

CO₂ Activation Within a Superalkali-Doped Fullerene

Giovanni Meloni^{1,2}*, Andrea Giustini² and Heejune Park¹

¹Department of Chemistry, University of San Francisco, San Francisco, CA, United States, ²Department of Physical and Chemical Sciences, Università degli Studi de L'Aquila, L'Aquila, Italy

With the aim of finding a suitable synthesizable superalkali species, using the B3LYP/6-31G* density functional level of theory we provide results for the interaction between the buckminsterfullerene C_{60} and the superalkali Li_3F_2 . We show that this endofullerene is stable and provides a closed environment in which the superalkali can exist and interact with CO_2 . It is worthwhile to mention that the optimized Li_3F_2 structure inside C_{60} is not the most stable C_{2v} isomer found for the "free" superalkali but the D_{3h} geometry. The binding energy at 0 K between C_{60} and Li_3F_2 (D_{3h}) is computed to be 119 kJ mol⁻¹. Once CO_2 is introduced in the endofullerene, it is activated, and the \widehat{OCO} angle is bent to 132°. This activation does not follow the previously studied CO_2 reduction by an electron transfer process from the superalkali, but it is rather an actual reaction where a F (from Li_3F_2) atom is bonded to the CO_2 . From a thermodynamic analysis, both CO_2 and the encapsulated [Li_3F_2 · CO_2] are destabilized in C_{60} with solvation energies at 0 K of 147 and < -965 kJ mol⁻¹, respectively.

OPEN ACCESS

Edited by:

Ambrish Kumar Srivastava, Deen Dayal Upadhyay Gorakhpur University, India

Reviewed by:

Gourhari Jana, Indian Institute of Technology Bombay, India Amlan Kusum Roy, Indian Institute of Science Education and Research Kolkata, India

*Correspondence:

Giovanni Meloni gmeloni@usfca.edu

Specialty section:

This article was submitted to Theoretical and Computational Chemistry, a section of the journal Frontiers in Chemistry

> Received: 21 May 2021 Accepted: 28 June 2021 Published: 14 July 2021

Citation:

Meloni G, Giustini A and Park H (2021) CO₂ Activation Within a Superalkali-Doped Fullerene. Front. Chem. 9:712960. doi: 10.3389/fchem.2021.712960 Keywords: CO_2 activation, superalkali, endofullerene, ionization energy, solvation energy

INTRODUCTION

In 1985, Kroto and co-workers discovered an extremely stable cluster consisting of 60 carbon atoms during a study of long-chain carbon molecules. (Kroto et al., 1985). This cluster, called fullerene, has a football shape with 12 pentagonal and 20 hexagonal rings. (Kroto et al., 1985). Shortly after, a study presenting successful formation of fullerenes with a lanthanum atom trapped in the cavity of C_{60} . called endofullerene, C₆₀La, was published. (Heath et al., 1985). Another consequent experiment proved the stability of C₆₀La⁺ against H₂, O₂, NO, and NH₃. (Weiss et al., 1988). This suggested that the lanthanum atom can be "protected" by being encapsulated in the fullerene. Since then, a number of studies focusing on novel properties of C_{60} and its interactions with other species have been carried out. (Ruoff et al., 1993; Diederich and Gómez-López, 1999; Bakry et al., 2007; Mignolet et al., 2013; Wang et al., 2014; Elliott et al., 2018; Kouřil et al., 2018) Some investigations concentrated on medical applications, hydrogen storage, and various endofullerene. (Wang et al., 2013; Srivastava et al., 2016; Srivastava et al., 2017; Elliott et al., 2018; Kouřil et al., 2018). Due to the fullerene's unique cage-like cavity, a procedure called molecular surgery can be performed to entrap an atom or molecule. (Murata et al., 2006; Krachmalnicoff et al., 2016). Utilizing this technique, encapsulation of molecular hydrogen and HF were successfully achieved. (Murata et al., 2006; Krachmalnicoff et al., 2016). In addition, a recent paper by Jana and Chattaraj (2020) describes the effects of a molecular reaction environment, dodecahedrane, on the He dimer bonding. Also, theoretical studies of a new type of endofullerenes with superalkali have been performed. (Srivastava et al., 2016; Srivastava et al., 2017) Superalkalis are clusters with very low adiabatic ionization energies. (Gutsev and Boldyrev, 1982; Gutsev and Boldyrev, 1983; Gutsev and Boldyrev, 1987; Lia et al., 1988; Gutsev and Boldyrev, 1990;

Tong et al., 2013a; Tong et al., 2013b). The first and most common superalkalis have the formula $M_{k+1}L$, where M is an alkali atom with valence k and L is an electronegative atom. (Gutsev and Boldyrev, 1985; Gutsev and Boldyrev, 1987; Zhao et al., 2017). Nambiar et al. (2021) showed the importance of these compounds through a density functional computational study to improve the efficacy of redox reactions.

The concentration of carbon dioxide (CO_2) in the atmosphere has been increasing constantly since the early 20th century with rapid industrialization. (D'Amato and Akdis, 2020; Kuzovkin and Semenov, 2020). This is a globally recognized issue as CO₂ contributes significantly to the greenhouse effect and the acidification of the oceans. (Crowley and Berner, 2001; Hönisch et al., 2012). Increment of atmospheric temperature causes climate change that threatens the overall ecosystem. To capture CO₂ molecules present in the air, various methods have been employed such as packed column of monoethanolamine and metal-organic frameworks. (Lv et al., 2015; Li et al., 2019; Li et al., 2020). The next step is activating CO₂ molecules and converting them to value-added chemicals such as hydrocarbon fuels. (Hu et al., 2013). The activation of CO_2 is extremely complex due to its stability and much efforts have been made by researchers to directly convert it into liquid hydrocarbons, useful for the aviation sector as novel jet fuels (Boreriboon et al., 2018; Vogt et al., 2019; Yao et al., 2020) or into oxygenates, such as ethanol. (Song et al., 2016; Bai et al., 2017; Wang et al., 2018). This conversion, whether it involves a direct CO₂ hydrogenation route or not, entails the usage of metal-based catalysts to ensure an overall reasonable efficiency. (Yao et al., 2020).

In our previous studies, successful activation of CO₂ with a superalkali species, Li₃F₂, were presented. (Park and Meloni, 2017). The computational study showed charge transfer from Li₃F₂ to CO₂, which indicates migration of the unpaired electron from Li₃F₂ to CO₂. The activated CO₂ showed geometric change such as bent \overrightarrow{OCO} angle. The activated CO_2 then can be transformed to other organic molecules with catalysis. (Liu et al., 2016; Luc et al., 2017). Removing the unpaired electron from $[Li_3F_2 \cdot CO_2]$ cluster weakens the interaction between Li_3F_2 and CO₂ and geometry of CO₂ returns back to the linear form. (Park and Meloni, 2017). The superalkali Li₃F₂ was observed and characterized experimentally. (Yokoyama et al., 2000; Haketa et al., 2002). They also confirmed three stable Li₃F₂ structures through a computational density functional approach. (Haketa et al., 2002). In this investigation, the Li₃F₂-doped fullerene and its endo-reaction with CO₂ has been characterized using the B3LYP/6-31G* level of theory. These results are explained in terms of energetics and molecular orbitals of the species involved. In addition, these findings will be beneficial in providing insights for CO₂ reduction and in helping the exploration of new materials with tailored properties.

Computational Methods

Geometries and total electronic energies of the investigated species were calculated at the B3LYP/6-31G* level of theory (Becke, 1988; Lee et al., 1988) using the computational software Gaussian09. (Frisch et al., 2016). B3LYP is one of the

most commonly used density functional theory (DFT) methods that employs a three-parameter exchange functional developed by Becke (1992) and Becke (1993) with a correlational functional proposed by Lee, Yang, and Parr (LYP) Becke (1988) to approximate the exchange-correlation energy. The B3LYP/6-31G* level has been employed to study endofullerene systems because it yields reliable geometries and energies. (Wang et al., 2013; Srivastava et al., 2016; Srivastava et al., 2017). Partial atomic charges are calculated based on the Mulliken population analysis (Mulliken, 1955) and natural bond orbital (NBO) population analysis. (Reed et al., 1985).

The adiabatic ionization energy (AIE) is calculated by taking the zero-point energy corrected electronic energy difference between the optimized neutral and cation, whereas the adiabatic electron affinity (AEA) is obtained by subtracting the zero-point-energy corrected electronic energy of the optimized anion and neutral. All the optimized structures have real vibrational frequencies and their Cartesian coordinates have been reported in the **Supplementary Material**.

RESULTS AND DISCUSSION

The main intent of this computational investigation is to study the interactions relevant to the reduction of CO_2 by the superalkali Li₃F₂ inside our molecular reaction vessel, i.e., C_{60} , and see how this environment affects the CO_2 activation. The system is fairly large and, therefore, computationally challenging to investigate. We have analyzed the possible interactions between the fullerene and the two reactants, CO_2 and Li₃F₂. All the computed energetics are reported in **Table 1** together with the available literature (experimental and computed) values.

Figure 1 reports the optimized geometries for CO₂ and CO_2^- , $Li_3F_2(C_{2v})$, $Li_3F_2(D_{3h})$ and their cations. The structures of CO_2 and CO_2^- reproduce well the literature experimental values for both bond distances and bond angles. In fact, for CO₂ we have $r_{C-O} = 1.17$ Å (1.16 Å) (Herzberg, 1966) and for CO_2^- we have $r_{C-O} = 1.25 \text{ Å}$ (1.25 Å) (Hartman and Hisatsune, 1966) and ∠OCO° = 134° (127 ± 7°). (Hartman and Hisatsune, 1966). Both the geometries of the lowest energy $Li_3F_2(C_{2v})$ isomer, trigonal bipyramidal $Li_3F_2(D_{3h})$, and their cations are in agreement with our previous work. (Park and Meloni, 2017; Cochran and Meloni, 2014). Figure 2 shows the two superalkali isomers reducing the CO_2 . The geometry for the previously studied C_{2v} isomer interacting with CO₂ is in agreement with our previous results, (Park and Meloni, 2017), whereas the D_{3h}·CO₂ species is reported for the first time. When the D_{3h} structure reacts with CO_2 , the trigonal bipyramidal geometry is distorted by increasing two "equatorial" Li-Li distances, maintaining only the Li(1)-Li(2) distance of 2.30 Å, with Li(3) being closer to the CO_2 , Li(3)-O(7) = Li(3)-O(8) = 2.03 Å and increasing the axial F-F distance from 2.40 to 2.68 Å. The ∠OCO° bond angle is 128° and the C-O bond length is 1.26 Å. The Li₃F₂ isomers have similar binding energy with CO₂, with the C_{2v} isomer **TABLE 1** [Energetics of all the species relevant to this study calculated at the B3LYP/6-31G* level of theory. The zero-point-energy corrected total electronic energy (E_0) is in Hartree, the adiabatic ionization energy (AIE) and adiabatic electron affinity are in eV, and the binding energy at 0 K is in kJ mol⁻¹. [SA-CO₂] stays for the endo superalkali-CO₂ complex.

Species	Eo	AIE	AIE liter	AEA	AEA liter	BE	BE liter
CO ₂	-188.569349	13.6	13.78 Herzberg (1966)	-1.27	-0.60 Wang et al. (1988)	-	_
Li ₃ F ₂ (C _{2v})	-222.473494	3.91	3.80 Hartman and Hisatsune (1966)	0.63	 –1.60 de Vries et al. (1992) 0.59 Hartman and Hisatsune (1966) 	_	_
Li ₃ F ₂ (D _{3h})	-222.459703	4.24	3.86 Hartman and Hisatsune (1966)	0.36	0.75 Hartman and Hisatsune (1966)	-	-
C ₆₀	-2285.799198	7.08	7.54 Sikorska and Gaston (2020)	2.25	2.68 Knapp et al. (1986)	-	_
Li ₃ F ₂ (C _{2v})·CO ₂	-411.112817	5.42	5.21 Park and Meloni, (2017)	0.97	0.36 Park and Meloni (2017)	184	163 Park and Meloni (2017)
Li ₃ F ₂ (D _{3h})⋅CO ₂	-411.096882	5.25	_	0.80	_	178	_
C ₆₀ .CO ₂	-2474.312373	7.08	_	2.27	_	-147 ^a	_
C ₆₀ ·Li ₃ F ₂ (D _{3h})	-2508.304346	5.64	_	2.45	_	119 ^a	_
C ₆₀ ·[SA·CO ₂]	-2696.601627	5.73	_	2.56	_	а	-

^aThis binding energy at 0 K corresponds to the negative solvation energy at 0 K that C₆₀ exerts on the encapsulated species, reactants, Li₃F₂ and CO₂, and product SA·CO₂ (see text).

presenting a stronger interaction of $184 \text{ kJ} \text{ mol}^{-1}$. These clusters can be defined as "free" or "naked" because they are isolated in the gas phase. The presented energy values

are calculated at the B3LYP/ $6-31G^*$ level and are within 10% from the literature reported quantities, whether they are experimental or computed at very high level of theory.

When a molecule is inserted in the fullerene (yielding an endofullerene), the chemical system is not free, but it will be subjected to the interactions with the carbon cage ("solvation effects"). In Figure 3, the two endofullerenes with CO₂ and Li₃F₂ are shown. In the case of carbon dioxide, it is clear from the energetics presented in Table 1 that CO₂ is destabilized by C₆₀ having a negative binding energy at 0 K of -147 kJ mol⁻¹ or a solvation energy at 0 K of 147 kJ mol⁻¹, calculated as $E_0(CO_2)$ + $E_0(C_{60}) - E_0(C_{60} \cdot CO_2)$. The CO₂ occupies the center of the C₆₀, aligned with the C3 axis passing through a hexagonal face, minimizing its interactions with the C cage. The solvation energy is more properly defined as the Gibbs free energy change associated with the transfer of a molecule from the gas phase into a solvent, i.e., it provides the relative equilibrium populations of a species between gas phase and the solvent. Therefore, we should also know the entropy change connected with this process. The values that we are reporting in this investigation are at 0 K, so that $\Delta_{solv}H_0^o = \Delta_{solv}G_0^o = -$ BE (solvent – species), from which we can see that negative binding energies correspond to positive solvation energies (destabilizing effect). For the encapsulated superalkali two main findings can be noticed. First, the superalkali inside the fullerene is "forced" to assume a D_{3h}

geometry, a structure almost identical to the free D_{3h} cluster but less stable than the free C_{2v} cluster. Despite having started the Li₃F₂ geometry optimization from different initial configurations, the optimized structure inside the fullerene resulted in the trigonal bipyramidal geometry. The Li-F distances are shortened in C_{60} from 1.83 (free superalkali) to 1.77 Å, which corresponds to a compression along the F-F distance from 2.40 to 2.21 Å, and the two Li-Li bonds elongate to 2.40 Å. The second result is that C_{60} interacts strongly with Li₃F₂ with a binding energy at 0 K of 119 kJ mol⁻¹ or solvation energy at 0 K of -119 kJ mol⁻¹, calculated as $E_0(Li_3F_2(D_{3h})) + E_0(C_{60}) E_0(C_{60}\cdot Li_3F_2(D_{3h}))$. This interaction is not a reduction of C_{60} , where the electron from the superalkali is transferred to the fullerene. In fact, upon ionization of $C_{60}\cdot Li_3F_2$, the encapsulated Li₃F₂ retains its trigonal bipyramidal structure, just slightly distorted (as described above) due to the interactions with C_{60} . In addition, looking at the Mulliken population and the natural orbital population neither the endo-Li₃F₂(D_{3h}) nor the C₆₀ show an increase or change of electron charges. The C₆₀·Li₃F₂ HOMO, the main contribution of which is given by C 2p AO's, is delocalized almost entirely on the fullerene (**Figure 4**). The fact that the C₆₀·Li₃F₂ AIE is much lower than C₆₀ AIE, 5.64 vs. 7.08 eV, respectively, can be explained using a molecular orbital character argument. The interaction of C₆₀ with the superalkali makes the HOMO of fullerene less bonding, and consequently, most of the C-C bonds are elongated by 0.1–0.2 Å. Upon ionization, the C-C bonds in C₆₀·Li₃F₂ are shortened on average by 0.1 Å, which can be interpreted as the removal of an electron from a HOMO with antibonding character.

The insertion of CO₂ within C₆₀·Li₃F₂(D_{3h}) produces an unexpected result (Figure 5). In previous computational studies, (Zhao et al., 2017; Park and Meloni, 2017; Sikorska and Gaston, 2020), naked superalkali have been shown to be capable of reducing carbon dioxide by transferring an electron and yielding an activated bent CO₂⁻. In this investigation, we show that our molecular vessel C₆₀ forces the reaction to proceed in a different way (Figure 6). From an analysis of the optimized geometries inside fullerene, it is clear that CO₂ is activated by showing a $\angle OCO^\circ$ bond angle of 132° and C-O bond lengths of 1.20 Å, 0.03 Å longer than r_{C-O} in CO₂ but 0.06 Å shorter than r_{C-O} in the free Li₃F₂(D_{3h})·CO₂ species. The activation of CO₂ is achieved by a F transfer from Li₃F₂ to CO₂ with the formation of a C-F bond of 1.38 Å, almost identical to the r_{C-F} of 1.382 Å in CH₃F. (Demaison et al., 1999). This moiety FCO₂ does not resemble either the fluorocarboxyl radical FCO2 for which r_{C-O} is 1.234 Å, r_{C-F} is 1.310 Å, and $\angle OCO^{\circ}$ bond angle is 118.8°, (Zelinger et al., 2003), or the fluoroformate ion FCO2⁻ for which r_{C-O} is 1.234 Å, r_{C-F} is 1.46 Å, and $\angle OCO^{\circ}$ bond angle is 135.9°. (Arnold et al., 1995; Thomas et al., 2018). In addition, both fluorocarboxyl radical and fluoroformate ion are planar, whereas the endo-reaction species (Figure 6) resembles a non-planar

(trigonal pyramidal) FCO₂ that interacts with what it looks like a FLi₃ species. All the attempts to optimize this structure outside C₆₀ as free endo-Li₃F₂·CO₂ returned a Li₃F₂(D_{3h})·CO₂ geometry. Unfortunately, this prevents us from quantifying the interaction of Li₃F₂(D_{3h}) with CO₂ inside C₆₀. In fact, the reaction we need is

$$C_{60} \cdot [SA \cdot CO_2] + C_{60} \to C_{60} \cdot Li_3F_2(D_{3h}) + C_{60} \cdot CO_2 \qquad (1)$$

from which the interaction of Li₃F₂(D_{3h}) with CO₂ can be derived if we were able to find the [SA·CO₂] reaction product as a free species and then its binding energy (or negative solvation energy) with C₆₀, i.e.,

$$C_{60} \cdot [SA \cdot CO_2] \rightarrow C_{60} + [SA \cdot CO_2]$$
⁽²⁾

In fact, the interaction of $Li_3F_2(D_{3h})$ with CO_2 inside fullerene can be calculated as:

$$\Delta_{\rm r} {\rm H}^{\rm o}(1) - {\rm BE}({\rm C}_{60} \cdot {\rm CO}_2) - {\rm BE}({\rm C}_{60} \cdot {\rm Li}_2 {\rm F}_3({\rm D}_{3{\rm h}})) + {\rm BE}({\rm C}_{60} \cdot [{\rm SA} \cdot {\rm CO}_2])$$
(3)

In other words, this expression tells us that the interaction between endo-Li₃F₂(D_{3h}) and endo-CO₂, i.e., the BE of superalkali-CO₂ in fullerene, is equal to the enthalpy of reaction (1) plus the solvation energies of CO₂ and Li₃F₂(D_{3h}) minus the solvation energy of [SA·CO₂]. Because we cannot derive this last solvation energy absolute value due to the impossibility of optimizing the free endo-[SA·CO₂] species, we can estimate this interaction by performing a single-point energy calculation of the free [SA·CO₂] optimized inside C₆₀. This structure necessarily represents a higher energy structure than a real minimum and, therefore, the estimated BE of superalkali-CO₂ in fullerene would denote an upper bound providing us some insights on this interaction. From this computation we get an upper bound for BE (C₆₀ · [SA · CO₂]) of -965 kJ mol⁻¹, which tells us that this endo-product is highly destabilized by C₆₀!

CONCLUSION

The activation of CO₂ by the Li₃F₂ superalkali within C₆₀ has been investigated at the B3LYP/6-31G^{*} level of theory. C₆₀ has been utilized as a reaction vessel and its interaction with the reactants, superalkali and carbon dioxide, have been computed. C₆₀ is capable of forcing a superalkali geometry, which does not present the global

REFERENCES

- Arnold, D. W., Bradforth, S. E., Kim, E. H., and Neumark, D. M. (1995). Study of Halogen–Carbon Dioxide Clusters and the Fluoroformyloxyl Radical by Photodetachment of X⁻(CO₂) (X=I,Cl,Br) and FCO₂⁻. J. Chem. Phys. 102 (9), 3493–3509. doi:10.1063/1.468575
- Bai, S., Shao, Q., Wang, P., Dai, Q., Wang, X., and Huang, X. (2017). Highly Active and Selective Hydrogenation of CO2 to Ethanol by Ordered Pd–Cu Nanoparticles. J. Am. Chem. Soc. 139 (20), 6827–6830. doi:10.1021/ jacs.7b03101
- Bakry, R., Vallant, R. M., Najam-ul-Haq, M., Rainer, M., Szabo, Z., Huck, C. W., et al. (2007). Medicinal Applications of Fullerenes. *Int. J. Nanomed.* 2 (4), 639–649.

minimum in the gas phase. Specifically, ${\rm Li}_3{\rm F}_2$ takes the ${\rm D}_{3{\rm h}}$ structure. C₆₀ has a stabilizing effect on the superalkali but a destabilizing effect on the CO₂, as it can be deduced by the binding energies of these two systems, $BE(C_{60} \cdot CO_2) = -147 \text{ kJ mol}^{-1}$ and $BE(C_{60} \cdot Li_3F_2) =$ $^{.}$ 119 kJ mol $^{-1}.$ Upon interaction of $Li_{3}F_{2}(D_{3h})$ with CO $_{2}$ inside fullerene, CO_2 is clearly activated showing a $\angle OCO^\circ$ bond angle of 132° and C-O bond lengths of 1.20 Å, 0.03 Å longer than r_{C-O} in CO₂ but 0.06 Å shorter than r_{C-O} in the free Li₃F₂(D_{3h})·CO₂ species. The activation of CO₂ is achieved by a F transfer from Li₃F₂ to CO₂ with the formation of a C-F bond of 1.38 Å. Due to the impossibility of optimizing a free superalkali-CO₂ complex, [SA·CO₂], resembling the one optimized within the C₆₀, a single-point energy calculation has been performed on the free [SA·CO₂]. This energy has been utilized to provide an upper bound for the binding energy of $Li_3F_2(D_{3h})$ with CO₂ within C₆₀ of -965 kJ mol⁻¹, showing that C₆₀ destabilizes the reaction product.

DATA AVAILABILITY STATEMENT

The original contribution presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

FUNDING

This research was supported by the American Chemical Society Petroleum Research under the fund grant number #56067-UR6.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.712960/full#supplementary-material

- Becke, A. D. (1992). A New Mixing of Hartree-Fock and Local Density-Functional Theories. J. Chem. Phys. 98, 1372–1377.
- Becke, A. D. (1988). Density-functional Exchange-Energy Approximation with Correct Asymptotic Behavior. *Phys. Rev. A*. 38, 3098–3100. doi:10.1103/ physreva.38.3098
- Becke, A. D. (1993). Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 98, 5648–5652. doi:10.1063/1.464913
- Boreriboon, N., Jiang, X., Song, C., and Prasassarakich, P. (2018). Higher Hydrocarbons Synthesis from CO₂ Hydrogenation over K- and La-Promoted Fe–Cu/TiO₂ Catalysts. *Top. Catal.* 61 (15), 1551–1562. doi:10.1007/s11244-018-1023-1
- Cochran, E., and Meloni, G. (2014). Hypervalence in Monoxides and Dioxides of Superalkali Clusters. J. Chem. Phys. 140, 204319. doi:10.1063/1.4879658
- Crowley, T. J., and Berner, R. A. (2001). CO2 and Climate Change. *Science* 292870 (5518).

- D'Amato, G., and Akdis, C. A. (2020). Global Warming, Climate Change, Air Pollution and Allergies. *Allergy* 75 (9), 2158–2160.
- de Vries, J., Steger, H., Kamke, B., Menzel, C., Weisser, B., Kamke, W., et al. (1992). Single-photon Ionization of C₆₀⁻ and C₇₀⁻Fullerene with Synchrotron Radiation: Determination of the Ionization Potential of C₆₀. *Chem. Phys. Lett.* 188 (3), 159–162. doi:10.1016/0009-2614(92)90001-4
- Demaison, J., Breidung, J., Thiel, W., and Papousek, D. (1999). The Equilibrium Structure of Methyl Fluoride. Struct. Chem. 10 (2), 129–133. doi:10.1023/a: 1022085314343
- Diederich, F., and Gómez-López, M. (1999). Supramolecular Fullerene Chemistry. Chem. Soc. Rev. 28, 263–277. doi:10.1039/a804248i
- Elliott, S. J., Bengs, C., Kouril, K., Meier, B., Alom, S., Whitby, R. J., et al. (2018). NMR Lineshapes and Scalar Relaxation of the Water-Endofullerene ${\rm H_2}^{17}$ O@ C₆₀. *ChemPhysChem* 19, 251–255. doi:10.1002/cphc.201701330
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., et al. (2016). Gaussian 09., *Revision A.02*. Wallingford, CT.: Gaussian. Inc.
- Gutsev, G. L., and Boldyrev, A. I. (1983). An Explanation of the High Electron Affinities of the 5d-Metal Hexafluorides. *Chem. Phys. Lett.* 101, 441–445. doi:10.1016/0009-2614(83)87510-1
- Gutsev, G. L., and Boldyrev, A. I. (1982). DVM Xa Calculations on the Electronic Structure of "Superalkali" Cations. *Chem. Phy. Lett.* 92, 262–266. doi:10.1016/ 0009-2614(82)80272-8
- Gutsev, G. L., and Boldyrev, A. I. (1987). The Electronic Structure of Superhalogens and Superalkalies. Russ. Chem. Rev. 56, 519–531. doi:10.1070/rc1987v056n06abeh003287
- Gutsev, G. L., and Boldyrev, A. I. (1985). The Theoretical Investigation of the Electron Affinity of Chemical Compounds. *Adv. Chem. Phys.* 61, 169–221.
- Gutsev, G. L., and Boldyrev, A. I. (1990). Theoretical Estimation of the Maximal Value of the First, Second and Higher Electron Affinity of Chemical Compounds. J. Phys. Chem. 94, 2256–2259. doi:10.1021/j100369a012

Haketa, N., Yokoyama, K., Tanaka, H., and Kudo, H. (2002). Theoretical Study on the Geometric and Electronic Structure of the Lithium-Rich Li_nF_(n-1) (N=2-5) Clusters. J. Mol. Struct. THEOCHEM. 577, 55–67. doi:10.1016/s0166-1280(01)00655-8

- Hartman, K. O., and Hisatsune, I. C. (1966). Infrared Spectrum of Carbon Dioxide Anion Radical. J. Chem. Phys. 44 (5), 1913–1918. doi:10.1063/1.1726961
- Heath, J. R., O'Brien, S. C., Zhang, Q., Liu, Y., Curl, R. F., Tittel, F. K., et al. (1985). Lanthanum Complexes of Speroidal Carbon Shells. J. Am. Chem. Soc. 107, 7779–7780. doi:10.1021/ja00311a102
- Herzberg, G. (1966). Electronic Spectra and Electronic Structure of Polyatomic Molecules. New York: Van Nostrand.
- Hönisch, B., Ridgwell, A., Schmidt, D. N., Thomas, E., Gibbs, S. J., Sluijs, A., et al. (2012). The Geological Record of Ocean Acidification. *Science* 335 (6072), 1058–1063. doi:10.1126/science.1208277
- Hu, B., Guild, C., and Suib, S. L. (2013). Thermal, Electrochemical, and Photochemical Conversion of CO₂ to Fuels and Value-Added Products. J. Co₂ Util. 1, 18–27. doi:10.1016/j.jcou.2013.03.004
- Jana, G., and Chattaraj, P. K. (2020). Effect of Substitution on the Bonding in He Dimer Confined within Dodecahedrane: A Computational Study. J. Comput. Chem. 41, 2398–2405. doi:10.1002/jcc.26403
- Knapp, M., Echt, O., Kreisle, D., Märk, T. D., and Recknagel, E. (1986). Formation of long-lived CO₂⁻, N₂O⁻, and their dimer anions, by electron attachment to van der waals clusters. *Chem. Phys. Lett.* 126 (3), 225–231. doi:10.1016/s0009-2614(86)80074-4
- Kouřil, K., Meier, B., Alom, S., Whitby, R. J., and Levitt, M. H. (2018). Alignment of ¹⁷O-Enriched Water–Endofullerene $H_2O@C_{60}$ in a Liquid crystal Matrix. *Faraday Discuss.* 212, 517–532. doi:10.1039/c8fd00095f
- Krachmalnicoff, A., Bounds, R., Mamone, S., Alom, S., Concistrè, M., Meier, B., et al. (2016). The Dipolar Endofullerene HF@C₆₀. *Nat. Chem.* 8, 953–957. doi:10.1038/nchem.2563
- Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F., and Smalley, R. E. (1985). C₆₀ : Buckminsterfullerene. *Nature* 318, 162–163. doi:10.1038/318162a0
- Kuzovkin, V. V., and Semenov, S. M. (2020). Growth Rate of Carbon Dioxide Concentration in the Atmospheric Surface Layer in the Late 20th Century and Early 21st Century. *Russ. Meteorol. Hydrol.* 45 (3), 207–210. doi:10.3103/ s1068373920030097
- Lee, C., Yang, W., and Parr, R. G. (1988). Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. *Phys. Rev. B* 37, 785–789. doi:10.1103/physrevb.37.785

- Li, K., Feron, P. H. M., Jones, T. W., Jiang, K., Bennett, R. D., and Hollenkamp, A. F. (2020). Energy Harvesting from Amine-Based CO2 Capture: Proof-Of-Concept Based on Mono-Ethanolamine. *Fuel* 263, 116661. doi:10.1016/j.fuel.2019.116661
- Li, Z., Wang, L., Li, C., Cui, Y., Li, S., Yang, G., et al. (2019). Absorption of Carbon Dioxide Using Ethanolamine-Based Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 7 (12), 10403–10414. doi:10.1021/acssuschemeng.9b00555
- Lia, S. G., Bartmess, J. E., Liebman, J. F., Homes, J. L., Levin, R. D., and Mallard, W. G., Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data, Suppl, 1. 1988, 17, 1–861.
- Liu, X., Song, Y., Geng, W., Li, H., Xiao, L., and Wu, W. (2016). Cu-Mo2C/MCM-41: An Efficient Catalyst for the Selective Synthesis of Methanol from CO₂. *Catalysts* 6 (5). doi:10.3390/catal6050075
- Luc, W., Collins, C., Wang, S., Xin, H., He, K., Kang, Y., et al. (2017). Ag-Sn Bimetallic Catalyst with a Core-Shell Structure for CO2 Reduction. J. Am. Chem. Soc. 139 (5), 1885–1893. doi:10.1021/jacs.6b10435
- Lv, B., Guo, B., Zhou, Z., and Jing, G. (2015). Mechanisms of CO₂ Capture into Monoethanolamine Solution with Different CO₂ Loading during the Absorption/Desorption Processes. *Environ. Sci. Technol.* 49 (17), 10728–10735. doi:10.1021/acs.est.5b02356
- Mignolet, B., Johansson, J. O., Campbell, E. E. B., and Remacle, F. (2013). Probing Rapidly-Ionizing Super-atom Molecular Orbitals in C₆₀: A Computational and Femtosecond Photoelectron Spectroscopy Study. *ChemPhysChem* 14, 3332–3340. doi:10.1002/cphc.201300585
- Mulliken, R. S. (1955). Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys. 23 (10), 1833–1840. doi:10.1063/1.1740588
- Murata, M., Murata, Y., and Komatsu, K. (2006). Synthesis and Properties of Endohedral C₆₀ Encapsulating Molecular Hydrogen. J. Am. Chem. Soc. 128, 8024–8033. doi:10.1021/ja061857k
- Nambiar, S. R., Jana, G., and Chattaraj, P. K. (2021). Can Superalkalis and Superhalogens Improve the Efficacy of. Redox Reactions? *Chem. Phys. Lett.* 762, 138131. doi:10.1016/j.cplett.2020.138131
- Park, H., and Meloni, G. (2017). Reduction of Carbon Dioxide with a Superalkali. Dalton Trans. 46, 11942–11949. doi:10.1039/c7dt02331f
- Reed, A. E., Weinstock, R. B., and Weinhold, F. (1985). Natural Population Analysis. J. Chem. Phys. 83, 735–746. doi:10.1063/1.449486
- Ruoff, R. S., Tse, D. S., Malhotra, R., and Lorents, D. C. (1993). Solubility of C₆₀ in a Variety of Solvents. J. Phys. Chem. 97, 3379–3383. doi:10.1021/j100115a049
- Sikorska, C., and Gaston, N. (2020). N4Mg6M (M = Li, Na, K) Superalkalis for CO2 Activation. J. Chem. Phys. 153 (14), 144301. doi:10.1063/5.0025545
- Song, Y., Peng, R., Hensley, D. K., Bonnesen, P. V., Liang, L., Wu, Z., et al. (2016). High-Selectivity Electrochemical Conversion of CO₂ to Ethanol Using a Copper Nanoparticle/N-Doped Graphene Electrode. *ChemistrySelect* 1 (19), 6055–6061. doi:10.1002/slct.201601169
- Srivastava, A. K., Kumar, A., and Misra, N. (2017). Superalkali@C₆₀superhalogen: Structure and Nonlinear Optical Properties of a New Class of Endofullerene Complexes. *Chem. Phys. Lett.* 682, 20–25. doi:10.1016/ j.cplett.2017.05.070
- Srivastava, A. K., Pandey, S. K., and Misra, N. (2016). Prediction of superalkali@C₆₀ Endofullerenes, Their Enhanced Stability and Interesting Properties. *Chem. Phys. Lett.* 655-656, 71–75. doi:10.1016/j.cplett.2016.05.039
- Thomas, D. A., Mucha, E., Gewinner, S., Schöllkopf, W., Meijer, G., and von Helden, G. (2018). Vibrational Spectroscopy of Fluoroformate, FCO₂⁻, Trapped in Helium Nanodroplets. J. Phys. Chem. Lett. 9 (9), 2305–2310. doi:10.1021/ acs.jpclett.8b00664
- Tong, J., Wu, D., Li, Y., Wang, Y., and Wu, Z. (2013). Superalkali Character of Alkali-Monocyclic (pseudo)Oxocarbon Clusters. *Dalton Trans.* 42, 9982–9989. doi:10.1039/c3dt50224d
- Tong, J., Wu, Z., Li, Y., and Wu, D. (2013). Prediction and Characterization of Novel Polynuclear Superalkali Cations. *Dalton Trans.* 42, 577–584. doi:10.1039/c2dt31429k
- Vogt, C., Monai, M., Kramer, G. J., and Weckhuysen, B. M. (2019). The Renaissance of the Sabatier Reaction and its Applications on Earth and in Space. *Nat. Catal.* 2 (3), 188–197. doi:10.1038/s41929-019-0244-4
- Wang, K., Liu, Z., Wang, X., and Cui, X. (2014). Enhancement of Hydrogen Binding Affinity with Low Ionization Energy Li₂F Coating on C₆₀ to Improve Hydrogen Storage Capacity. Int. J. Hydrog. Energ. 39, 15639–15645. doi:10.1016/j.ijhydene.2014.07.132
- Wang, L.-S., Reutt, J. E., Lee, Y. T., and Shirley, D. A. (1988). High Resolution UV Photoelectron Spectroscopy of CO_2^+ , COS^+ and CS_2^+ Using Supersonic

Molecular Beams. J. Electron. Spectros. Relat. Phenomena 47, 167–186. doi:10.1016/0368-2048(88)85010-2

- Wang, L., Wang, L., Zhang, J., Liu, X., Wang, H., Zhang, W., et al. (2018). Selective Hydrogenation of CO₂ to Ethanol over Cobalt Catalysts. *Angew. Chem. Int. Ed.* 57 (21), 6104–6108. doi:10.1002/anie.201800729
- Wang, S.-J., Li, Y., Wang, Y.-F., Wu, D., and Li, Z.-R. (2013). Structures and Nonlinear Optical Properties of the Endohedral Metallofullerene-Superhalogen Compounds Li@C₆₀-BX₄ (X=F, Cl, Br). *Phys. Chem. Chem. Phys.* 15, 12903–12910. doi:10.1039/c3cp51443a
- Weiss, F. D., Elkind, J. L., O'Brien, S. C., Curl, R. F., and Smalley, R. E. (1988). Photophysics of Metal Complexes of Spheroidal Carbon Shells. J. Am. Chem. Soc. 110, 4464–4465. doi:10.1021/ja00221a085
- Yao, B., Xiao, T., Makgae, O. A., Jie, X., Gonzalez-Cortes, S., Guan, S., et al. (2020). Transforming Carbon Dioxide into Jet Fuel Using an Organic Combustion-Synthesized Fe-Mn-K Catalyst. *Nat. Commun.* 11 (1), 6395. doi:10.1038/s41467-020-20214-z
- Yokoyama, K., Haketa, N., Tanaka, H., Furukawa, K., and Kudo, H. (2000). Ionization Energies of Hyperlithiated Li₃F Molecule and Li_nF_(n-1) (N=3, 4) Clusters. *Chem.Phys. Lett.* 330, 339–346. doi:10.1016/s0009-2614(00)01109-x

- Zelinger, Z., Dréan, P., Walters, A., Moreno, J. R. A., Bogey, M., Pernice, H., et al. (2003). Gas-phase Detection of the FCO₂ Radical by Millimeter Wave and High Resolution Infrared Spectroscopy Assisted by Ab Initio Calculations. *J. Chem. Phys.* 118 (3), 1214–1220. doi:10.1063/1.1528607
- Zhao, T., Wang, Q., and Jena, P. (2017). Rational Design of Super-alkalis and Their Role in CO₂ Activation. *Nanoscale* 9, 4891–4897. doi:10.1039/c7nr00227k

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Meloni, Giustini and Park. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.