observational studies (Ghione,

1996; Bruehl and Chung, 2004). Nonetheless, hypertension-associated hypoalgesia is not well

recognized.

Perhaps the present report will lead to findings supporting greater clinical and public health importance for

hypertension-associated hypoalgesia in preventing pain chronification than previously thought. Beyond

ACE inhibitors, cardiovascular medications classified as beta blockers are used as prophylaxis for migraine

headaches (Jackson et al., 2019). They have been shown to have analgesic effects for other types of chronic

pain (Tchivileva et al., 2010, 2020). There may also be further subcategories of cardiovascular medications

of interest.
Limitations of the study

In terms of the data used in this study, the UKB as a cross-sectional study creates challenges in interpreting

the role of temporality and identifying putative causal effects. The pain questionnaire was administered at

baseline, and medications reported were taken regularly, also at baseline. Conditions were considered to

occur at any time in the subjects’ past, through a record of age-of-onset for each condition. Thus, the

impact of medications on reported conditions do not allow for direct investigations of medication efficacy.

In classifying chronic pain, the pain questionnaire referred to a time including at least the prior three

months in the past from baseline, but this could extend to any length in a given subject’s history. By consid-

ering the subset of individuals without baseline chronic pain, but who developed chronic pain by the time

of a subsequent visit, it would be possible to approximately quantify the total length of time of pain chro-

nicity. We may also consider chronification as temporally subsequent to the appearance of conditions and

taking of medications from before baseline. This is only true for a subset of UKB subjects, however. Thus,

the UKB study design has limited potential to evaluate chronic pain causality. Rather, our analyses pro-

duced hypotheses that might best be tested in the context of other cohorts that are truly longitudinal in

design. In terms of the biological findings in this paper, there are variable time frames between develop-

ment of cardiovascular conditions, taking of cardiovascular medications and development of chronic pain

in the present study. Therefore, other longitudinal studies that control these sources of variability would be

needed to better understand the protective effect suggested by the present analysis.

Although GETM provides relatively the highest chronic musculoskeletal (CMK) pain prediction accuracy

(Figure 5), the absolute AUROC and AUPRC are not high. This underscores the limitation of both the

UKB data and the GETM model. First of all, we only used self-reported conditions and medications in
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this task, which are noisy, sparse, and sometimes inaccurate. To make more accurate predictions on CMK

pain, other sources of health status data such as healthcare provider-facilitated clinical notes, laboratory

tests, genomicmeasurements such as gene expression profiles of each patient are needed. Another impor-

tant missing piece for predicting chronic conditions is the longitudinal information of each patient. As

mentioned previously, we only have the baseline data at the initial visit for most of the UKB subjects. As

longitudinal data become increasingly available, we will extend our model to a dynamic topic model

that accounts for the evolution of subjects’ health status over time. In particular, we will allow for integration

of longitudinal healthcare information such as age-of-onset across conditions and multiple follow-up time-

points. We will also improve embedding learning by considering a more expressive graph embedding

approach than node2vec. For instance, we will consider a graph convolutional neural network (GCN)

(Kipf and Welling, 2016) to produce the embedding used by the ETM model. Furthermore, we will explore

a multi-relational graph approach (Schlichtkrull et al., 2018) to model the relationships within and among

conditions and medications. Because both the GCN and the ETM models share the same objective func-

tion (i.e., the evidence lower bound), we will be able to perform end-to-end training instead of the pipeline

approach presented here. To produce competitive performance with this approach, however, careful

model fine-tuning of both the GCN and ETM will be needed at the expense of computational resources.
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UK Biobank dataset https://biobank.ctsu.ox.ac.uk The UK Biobank data access has been

approved by McGill IRB under the project title

‘‘A replication study of pain interactions with

comorbidities". The approval number is A03-

M20-21B.

Software and algorithms

Graph-embedded topic model This paper https://github.com/li-lab-mcgill/getm
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Lead contact

Requests for data and requests for additional information should be directed to the lead contact, Yue Li

(yueli@cs.mcgill.ca).
Material availability

This study did not generate new unique reagents.

Data and code availability

d The UK Biobank data access has been approved byMcGill IRB under the project title ‘‘A replication study

of pain interactions with comorbidities’’. The approval number is A03-M20-21B.

d All code associated with this paper can be freely accessed and downloaded via https://github.com/

li-lab-mcgill/getm.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

UKB data processing

For conditions data, we used UKB datafield 20002, which records self-reported non-cancer diseases for

each subject. This was collected by questionnaire during participant interviews. The participants were

asked whether or not they had been diagnosed with certain conditions (heart attack, angina, stroke,

high blood pressure, blood clot in leg, blood clot in lung, emphysema/chronic bronchitis, asthma or dia-

betes), were asked to add any other conditions and to provide a date of diagnosis for each when possible

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002. Medication usage data was similarly collected

during participant interviews prompted by a question on regular prescription medication use, resulting

in datafield 20003 which contains treatment/medication codes https://biobank.ctsu.ox.ac.uk/crystal/

field.cgi?id=20003.

We kept 457,461 individuals of European descent to reduce potential confounding by ethic group. In total,

802 active ingredients were kept as medications and 443 conditions were extracted. Here we encoded the

medications and conditions as binary variables. Only baseline visit data was included.
UKB pain-related phenotype labels extractions

We sought to associate pain phenotypes with comorbid conditions and medications. To this end, we used

the pain-related phenotypes as the label data and patient-dependent topic mixture derived from the 443

conditions and 802 medications as the input features in a post-hoc supervised topic analysis as detailed in

CMK pain prediction.
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The pain phenotypes were collected through questionnaire. We drew on datafield 6159; participants were

asked ’’In the last month have you experienced any of the following that interfered with your usual activ-

ities? (You can select more than one answer).’’ If they answer ‘‘yes’’ to pain at any site, for example, back

pain, they were further asked ’’Have you had back pains for more than 3 months?’’ (datafield 3571), and

so on. In total, we collected 9 pain-related labels with data field identifiers listed as follows:

1. pain type(s) experienced in last month: 6,159

2. headaches for 3+ months: 3,799

3. facial pains for 3+ months: 4,067

4. neck/shoulder pain for 3+ months: 3,404

5. back pain for 3+ months: 3,571

6. stomach/abdominal pain for 3+ months: 3,741

7. hip pains for 3+ months: 3,414

8. knee pains for 3+ months: 3,773

9. general pain for 3+ months: 2,956

We can also query the UKB website to obtain relevant information for each field by replacing x in https://

biobank.ndph.ox.ac.uk/ukb/field.cgi?id=x with the above data field identifiers.
Graph-embedded topic model details

Graph-embedded topic model (GETM) generative process

We formulated the problem of modelling discrete patient healthcare data into a topic modeling problem.

In particular, we treat each of the D patient health records as a document and each observed feature in the

record as a word sampled from a defined vocabulary. In our case, we have two vocabularies covering M =

802medications andC= 443 conditions, respectively. With this analogy, each patient record is represented

as amixture of latent topics. In the original latent Dirichlet allocation (LDA) model (Blei et al., 2003b), a topic

distribution over a vocabulary is defined as an independent Dirichlet prior bk � DirichletðtbÞ, wherePV
w = 1bk;w = 1 over V words. Inspired by a more recent work called embedded topic model (ETM) (Dieng

et al., 2019), we decomposed the K topic distributions over medications b(med) into a medication-defined

topic embedding aðmedÞ ˛RK3L1 , and a medication embedding rðmedÞ ˛RL13M, where L1 denotes the medi-

cation embedding dimension and M denotes the number of unique medications. Similarly, the topic dis-

tribution over conditions b(cond) is proportional to the inner product of the condition-defined topic embed-

ding aðcondÞ ˛RK3L2 , and condition embedding rðcondÞ ˛RL23C , where L2 denotes the condition embedding

dimension and C denotes the number of unique conditions.

For the dth patient record ðd ˛ f1;.;DgÞ, the generative process starts by drawing the topic mixture qd

from a logistic normal distribution qd � LNð0; IÞ:

hd �Nð0; IÞ; qd = softmaxðhdÞ =
expðhdÞPK

k = 1expðhd;kÞ
(Equation 1)

We then draw the ith medication token or the jth condition token from two respective categorical

distributions:

wðmedÞ
i;d =

Y
m

r

h
wðmedÞ
i;d

= m

i
m;d ; wðcondÞ

j;d =
Y
c

r

h
wðcondÞ
j;d

= c

i
c;d (Equation 2)

where

rm;d =
X
k

qd;kb
ðmedÞ
k;m = qd;:b:;m; rc;d =

X
k

qd;kb
ðcondÞ
k;c = qd;:b:;c (Equation 3)

Here we use notation qd,. to denote a 13K row vector for the dth patient record and b.,m (and b.,c) to denote

a K31 vector for the mth medication (and the cth condition).
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The kth topic distribution for the mth medication (or the cth condition) is defined as the product of the cor-

responding topic embedding and medication (or condition) embedding followed by softmax normaliza-

tion over the corresponding vocabularies:

b
ðmedÞ
k;m =

exp
�
a
ðmedÞ
k;: rðmedÞ

:;m

�
P

m0exp
�
a
ðmedÞ
k;: r

ðmedÞ
m0

�; b
ðcondÞ
k;c =

exp
�
a
ðcondÞ
k;: rðcondÞ

:;c

�
P

c0exp
�
a
ðcondÞ
k;: r

ðcondÞ
c0

� (Equation 4)

Here we treat both the topic embeddings a(med) and a(cond) and condition and medication embeddings

r(med) and r(cond) as point estimates without imposing any prior distribution.

For the ease of mathematical expression below, we denote x
ðmedÞ
m;d (and x

ðcondÞ
c;d ) as the frequency of the mth

medication (and the cth condition) for the dth patient record. Formally, modeling the likelihood of the count

frequency simply requires reformulating the above multinomial likelihood:

p
�
xðmedÞ
m;d jqd ;Q

�
=

Y
i

h
r ðmedÞ
m;d

ihwðmedÞ
i;d

= m

i
=
h
r ðmedÞ
m;d

iP
i

h
wðmedÞ
i;d

= m

i
=
h
r ðmedÞ
m;d

ixðmedÞ
m;d

(Equation 5)

h i Ph i

p
�
xðcondÞc;d jqd ;Q

�
=

Y
j

h
r ðcondÞc;d

i wðcondÞ
j;d

= c

=
h
r ðcondÞc;d

i
i

wðcondÞ
j;d

= c

=
h
r ðcondÞc;d

ixðcondÞ
c;d

(Equation 6)

where qd is the patient topic mixture of patient d and Q = faðmedÞ;rðmedÞ;aðcondÞ;rðcondÞg.

The vector xðmedÞ
:;d and xðcondÞ:;d denote the frequency of all medications and all conditions for the dth patient

record, respectively. The entire data can then be represented as aM 3 Dmatrix X(cond) and a C 3 Dmatrix

X(cond) and modelled by Equations (5) and (6):

p
�
XðmedÞjq;Q

�
=

Y
d

Y
m

p
�
xðmedÞ
m;d jqd ;Q

�
=
Y
d

Y
m

h
r ðmedÞ
m;d

ixðmedÞ
m;d

(Equation 7)

� � YY � � YYh ixðcondÞ

p XðcondÞ

c;d jq;Q =
d c

p xðcondÞc;d jqd ;Q =
d c

r ðcondÞc;d

c;d
(Equation 8)

Inference of qd’s and learning of Q are described next.

Model inference and estimation

To train GETM, we want to maximize the marginal likelihood of the individuals with respect toQ = faðmedÞ;
rðmedÞ;aðcondÞ;rðcondÞg:

aðmedÞ;rðmedÞ;aðcondÞ;rðcondÞ )max
Q

LðQÞ = max
Q

XD
d = 1

log p
�
xðÞd jQ

�
(Equation 9)

where xð:Þd is word frequency vector (i.e., the bag of words of medications and conditions for individual d).

This marginal likelihood is intractable to compute since it involves integrating out the logistic normal topic

mixture variable qd , cd˛ f1;.;Dg:

log p
�
xð:Þd jQ

�
= log

Z
pðhdÞ

YM
m = 1

p
�
xðmedÞ
d;n

��hd ;a
ðmedÞ;rðmedÞ

� YC
c = 1

p
�
xðcondÞdn

��hd ;a
ðcondÞ;rðcondÞ

�
dhd

= log

Z
pðhdÞ

YM
m = 1

�
f ðhd;:Þf

�
aðmedÞrðmedÞ

:;m

��xðmedÞ
m;d

(Equation 10)
C � � �� ðcondÞ
Y

c = 1

f ðhd;:Þf aðcondÞrðcondÞ
:;c

x
c;d

dhd (Equation 11)

Z YM � � ðmedÞ YC � � ðcondÞ
hlog pðhdÞ
m = 1

qd;:b
ðmedÞ
:;m

x
m;d

c = 1

qd;:b
ðcondÞ
:;c

x
c;d

dhd (Equation 12)

where f ð:Þ denotes the softmax function and qd;:b
ðmedÞ
:;m is the inner matrix product of the 1 3 K vector qd,.

and the K 3 1 vector bðmedÞ
:;m . Same for conditions.
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Therefore, we took an Amortized Variational Inference (AVI) approach to approximate the above intrac-

table integral. This is quite similar to the one described by Kingma andWelling (2014) (Kingma andWelling,

2014) and by Dieng et al., (2019) (Dieng et al., 2019). For the sake of completeness, we describe it below.

To approximate true posterior pðhd jxdÞ, we define the proposed distribution as a Gaussian with mean and

variance produced by a feedforward neural network with parameters Wq:

qðhd jxd ;WqÞ = Nðmd ;diagðsdÞIÞ;
�
md ; log s2

d

�
= NNETðxd ;WqÞ (Equation 13)

The evidence lower bound (ELBO) of the above log likelihood is approximated as follows:

log p
�
xð:Þd jQ

�
= log

Z
qðhdÞ

pðhdÞ
qðhdÞ

YM
m = 1

�
qd;:b

ðmedÞ
:;m

�xðmedÞ
m;d

YC
c = 1

�
qd;:b

ðcondÞ
:;c d

�xðcondÞ
m;d

dhd (Equation 14)Z

R qðhdÞlog pðhdÞdhd (Equation 15)

Z M
+ qðhdÞ
X
m = 1

xðmedÞ
m;d log

�
qd;:b

ðmedÞ
:;m

�
dhd

+

Z
qðhdÞ

XC
c = 1

xðcondÞm;d log
�
qd;:b

ðcondÞ
:;c

�
dhd �

Z
qðhdÞlog qðhdÞdhd

(Equation 16)

� �

= EqðhÞ log pðhdÞ

+ EqðhÞ
h
log p

�
xðmedÞ
d

��hd ;b
ðmedÞ

�i
+ EqðhÞ

h
log p

�
xðcondÞd

��hd ;b
ðcondÞ

�i
� Eqðhd Þ

�
log qðhdÞ

�
(Equation 17)

X h �
ðtÞ� ðtÞ

�i � �

=

t ˛ fmed;condg
EqðhÞ log p xd

�hd ;b � KL qðhdÞkpðhdÞ ðELBOÞ (Equation 18)

X �
ðtÞ� ðtÞ

� � �

z

t ˛ fmed;condg
log p xd

�bhd ;b � KL qðbhdÞkpðbhdÞ (Equation 19)

where

log p
�
xðtÞd

��bhd ;b
ðtÞ
�

=
XM
m = 1

xðmedÞ
m;d log

�bqd;:b
ðmedÞ
:;m

�
+
XC
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xðcondÞc;d log
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:;c

�
� � 1 � �
Eqðhd jxd Þ log pðbhdÞ = Eqðhd jxdÞ½log Nðbhd ;0;1Þ� = �
2

logð2pÞ + m2
d + s2

d� � 1 � �

Eqðhd jxd Þ log qðbhdÞ = � HðbhÞ = �

2
log s2

d + 1 + logð2pÞ
� � � � 1 � �
Eqðhd jxd Þ log qðbhdÞ � log pðbhdÞ hKL qðbhdÞkpðbhdÞ = �
2

log s2
d + 1 � m2

d � s2
d

Here Equation (19) uses the sampled bhd from the feedforward network encoder as a surrogate to approx-

imate the intractable variational expectation w.r.t. bhd . We re-parameterized the Gaussian distribution in

Equation (13) to enable stochastic gradient calculation of the ELBO w.r.t. Wq and AVI training of the

encoder network NNET :

qðhd jxd ;WqÞ = md + diag
�
sdNð0; IÞ; �

md ; log s2
d

�
= NNETðxd ;WqÞ (Equation 20)
vELBO

vWq

=
NNETðxd ;WqÞ

vWq

(Equation 21)

Model specifications

The encoders for GETM, partial GETMs and ETMs are 2-layer neural networks with hidden sizes of 128,

ReLU activations (Glorot et al., 2011) and 1D batch normalization (Ioffe and Szegedy, 2015). The medication

embedding dimension and condition embedding dimension were both 128 and they were fixed during

training of the models with KG-informed pre-trained embeddings. The models were optimized with

Adam optimizer at 0.01 learning rate. We trained each model with batch size of 100. For inferring individ-

ual-topic mixtures used by prediction tasks, the topic number was set to be 128.
22 iScience 25, 104390, June 17, 2022
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Knowledge graph construction for learning the embedding of UKB conditions and medications

In the original ETM (Dieng et al., 2019), the word embedding r can be either learned from the documents or

pre-trained on a separate large data corpus such as Wikipedia using the word2vec approach. The latter

approach allows leveraging the contextual data to improve the topic modeling. As one of our main contri-

butions, we sought to develop a simple framework that exploits ETM’s ability to incorporate a pre-trained

medication embedding r(med) and condition embedding r(cond) from their taxonomic knowledge graphs

(KG). Leveraging the structural KG information and the internal relational information among medications

and conditions in a principled way is beneficial to modeling the UKB phenotype data and other EHR data in

general, which are often sparse, noisy, and bias.

Among the graph representational learningmethods, we chose node2vec (Grover and Leskovec, 2016) as it

is an unsupervised approach that can directly learn from the KG without linking to a prediction task as in

other methods. Specifically, we applied node2vec to separately learn the node embedding of the 443 con-

ditions or 802 medications from their hierarchical trees (Figure 1).

For the KG of the 443 conditions, we constructed a tree graph using coding taxonomy designed by the UKB

team (i.e., datafield 20002). The tree describes the topology of the conditions with 473 nodes and 4 hier-

archical levels.

For the KG of the 802 medications, we constructed a KG based on the Anatomical Therapeutic Chem-

ical (ATC) classification system https://www.whocc.no/. The entire tree is composed of 5 levels. We first

kept the top 4 levels of ATC, of which the first level contains main anatomical or pharmacological

groups; the second level includes pharmacological or therapeutic subgroups; and in the third and

fourth levels are chemical, pharmacological or therapeutic subgroups. To harmonize the UKB medica-

tions with the ATC graph, we mapped the names of active ingredients from UKB datafield 20003 to the

fifth level codes of ATC, which are chemical substances. Some UKB medication codes were mapped to

multiple ATC fifth level codes as they could belong to different subgroups depending on their usages.

In that case, we replaced all of the mapped ATC fifth level codes with the same corresponding UKB

medication code of the active ingredient in the second step. The final medication graph contains

2561 nodes in total.

Both the condition graph and the medication graph were treated as undirected graphs as input to the no-

de2vec model (Figure 1).
Algorithm 1. Topic modelling with GETM

Input : UKB phenotype matrices X(cond) and X(med), node2vec-pretrained embedding for conditions and medi-
cations r(cond) and r(med)

Initialize :condition-defined topic embedding a(cond), medication-defined topic embedding a(med), encoder
neural network Wq

Output :Learned topic embeddings baðcondÞ, baðmedÞ and encoder network parameters cWq for patient topic mix-
tures

1 for epoch i = 1,2, ... do

2 for each batch B do

3 Get normalized bag-of-words ~XB = ½~XðcondÞ
B ; ~X

ðmedÞ
B �

4 Sample bqB using NNETð~XB ;WqÞ by (Equation 21)

5 Compute approximate ELBOðbqB ; aðmedÞ;aðcondÞÞ using (Equation 19)

6 Update parameters a(cond), a(med), Wq by backpropagation to maximize ELBO

7 end for

8 end for
Summary of the GETM learning algorithm

GETM learning algorithm is summarized in Algorithm 1.
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Ablation experiments

To gain a good understanding of how each component of our method contribute to the overall improve-

ments, we performed ablation experiments. In particular, we compared GETM with 8 ablated baseline

models (Table S1):
Topic quality evaluation

For medication, the topic coherence was calculated as:

TCmed =
1

K

XK
k = 1

mk

n
(Equation 22)

where n is the number of top medications,mk % n is the maximum number of medications that are from the

same category across all categories, and K is the number of topics. We set n = 5 because of the softmax-

normalization of each topic, where only the top 5 conditions or medications under each topic has non-

negligible probabilities.

To avoid overestimating the topic quality, the categories we used to evaluate the topic coherence were not

processed from the ATC graph since it was involved in the pre-trained model. Instead, we employed 59

categories which are physician-curated and pain-focused (Table S7).

For conditions, we did not have any external gold-standard reference to compare against. Therefore, we

calculated the topic coherence for conditions based on the co-occurence of the top conditions under

the same topic observed from the same patient record. Specifically, for any top two conditions under

the same topic, we calculated the average pointwise mutual information:

TCcond =
1

K

XK
k = 1

1

nðn � 1Þ
Xn

i = 1

Xn

j = i + 1

f
�
ck
i ; c

k
j

�
(Equation 23)

where cki is the ith top most likely condition in topic k, and f ð ,; ,Þ is normalized pointwise mutual

information:

f
�
ci; cj

�
=

log
Pðci ;cjÞ

PðciÞPðcjÞ
� log P

�
ci; cj

� (Equation 24)

where P(ci, cj) is the probability of condition i and condition j co-occurring in one individual and P(ci) is the

marginal probability of condition i. The probabilities were approximated by empirical counts.

Topic diversity is the percentage of total unique features of the top 5 features of all topics. We first chose

top 5 features from K topics. Among 5 3 K features there are U unique words. The topic diversity is calcu-

lated as TQ = U
53K. Therefore, the higher topic diversity the more diverse the topics are.
Study of medication and condition relations

In GETM, since the encoder takes both medication and condition information as input (Figure 1), the top

medications and conditions from the same topic (i.e. the same index) are related. To quantitatively measure

the ability of the model to capture known condition-medication relations, we first obtained all of the com-

binations from top 3 conditions and top 3 medications for each topic. We then counted the number of con-

dition-medication pairs which are known to be related. The reference of known pairs was extracted from

CTD http://ctdbase.org/ and DrugBank https://go.drugbank.com/. We eventually mapped 222 conditions

and 529 medications from UKB to these two databases. As a result, we had 2444 positive pairs of which the

medication has treatment effects on the condition and 3231 negative pairs of which the condition belongs

to the adverse effects of the medication. The number of known pairs discovered by our model and base-

lines were compared using different number of topic numbers (Table 1).
Data imputation

Using the generative model, we can (1) impute missing entries including conditions or medications and (2)

impute medications based on only clinical conditions. Accordingly, two sets of experiments were per-

formed to evaluate how well our model could complete these two tasks. We split the UKB data into 80%
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training and 20% test. To simulatemissing entries, we randomlymasked 50%of medications and conditions

for test individuals. Then we calculated reconstruction error as the negative log-likelihood of the held-out

data:

� log pðXjqd ;bÞ = 1

D0
XD0

d = 1

� xd log
�bxu

d

�
(Equation 25)

where D0 is the number of test individuals and bxd = qdb

For medication imputation experiment, we masked the entire medication data of the test individuals and

then reconstructing the medication matrix. This experiment mimics the scenario that we recommend rele-

vant medications based only on individuals’ condition history.

In addition to reconstruction error, we also calculated recall and precision rates at the top 5 predictions:

recall @5 and precision @5. Specifically, we sorted the predicted probabilities of medications and chose

top 5 medications, of which we calculated recall and precision with respect to medications that the individ-

ual took as true labels. The recall and precision are calculated as: Recall = TruePositives
TruePositives+ FalseNegatives and

Precision = TruePositives
TruePositives+FalsePositives, respectively.

CMK pain prediction

CMK pain was defined as musculoskeletal pain lasting at least three months localized to any of five body

sites: knee, back, neck/shoulder, face or hip. The label information was obtained from the UKB pain ques-

tionnaire as described in STAR Methods.

We used individual topic mixture qd’s to predict whether a individual d has chronic musculoskeletal pain at

the time of the visit as the binary outcome yd . We split data to 80% of training set and 20% of testing set.

GETM was first trained with training set to get q(train). Then we fit logistic regression model logitðydÞ �
q
ðtrainÞ
d u, where u is a K 3 1 vector of the linear coefficients corresponding to the predictive weights of

the K topics.

To evaluate model performance, we first obtained q(test) with testing set using the trained GETM (i.e., the

encoder network parametersWq) and then predicted CMK pain status using the trained logistic regression

coefficients byðtestÞ = qðtestÞ bu.

Odds ratios of CMK-related conditions or medications

We calculated odds ratios of each condition and medication with respect to CMK pain as the outcome

(Figure S4). The odds ratios were used for two purposes: (1) obtaining conditions and medications that

are obvious for chronic musculoskeletal pain prediction and to be removed for some experiments; (2) con-

structing a baseline reference to construct a curated list of pain-related conditions and medication by the

physician in our team. For each feature (condition or medication), we formed a contingency table as below.

The odds ratios were calculated as OR = ad
bc.
Feature

Pain

Yes No

Yes a b

No c d
Feature filtering schemes in removing obvious CMK-related conditions and medications

Let C andM be the complete sets of 443 conditions and 802 medications, respectively. Based on the odds

ratios, we identified 50 conditions (C1) and 150 medications (M1) that are significantly associated with

the CMK pain (Figure S4). A physician also provides a general pain related condition list (C2), a musculoskel-

etal pain related condition list (C3) and a general pain related medication set (M2). We created three

filtered condition sets: (1) C � C2; (2) C � C3; (3) C � ðC1WC2Þ, where using the setting notations C� C1
denotes condition set without C1 and C1WC2 denotes the union of C1 and C2.
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We also created two filtered medication sets: (1) M � M1; (2) M � ðM1WM2Þ. These filtered condition

sets and filtered medication sets formed six experiment settings plus the full set (Table S2), which we used

to explore CMK prediction performance as a function of reduced feature sets (Figure 5).
Calculating importance of conditions and medications for CMK pain

Using the K 3 1 coefficients from logistic regression bu and the topic embeddings, we calculated the rele-

vance of medications and conditions to CMK pain as follows (Figures 6A and 6B).

v = buubb (Equation 26)

We selected the topN˛ f10; 30; 50gmedications and conditions from v(med) and v(cond). We then calculated

the proportions of these top Nmedications or conditions overlapping with the pain-related lists created by

a physician. The results are visualized as barplots in Figures 6C and 6D.
Characterizing pain types from 7 body sites and pain all over the body

We used similar approaches as described for the CMK pain predictions to characterize other pain types.

For all experiments, we used three different filtered feature sets of conditions and medications, which

are (1) all: non-filtered conditions andmedications, (2) general: physician-curated general pain-related con-

ditions and medications were filtered, and (3) least: physician-curated / top odds ratio calculation condi-

tions and medications were filtered.

For each pain type p, we calculated the importance weight that a medication or condition positively or

negatively related to the pain using logistic regression coefficient for predicting that pain type bup and

GETM topic-feature mixture b of certain feature filtering regime (Figure 6B). Specifically, the way to calcu-

late importance weight wc, p for a positive relation between a condition c and the pain type p is:

buð+ Þ
c;p =

	
0 if buc;p < 0buc;p otherwise

; wð+ Þ
c;p =

h buð+ Þ
p

iu
bðcondÞ
c;:P

c buð+ Þ
c;p

(Equation 27)

Similarly, we calculated importance weight for negative relationship between a condition c and pain type p:

buð� Þ
c;p =

	
0 if buc;p > 0buc;p otherwise

; wð� Þ
c;p =

h buð� Þ
p

iu
bðcondÞ
c;:P

c buc;p
(Equation 28)

Calculation for the positive and negative relations between every medication and every pain type is the

same.
QUANTIFICATION AND STATISTICAL ANALYSIS

Topic model were evaluated using topic quality scores as described in Section 8. The topic quality scores

were computed for five repeated experiments with random initialization for each method (Figure 3 and

Supplemental Figure S2). One-sided t-test were performed to compare the topic quality scores from the

proposed Graph-embedded topic model (GETM) with the baseline methods. Prediction of chronic muscu-

loskeletal pain phenotypes were evaluated using the receiver operating characteristic (ROC) curves and

area under the ROC curve (AUROC) as well as precision-recall curves (PRC) and area under the PRC

(AUPRC). Feature selection were performed using Fisher exact test as detailed above.
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