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Abstract

Summary: In the exploratory data analysis of single-cell or spatial genomic data, single-cells or spatial spots are
often visualized using a two-dimensional plot where cell clusters or spot clusters are marked with different colors.
With tens of clusters, current visualization methods often assign visually similar colors to spatially neighboring clus-
ters, making it hard to identify the distinction between clusters. To address this issue, we developed Palo that opti-
mizes the color palette assignment for single-cell and spatial data in a spatially aware manner. Palo identifies pairs
of clusters that are spatially neighboring to each other and assigns visually distinct colors to those neighboring
pairs. We demonstrate that Palo leads to improved visualization in real single-cell and spatial genomic datasets.

Availability and implementation: Palo R package is freely available at Github (https://github.com/Winnie09/Palo)
and Zenodo (https://doi.org/10.5281/zenodo.6562505).

Contact: zhicheng.ji@duke.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Data visualization is a key step in exploring the underlying structure of
single-cell and spatial genomic data. For single-cell sequencing data
[e.g. single-cell RNA-seq (Tang et al., 2009)], cells are commonly pro-
jected into a low-dimensional space using methods such as Uniform
Manifold Approximation and Projection (UMAP, Becht et al., 2019)
or t-Distributed Stochastic Neighbor Embedding (t-SNE, Van der
Maaten and Hinton, 2008) and visualized by a 2-D scatterplot where
the two axes represent two reduced dimensions. Cells with the same
cell type or cluster are shown with the same color. For spatial transcrip-
tomics data (Ståhl et al., 2016), spatial spots are visualized by a 2-D
spatial map where the two axes represent the two spatial coordinates
of the tissue slide. Similarly, spots with the same cluster are shown with
the same color. The visualization guides downstream analyses such as
cell type identification (Abdelaal et al., 2019) and trajectory reconstruc-
tion (Hou et al., 2021; Ji and Ji, 2016; Trapnell et al., 2014).

In many cases, cells or spots are grouped into tens of clusters to
reflect their heterogeneity, thus tens of different colors are needed to
visualize the different clusters. This will inevitably lead to similar
colors in the color palette that are hard for human eyes to perceive
and differentiate. As existing methods [e.g. ggplot2 (Wickham,
2016)] assign colors to clusters either alphabetically or in a random
order, it is highly likely that some spatially neighboring clusters are
assigned similar colors that are hard for human eyes to differentiate.
Figure 1A shows an example of visualizing a single-cell RNA-seq

dataset with different T cells subsets (Caushi et al., 2021). UMAP
coordinates were obtained using the standard Seurat (Stuart et al.,
2019) pipeline and cell type information was from the original publi-
cation. The geom_point() function in ggplot2 R package
(Wickham, 2016) was used to generate the plot with the default color
palette and settings. Multiple neighboring clusters [e.g. CD4-Treg and
CD4-Tfh(2)] share similar colors that are hard to differentiate. This
problem cannot be solved by randomly permuting and reassigning col-
ors to clusters (Fig. 1B). Figure 1C shows an example of visualizing
Visium spatial transcriptomics data of a mouse brain (10X Genomics,
2020). Spot clusters were obtained using the standard Seurat (Stuart
et al., 2019) pipeline. The plot was generated using the
SpatialDimPlot() function in Seurat R package (Stuart et al.,
2019) with the default color palette and settings. Similarly, there are
neighboring clusters (e.g. clusters 8, 9, 10) that share similar colors
and are not visually distinct. Randomly permuting and reassigning the
color palette cannot resolve the issue (Fig. 1D).

This visualization issue may create false impressions of cell type
abundances or spatial interactions between spot clusters. It cannot
be directly addressed by existing visualization methods such as
ASAP (Gardeux et al., 2017), dittoSeq (Bunis et al., 2021), SPRING
(Weinreb et al., 2018) and SCUBI (Hou and Ji, 2022) which focus
on other aspects of visualization. A simple solution is to manually
exchange the colors assigned to different cell clusters multiple times.
However, this manual process is tedious and time-consuming when
there are many colors to be exchanged or when each cell cluster is
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spatially close to numerous other clusters. Plus, the manual process

cannot fit in automatic analysis pipelines or efficiently handle a large
number of samples or datasets.

To address this issue, we developed Palo to optimize the color
palette assignments to cell or spot clusters in a spatially aware man-

ner. Palo first calculates the spatial overlap score between each pair
of clusters. It then identifies a color palette that assigns visually dis-
tinct colors to cluster pairs with high spatial overlap scores

(Fig. 1E). We applied Palo to both the single-cell RNA-seq dataset
(Fig. 1F) and the spatial dataset (Fig. 1G). The results show that

Palo resolves the visualization issue, and spatially neighboring clus-
ters are assigned visually distinct colors. The optimized color palette
by Palo improves the visualization and identification of boundaries

between spatially neighboring clusters.

2 Materials and methods

The inputs to Palo are (i) the 2-D coordinates of cells or spots; (ii) a

vector indicating clusters of the cells or spots; (iii) a vector of user-

defined colors. For single-cell genomic data, the coordinates are usu-
ally obtained by dimension reduction. For spatial data, the coordi-
nates are the spatial locations of spots in a tissue slide. The output of
Palo is the optimized permutation of the user-defined input color
vector assigned to the clusters.

The Palo method consists of the following steps. Step 1: for
each cluster, a 2-D kernel density function [MASS::kde2d() in R]
with 100�100 grid points is fitted using the 2-D coordinates of all
cells or spots in the cluster. Step 2: for each cluster, all grid points
with density values larger than a cutoff are treated as the hot grid
points. To identify the cutoff, the cluster labels for all cells or spots
are randomly permuted once, and the 2-D kernel density function is
refitted for each permuted cluster. For each cluster, the cutoff is the
95 percentile of the density values across all grid points obtained in
the permutation. Step 3: for a pair of clusters a and b, an overlap
score is calculated as the Jaccard index Ja;b ¼ jSa \ Sbj=jSa [ Sbj,
where Sa and Sb are the sets of hot grid points of a and b, respective-
ly. Step 4: for a pair of colors e and f, the color dissimilarity De;f is
defined as the Euclidean distance between the red, green, and blue
(RGB) values of the two colors. Different weights can be specified

Fig. 1. Visualization of single-cell RNA-seq data with default ggplot2 palette (A) or a randomly permuted palette (B). Neighboring clusters with visually similar colors are

circled. Visualization of spatial transcriptomics data with default ggplot2 palette (C) or a randomly permuted palette (D). Neighboring clusters with visually similar colors

are circled. (E) Schematic of Palo. (F) Visualization of single-cell RNA-seq data with Palo palette. (G) Visualization of spatial transcriptomics data with Palo palette
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for each of RGB to better match how human eyes perceive the actual
colors. For colorblind-friendly visualizations, Palo can also convert
the colors to simulate how the colors are perceived by people with

color-blindness, and the RGB distances will be calculated with the
converted colors. Step 5: let P be a permutation of the user-defined

color vector and Pk be the color assigned to cluster k. A color score
is defined as

P
a2C;b2C Ja;b �DPa ;Pb

, where C ¼ 1; 2; . . . ;C and C is
the total number of clusters. Palo finds P that maximizes the color

score. To do that, Palo first randomly permutes the user-defined
color vector multiple times (1000 times by default) and finds the ini-

tial permutation with the highest color score. It then fine-tunes the
permutation by repeatedly exchanging colors between a pair of ran-
domly selected clusters. If the exchange results in an increased color

score, the exchange is kept. The exchange is repeated multiple times
(2000 times by default). An early stopping rule is employed to stop

the exchange process when the color score remains unchanged for
several consecutive exchanges (500 consecutive exchanges by de-
fault). Supplementary Figure S1 shows how the color score changes

with iterations for the two datasets analyzed in this study.

3 Implementations

Palo is implemented as an open-source R package. The package has
one function, Palo(), that performs the color palette optimization.

The following R command runs Palo:

pal <- Palo(position,cluster,palette)

Here, position is a cell by reduced dimension coordinate ma-

trix with two columns (single-cell data) or a spot by spatial coordin-
ate matrix with two columns (spatial transcriptomics data);

cluster is a vector of cell or spot clusters; and palette is a user-
defined color vector.

The output pal is a named vector of optimized color palette
which can be directly fed into other functions in R for plotting. For
ggplot2:

ggplot(. . .) þ geom_point() þ
scale_color_manual(values¼pal)

For spatial maps in Seurat:
SpatialDimPlot(. . .) þ

scale_fill_manual(values¼pal)
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Data availability

The T cell single-cell RNA-seq dataset was obtained from Gene
Expression Omnibus (GSE176022). The spatial transcriptomics
dataset was obtained from 10X Genomics website (https://
www.10xgenomics.com/resources/datasets/mouse-brain-serial-sec-
tion-1-sagittal-anterior-1-standard-1-1-0).
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