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Immunosuppressive medications are widely used to treat patients with

neoplasms, autoimmune conditions and solid organ transplants. Key drug

classes, namely calcineurin inhibitors, mammalian target of rapamycin (mTOR)

inhibitors, and purine synthesis inhibitors, have direct e�ects on the structure

and function of the heart and vascular system. In the heart, immunosuppressive

agents modulate cardiac hypertrophy, mitochondrial function, and arrhythmia

risk, while in vasculature, they influence vessel remodeling, circulating lipids,

and blood pressure. The aim of this review is to present the preclinical and

clinical literature examining the cardiovascular e�ects of immunosuppressive

agents, with a specific focus on cyclosporine, tacrolimus, sirolimus, everolimus,

mycophenolate, and azathioprine.
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Introduction

Medications that target and downregulate the immune system are utilized for the

prevention and treatment of a variety of conditions, including neoplasms, autoimmune

diseases, and acute rejection after solid organ transplantation (1). In a recent cohort, 2.8%

of the adult population was treated with long-term immunosuppressive medications,

consistent with prior self-reported estimates (2, 3). In addition to the well described

increased risk of infection and malignancy in chronically immunosuppressed patients,

many of these agents exhibit direct effects on the cardiovascular system including risk

of left ventricular (LV) hypertrophy, myocardial fibrosis, arrhythmia, hypertension,

dyslipidemia, and coronary atherosclerosis (4). Herein, we focus on the cardiovascular

effects and mechanistic underpinnings of calcineurin inhibitors (CNI), mammalian

target of rapamycin (mTOR) inhibitors, and purine synthesis inhibitors (Figure 1).

Frontiers inCardiovascularMedicine 01 frontiersin.org

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://www.frontiersin.org/journals/cardiovascular-medicine#editorial-board
https://doi.org/10.3389/fcvm.2022.981838
http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2022.981838&domain=pdf&date_stamp=2022-09-21
mailto:sallam@stanford.edu
https://doi.org/10.3389/fcvm.2022.981838
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2022.981838/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org


Elezaby et al. 10.3389/fcvm.2022.981838

Hypertrophy and fibrosis

Cardiac hypertrophy is a feature of adverse cardiac

remodeling that may be driven by genetic or acquired factors.

Hypertrophy is frequently seen in association with diastolic

dysfunction and represents an important marker for adverse

remodeling (5, 6). Much of the focus on immunosuppression-

induced cardiac remodeling has been on the effects on cardiac

hypertrophy in native or transplanted hearts (7–9) (Table 1).

Calcineurin inhibitors

Calcineurin, a calcium and calmodulin-dependent

phosphatase, plays a pivotal role in cardiac hypertrophy by

translocating to the nucleus and dephosphorylating NFAT,

allowing it to transcribe genes to activate hypertrophy in

cardiomyocytes. Cyclosporine (CsA) binds to cyclophilin A,

forming a complex with high affinity for calcineurin, which

in turn inhibits its nuclear translocation. This is hypothesized

to inhibit activation of NFAT-mediated hypertrophy (59).

Tacrolimus binds to FK506-binding protein (FKBP12) to

inhibit calcineurin activity driving reduced NFAT-mediated

transcription of hypertrophic genes.

In early animal experiments, CsA successfully prevented

or attenuated cardiac hypertrophy in mice overexpressing

contractile elements (10, 29), genetic predispositions to

hypertrophy (19), and treatment with exogenous chemical

signals promoting hypertrophy (11, 15, 60). However, these

data were challenged by the failure of CsA to prevent

hypertrophy in several models of hypertension or pressure

overload (16, 35, 61). Tacrolimus has also yielded mixed results.

In murine models of genetic hypertrophic cardiomyopathy,

tacrolimus exacerbated cardiac hypertrophy (37). In animal

models of hypertrophy induced by phenylephrine stimulation,

spontaneously hypertensive rats, or aortic banding, tacrolimus

treatment had variable effects, with exacerbation or amelioration

of the hypertrophic phenotype (16, 38, 61, 62).

Some hypothesized that the mixed results were driven by

variability in hypertrophic signaling from genetic/sarcomeric-

driven hypertrophic signaling vs. adaptive chemical or afterload-

driven hypertrophy (37, 59). This hypothesis is somewhat

weakened by mixed data for transverse aortic constriction

rodent models.

Subsequent investigations suggested that CsA-induced

effects on hypertrophic remodeling may be driven by increased

fibrosis. Multiple studies have shown that CsA treatment

led to increases in MMP2, MMP9, and Collagen I in dose

dependent manner (20–22, 63). Rat hearts treated with CsA

exhibited increased fibrosis/collagen content (64). Similar data

of increased collagen deposition in response to tacrolimus

treatment was observed in human induced pluripotent stem cell-

derived cardiac organoids treated with tacrolimus (65). The in

vitro findings suggest that increased fibrosis is not a result of

calcineurin-induced hypertension.

Notwithstanding some of the conflicting data in animal

models, the data from humans have been fairly consistent

as to the effects of CsA and tacrolimus on human hearts.

Endomyocardial biopsies from heart or liver transplant patients

treated with CsA showed structural distortion, increased

fibrosis, and increased collagen levels (25, 26). Furthermore,

patients treated with CsA and tacrolimus had hypertrophy or

increased LV mass on autopsy or imaging (8, 26, 27, 39, 40).

A clinical trial investigating the effect of CsA in patients with

hypertrophic cardiomyopathy was initiated, but it is unclear

if the study was completed and findings, if any, were not

published (66).

Despite some earlier reports of amelioration of cardiac

hypertrophy by CNI, there is no clear evidence in humans

to corroborate this finding. Supported by in vitro and human

data, a consistent signal of increased hypertrophy and fibrosis

associated with CNI treatment is observed (23, 28). Cellular data

highlight that the increase in LV mass may be driven primarily

by CNI-induced increase in fibrosis and collagen deposition

rather than cardiomyocyte remodeling.

mTOR inhibitors

mTOR inhibitors, such as sirolimus and everolimus, inhibit

mammalian target of rapamycin complex I, thereby inhibiting

downstream pathways driving cell growth, proliferation, and

survival. There are notable differences between sirolimus

and everolimus (67). Everolimus is the 40-O-(2-hydroxyethyl)

derivative of sirolimus, and differs in its subcellular distribution,

pharmacokinetics and binding affinity. Compared to sirolimus,

everolimus has higher bioavailability and shorter half-life. Both

drugs form a complex with FKBP-12, which binds mTOR.

However, everolimus binding to FKBP-12 is ∼3-fold weaker

than that of sirolimus, leading to significant differences in

inhibition of mTORC2 activation and downstream effects (68,

69). Clinically this has translated into differences in side effect

profile and potency of each drug.

This class of drugs has garnered significant interest in

solid organ transplantation owing to salutary effects on renal

function, allograft vasculopathy and malignancy risk (70).

Sirolimus has been shown to reduce cardiac hypertrophy and

fibrosis in animal models of pressure overload, uremia, and

adriamycin induced cardiomyopathy (42, 43, 71). In a rat

model of myocardial infarction, everolimus improved post-

infarct remodeling (72) although in the recently published

CLEVER-ACS trial of patients with myocardial infarction,

there everolimus treatment had no effect on myocardial

remodeling (73). Cellular data suggest that attenuation of

adverse cardiac remodeling by mTOR inhibitors may be related
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FIGURE 1

Left Panel: Cardiac e�ects of immunosuppression. Column A: Calcineurin inhibitors are associated with increased hypertrophy in clinical

studies, with mixed preclinical evidence. mTOR inhibitors are associated with a decrease in cardiac hypertrophy in patients and animal studies.

Purine synthesis inhibitors prevent cardiac remodeling in limited evidence in preclinical studies. Column B: Calcineurin inhibitors, particularly

CsA, prevent mitochondrial dysfunction and mPTP opening. mTOR inhibitors may prevent mitochondrial dysfunction in preclinical studies. The

e�ects of purine synthesis inhibitors on mitochondrial function in the heart are unknown. Column C: Calcineurin inhibitors are associated with

arrhythmia in limited clinical case reports, with mixed e�ects in animal studies. The e�ects of mTOR inhibitors on arrhythmia are unknown.

Purine synthesis inhibitors, particularly azathioprine, are weakly associated with increased atrial arrhythmias in clinical case reports. Right Panel:

Vascular e�ects of immunosuppression. Column A: Hypertension. Calcineurin inhibitors are strongly associated with an increased incidence of

hypertension in preclinical and clinical studies. mTOR inhibitors and purine synthesis inhibitors have a vasodilatory e�ect in animal models and

limited clinical studies. Column B: Vascular remodeling. Calcineurin inhibitors are strongly associated with proliferative vasculopathy and

vascular inflammation. mTOR inhibitors protect against vascular damage in clinical studies and preclinical models. Purine synthesis inhibitors are

associated with improvement in vascular remodeling in preclinical studies and limited clinical reports. Column C: Dyslipidemia. Calcineurin

inhibitors are associated with increased total serum cholesterol and LDL. mTOR inhibitors, particularly sirolimus, are strongly associated with an

increase in serum cholesterol and triglycerides. Purine synthesis inhibitors are weakly associated with improvement in serum lipids.

in part to reduced cardiac fibroblast proliferation and collagen

secretion (65).

The favorable signal for sirolimus has been validated

in human studies, which largely compared outcomes to

subjects treated with CNI. Sirolimus has been associated with

improvement in diastolic dysfunction and filling pressures,

possibly through attenuation of fibrosis (47–49). In patients

with heart transplantation, everolimus treatment was associated

with less myocardial fibrosis than mycophenolate treatment by

biopsy and imaging (50, 51). The data in kidney transplant

patients has been more mixed with some suggesting less LV

hypertrophy with the use of everolimus (74), while a number of

randomized trials showed no difference in LV mass index after

conversion from CsA to everolimus post-kidney transplant (52–

55). The incidence of adverse cardiovascular events from these

studies was mixed with the majority showing no differences in

outcomes (75–77). This discordant signal may be related to the

fact that kidney transplant recipients often have concomitant

hypertension and activation of the renin-angiotensin system

that may have already contributed to significant adverse cardiac

remodeling prior to kidney transplant—making it less likely to

observe differences following kidney transplantation (75, 78).

Additionally, most of the studies may have been underpowered

to detect differences in cardiovascular outcomes.

Purine synthesis inhibitors

Purine synthesis inhibitors block cell proliferation by

preventing the synthesis of DNA and RNA during S phase of the

cell-cycle. Mycophenolate mofetil (MMF) treatment has been

shown to prevent or attenuate ischemic injury and autoimmune

myocarditis in animal models, with reduced secretion of

inflammatory markers such as TLR4, NFκB, BAX expression,

and TNFα (57, 58). There are no human studies suggesting a

link between cardiac hypertrophy or fibrosis in association with

MMF or azathioprine use.

Mitochondrial dysfunction

Mitochondria constitute a third of cardiomyocyte volume,

and the heart, as a metabolically active organ, relies heavily on

mitochondrial ATP production (79). Mitochondrial dysfunction
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TABLE 1 Studies examining e�ects of immunosuppression on cardiac hypertrophy and fibrosis.

Agent Species Condition Hypertrophy/Fibrosis Studies

CsA Rat, mouse TAC Attenuated LVH (10–14)

Mouse TAC No effect (7, 15, 16)

Rat SHR No effect (16–18)

Mouse Gαq Attenuated LVH (19)

Rat Cardiac fibroblasts No effect (20)

Rat Cardiac fibroblasts Induced fibrosis (21–23)

Rat Langendorff Decreased scar (24)

Human Transplant Increased LVH (25–28)

Human LVH, HCM, CAD Attenuated LVH (29)

Human STEMI Decreased scar (30)

Human STEMI No effect (31–34)

Tacrolimus Rat SHR Attenuated LVH (35, 36)

Mouse Genetic HCM Exacerbated LVH (37)

Rat SHR, TAC No effect (16)

Human Transplant Increased LVH (26, 27, 38–40)

Sirolimus Rat Phenylephrine Attenuated LVH (41)

Mouse, Rat TAC Attenuated LVH (42, 43)

Rat Adriamycin Attenuated fibrosis (44)

Mouse Leprdb diabetic Prevented fibrosis (45)

Rat Zucker obese Prevented fibrosis (46)

Zucker lean Increased fibrosis

Human Transplant Regressed LVH (47–49)

Everolimus Human Transplant Attenuated LVH, fibrosis (50, 51)

Human Transplant No effect on LVH (52–55)

Rat Metabolic syndrome Attenuated LVH, fibrosis (56)

MMF Rat Ischemia-reperfusion Prevented apoptosis (57)

Rat Myocarditis Prevented LV dysfunction (58)

TAC, Transverse Aortic Constriction; SHR, Spontaneously hypertensive rat; LVH, Left ventricular hypertrophy; HCM, hypertrophic cardiomyopathy; CAD, coronary artery disease;

STEMI, ST elevation myocardial infarction.

is a feature of multiple types of cardiomyopathy, as it confers

oxidative stress and changes in energetics to drive adverse

cardiac remodeling. Immunosuppressive agents can exert direct

effects on mitochondrial health to modulate cardiac remodeling

and this has been subject of much investigation (Table 2).

Calcineurin inhibitors

Cyclophilin D is a protein in the inner mitochondrial

matrix involved in opening of the mitochondrial permeability

transition pore (mPTP) (94). mPTP opening results in

mitochondrial calcium overload, release of cytochrome C, a

process involved in apoptosis and implicated in myocardial

ischemia-reperfusion (IR) injury (80). CsA interacts with

cyclophilin D thereby preventing mPTP opening and protecting

the mitochondria from calcium overload. Tacrolimus does

not bind cyclophilin D and the effects of tacrolimus on

mitochondrial function and mPTP opening are less defined.

Multiple animal studies have sought to define the effect of both

drugs on mitochondrial function.

CsA prevented mitochondrial-mediated injury and

improved myocardial recovery in models of hypothermia, IR

injury, and inborn errors of mitochondrial DNA polymerase

(81–86, 95). In addition, CsA and/or tacrolimus have been

associated with a favorable mitochondrial phenotype in the face

of adriamycin treatment, hypoxia or endotoxemia (88–90).

Clinical data on the implications of these findings have been

scant. In a single study of patients presenting with ST elevation

myocardial infarction, CsA treatment decreased myocardial

scar burden, which in combination with pre-clinical evidence

provided promise for CsA as a “post-conditioning agent” during

myocardial infarction (24, 30). However, follow-up studies failed

to show any benefit to CsA treatment in regards to LV function,

arrhythmia, or mortality (31–34). The discordance suggests that

CsA protection frommitochondrial injury is largely a short term
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TABLE 2 Studies examining e�ects of immunosuppression on cardiac mitochondrial function.

Agent Species Condition Mito function Studies

CsA Rat Isolated Mito Protected from Ca2+ overload, prevented mPTP opening (80)

Rat Hypothermia Improved ATP levels (81)

Rat IR injury Prevented mito injury (82, 83)

Mouse Mito DNA mutations Prevented mito injury (84)

Pig, Rat Cardioplegic arrest Prevented mito injury (85, 86)

Pig HFpEF Attenuated mito dysfunction (87)

Mouse Adriamycin Prevented loss of mito membrane potential (88)

Feline Endotoxemia Normalized mito respiration (89)

Tacrolimus Mouse Adriamycin Did not prevent loss of mito membrane potential (88)

Feline Endotoxemia Normalized mito respiration (89)

Canine, Mouse IR injury Prevented loss of mito GSH and attenuated mito dysfunction (90, 91)

Sirolimus Mouse Injection Inhibited mito respiration (92)

Mouse IR injury Inhibited apoptosis, opened mito KATP channel (93)

Mito, Mitochondrial; IR, ischemia-reperfusion; HFpEF, Heart failure with preserved ejection fraction.

TABLE 3 Studies examining e�ects of immunosuppression on arrhythmia.

Agent Species Condition Arrhythmia Studies

CsA Rat Injection Sinus tachycardia, QT prolongation (101)

Rat Oxidant stressor Failed to suppress ventricular arrhythmia (102)

Rabbit Atrial myocyte Prevented cardiac alternans, decreased AF (103)

Canine Pacing-induced AF Prevented downregulation of LT Ca2+ channel α-1c expression (104)

Canine Chronic AV block Prevented polymorphic ventricular tachycardia (105)

Mouse Iron overload Prevented arrhythmia (106)

Human STEMI No effect (31–34)

Human Transplant Case reports of increased arrhythmia (107, 108)

Tacrolimus Guinea pig Injection Dose-dependent QT prolongation (109, 110)

Pig, rat Isolated myocytes Increased Ca2+ transients, prolonged action potential (111–114)

Rat IR injury Decreased ventricular arrhythmias (115)

Human Transplant Case reports of arrhythmias (116–118)

Azathioprine Human Transplant More atrial arrhythmias than MMF (119)

Human Ulcerative colitis, psoriasis Case reports of atrial fibrillation (120–123)

STEMI, ST elevation myocardial infarction AF, Atrial fibrillation; IR, Ischemia-reperfusion; AV, atrioventricular.

or acute benefit. No human studies to date have evaluated the

effect of CNI on mitochondrial structure and function in light of

associated cardiac remodeling.

mTOR inhibitors

Sirolimus has been associated with a reduction in

respiration and cellular energetics in cardiomyocytes

(92). This effect has been attributed to the observation

that mTOR may activate AMP-activated protein kinase

to regulate cellular bioenergetics (96). In a mouse model

of cardiac IR injury, sirolimus inhibited apoptosis and

improved cardiac performance via interaction with the

mitochondrial ATP-sensitive potassium channel (93) and

appears to reduce ER stress and cytochrome C release

(97). In brain, sirolimus enhances the distribution of CsA

into mitochondria, accentuating its effects of decreasing

mitochondrial metabolism, whereas everolimus appears to

antagonize the effects of CsA in mitochondria to increase

energy metabolism (67, 98). At therapeutically relevant

concentrations, everolimus, but not sirolimus, distributes into

brain mitochondria (99, 100). As cited above clinical studies

have suggested a favorable effect for mTOR inhibitors on cardiac

remodeling—but data examining mitochondrial function

is lacking.
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TABLE 4 Studies examining e�ects of immunosuppression on hypertension.

Agent Species Condition Hypertension Studies

CsA, Tacrolimus Rat Injection Develop HTN prior to LVH (101)

Rat Isolated arteries Enhanced vasoconstriction, endothelin-1 receptor activation, decrease in eNOS (127–129)

Human Transplant Increase in HTN after transplant, more in CsA than tacrolimus (130–132)

Sirolimus Rat Mineralocorticoid Normalized systolic blood pressure (133)

Bovine Endothelial cells Restored eNOS-mediated vasodilation (134)

Human, mouse PAH Alleviated hypoxia-induced exacerbation of PAH (135)

Everolimus Human Primary aldosteronism Associated with improvement in blood pressure (136)

Human Transplant Lower incidence of HTN compared to CNI (137)

Human PAH Improvement in pulmonary vascular resistance (138)

Human Renal cell carcinoma Increased incidence of HTN when used in conjunction with Lenvatinib (139)

MMF Mouse Systemic lupus erythematous Lowered blood pressure (140, 141)

Rat Lead-induced HTN Attenuated HTN (142)

Rat Mineralocorticoid HTN Prevented hypertension (143, 144)

Human Psoriasis, rheumatoid arthritis Lowered blood pressure (145)

Azathioprine Rat Pregnancy-associated HTN Attenuated hypertension (146)

Human, Rat PAH Improved pulmonary vascular resistance (147)

Human Transplant Less likely to develop hypertension than CsA group (148)

HTN, Hypertension; PAH, pulmonary arterial hypertension; eNOS, endothelial nitric oxide synthase.

Purine synthesis inhibitors

There are no reports of direct effects of MMF and

Azathioprine on mitochondrial function in cardiomyocytes or

heart tissue.

Arrhythmia

With described effects on myocardial structural

remodeling and intracellular ion transporter function,

immunosuppressive therapies may modulate the risk

of arrhythmia. This poses significant short- and long-

term risks, especially in patients with underlying

structural heart disease and heart transplant recipients

(Table 3).

Calcineurin inhibitors

Calcineurin affects intracellular calcium transients

in cardiomyocytes via modulation of the ryanodine

receptor and activation of the NFAT pathway, which

drives transcriptional changes in proteins regulating

intracellular calcium (124). Calcineurin inhibitors

in turn can play a role in mediating changes in

calcium transients impacting the electrical phenotype of

the heart.

Delineating the precise effect of CNI on calcium

regulation in human cardiomyocytes has proven elusive.

In some models CsA appeared to reduce sarcoplasmic

reticulum (SR) calcium release and cytosolic levels of

Ca2+ (106). However, other models showed that both

CsA and tacrolimus result in increased Ca2+ release

events and an increase in QT prolongation. A possible

mechanism of QT prolongation may be an increase in the

duration of Ca2+ transients due to blockade of Na2+/Ca2+

exchanger. It is possible that CsA and tacrolimus exert

different electrical phenotypes owing to their differential

role in mitochondrial Ca2+ regulation and mPTP opening.

Nonetheless the results in animal models of both drugs have

been equally mixed; in some animal models, the cellular

phenotypes of CNI appeared to translate to a reduced

propensity to arrhythmia (103, 105, 106), but not in other

models (101, 102).

Clinically, in case reports, CsA and tacrolimus

induced atrial fibrillation and tacrolimus induced

QT prolongation and atrial arrhythmias (107, 116).

However, neither signal was seen in clinical trials

with either drug suggesting that the arrhythmic risk is

low (125, 126).

mTOR inhibitors

There are no published reports of mTOR inhibitors

modulating risk of arrhythmias. The recently published

CLEVER-ACS trial showed no difference in atrial arrhythmias

in patients treated with everolimus after myocardial

infarction (73).
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TABLE 5 Studies examining e�ects of immunosuppression on vascular remodeling.

Agent Species Condition Vascular remodeling Studies

CsA Mouse Endothelial and vascular

smooth muscle cells

Increased endothelial cell activation, cytokines (152)

Rat Isolated arteries Increased endothelial dysfunction, oxidative

stress, inflammation, smooth muscle proliferation

(128, 159–

162)

Human Transplant Associated with proliferative coronary

vasculopathy

(163–165)

Tacrolimus Human Rat Norepinephrine

Acetylcholine

Increased endothelial toxicity, impaired smooth

muscle relaxation

(166)

Human Transplant Less vasculopathy than CsA (167–169)

Sirolimus Rat Mineralocorticoid,

allografts, shear stress

Inhibited ROS, inflammation, intimal

proliferation

(133, 170,

171)

Pig Rat Human Smooth muscle Inhibited cell migration, proliferation (172–174)

Human Transplant Slowed coronary vasculopathy progression (175, 176)

Human Transplant Lowered PWV, arterial stiffness (177, 178)

Human Coronary stenting Prevented intimal proliferation (179)

Everolimus Rabbit Carotid arteries Improved vascular inflammation, thickening (180)

Mouse LDL-receptor knockout Prevented atherosclerosis (181, 182)

Human PAH Improved pulmonary vascular resistance (138)

Human Transplant Reduced CAV incidence/severity (183, 184)

Human Transplant No effect on pulse wave velocity (75)

MMF Rat Lead-induced HTN Decreased inflammation, intimal thickening (142)

Human Transplant Decrease in atherosclerosis, CAV (119, 185,

186)

Human HUVEC+ CNI Prevented ROS production (187)

AZA Rat Pregnancy-associated

HTN

Attenuated endothelial cell dysfunction (146)

Rat Subarachnoid

hemorrhage

Attenuated vasospasm, reduced endothelin-1 (188)

Mouse Transgenic

atherosclerosis

Inhibited atherosclerosis, decreased endothelial

monocyte adhesion

(189)

Human HUVEC Decreased cell proliferation (190)

ROS, reactive oxygen species; PAH, pulmonary arterial hypertension; HUVEC, human umbilical vein endothelial cells; AZA, azathioprine; PWV, pulse wave velocity.

Purine synthesis inhibitors

Azathioprine use is associated with increased incidence of

atrial arrhythmias. In a 3-year randomized controlled trial of

azathioprine vs. MMF, heart transplant patients treated with

azathioprine had a higher rate of atrial arrhythmias than

those on MMF (119). The mechanism for this phenomenon is

unknown. There are no published reports of MMF modulating

arrhythmia risk.

Hypertension

Hypertension is a well described side effect of

immunosuppressive medication use, particularly CNI, and

is associated with increased risk of coronary artery disease,

cerebrovascular events, renal dysfunction, and adverse

cardiovascular remodeling (Table 4).

Calcineurin inhibitors

CNI are known to cause hypertension, with 50–80% of

patients reported to have hypertension with chronic use.

CsA is associated with a higher incidence compared to

tacrolimus (130). CNI are implicated in afferent arteriole

vasoconstriction and activation of the renin-angiotensin system,

promoting sodium retention and volume expansion (127, 149).

Furthermore, CsA and tacrolimus are associated with promoting

direct vasoconstriction by one or more of the following
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TABLE 6 Studies examining e�ects of immunosuppression on dyslipidemia.

Agent Species Condition Dyslipidemia Studies

CsA Human Transplant Increased total cholesterol, LDL, decreased HDL (202, 203)

Human Transplant Increased cholesteryl ester transfer protein,

lipoprotein lipase activity, decreased lipolysis

(204, 205)

Human Transplant Pro-oxidant effect on LDL (206, 207)

Tacrolimus Mouse High vs low dose High dose developed hypercholesterolemia, low

dose did not

(208)

Human Transplant Less significant increase in LDL, total cholesterol

than CsA

(130, 209–

213)

Human Transplant Less pro-oxidant effect on LDL than CsA (206, 207)

Human Mouse HUVEC, diabetic mice Decreases oxidized LDL uptake to endothelial

cells, smooth muscle cells

(214–216)

Mouse Pcsk9 knockout Increased PCSK9 expression, leading to decreased

LDL receptor expression, increased LDL

(217)

Human Transplant Increase in cholesterol, triglycerides (70, 218)

Human Transplant Increased apolipoprotein C-III, lipoprotein lipase (204, 219)

Everolimus Mouse LDL-receptor knockout Increased VLDL/LDL, inhibited atherosclerosis (181, 182)

Human Transplant No additive increase in total cholesterol and

triglycerides

(220)

Human Transplant Similar dyslipidemia to sirolimus (221)

Human Transplant Decreased oxidized LDL (222)

Human Transplant No change in lipids, increase in PCSK9 (223, 224)

MMF Rabbit High-cholesterol diet No effect on LDL, HDL, or triglyceride levels (225)

Human Transplant Cholesteryl ester transfer protein activity

unchanged with MMF

(131, 204,

226)

Azathioprine Human Transplant Conversion from CsA decreased total cholesterol,

LDL, triglycerides, improved LDL oxidation

(227)

Human Transplant Did not alter serum lipids in comparison to MMF (228)

mechanisms: increased tone of vascular smooth muscle (128,

150, 151), reduced nitric oxide production (129), and activation

of endothelin-1 receptor (129). In cultured murine endothelial

and vascular smoothmuscle cells, both CsA and tacrolimus were

associated with production of proinflammatory cytokines and

endothelial activation, with increased superoxide production

and NF-kB regulated synthesis of proinflammatory factors,

which were prevented by pharmacological inhibition of TLR4.

This raises the possibility that a proinflammatory milieu drives

chronic endothelial dysfunction, contributing to CNI-induced

hypertension (152).

There is some controversy as to whether the clinical

hypertrophic phenotype is related to direct myocardial

effects or is in fact due an increase in the incidence of

hypertension associated with CsA use. Observations that rats

treated with CsA develop hypertension prior to myocardial

hypertrophy (4, 101, 153–155) supported the notion that

perhaps the clinical hypertrophic phenotype is purely related

to CNI-induced hypertension rather than direct myocardial

effects. While hypertension may be a contributor to the

hypertrophic phenotype observed, multiple animal and cellular

models have supported a direct effect of CNI on myocardial

remodeling.

mTOR inhibitors

mTOR inhibitors have been associated with a lower risk

of hypertension compared to calcineurin inhibitors when used

in solid organ transplant recipients (137, 156). The difference

between effects of CNI and mTOR inhibitors is likely driven

by multiple mechanisms with an overall vasodilatory effect of

mTOR inhibitors (157, 158). Sirolimus and everolimus appear

to increase nitric oxide production preventing endothelial

hyperplasia and dysfunction (133, 134). This promising anti-

hypertensive profile has led to the consideration of mTOR

inhibitors as a primary therapy for specialized difficult-to-

treat populations with hypertension including pulmonary

arterial hypertension and primary hyperaldosteronism (138,

139).
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Purine synthesis inhibitors

Purine synthesis inhibitors are not associated with

hypertension and may in fact have an antihypertensive

effect. In comparison to patients treated with CsA after heart

transplantation, those treated with azathioprine were less

likely to develop hypertension (148). Lower blood pressures

have been reported in patients taking MMF for psoriasis

and rheumatoid arthritis (145). Possible mechanisms for the

favorable hypertensive profile include: lower pro-inflammatory

signaling that drives endothelial dysfunction and hyperplasia,

decreased circulating levels of endothelin-1, and reduced

sodium reabsorption and neuro-hormonal activation leading

to hypertension (142–144). Taken together, these data

suggest that purine synthesis inhibitors carry a lower risk of

systemic hypertension, and may in fact contribute to favorable

mechanisms to reduce hypertension in pulmonary hypertension

and renal dysfunction-associated hypertension.

Vascular remodeling

In addition to effects on hypertension, immunosuppressive

agents may directly contribute to abnormal vascular remodeling

to drive cardiovascular adverse events, independent of

hypertension or dyslipidemia. Defining this risk and the

contributing mechanisms for each drug is important in order to

ensure appropriate follow up and identify potential actionable

targets to modify the risk profile (Table 5).

Calcineurin inhibitors

CNI, particularly tacrolimus, have been associated with

increased risk of allograft vasculopathy (167–169, 191). This

notable complication of transplanted hearts represents a major

driver of graft dysfunction and has significant implications for

quality of life and longevity of heart transplant recipients (163–

165). This has been replicated in animal models using both

tacrolimus andCsAwith adverse remodeling features of vascular

stiffness, thickening, inflammation and fibrosis noted in treated

animals (159, 160). Themechanisms for these include: decreased

fibrinolytic activity in vessel walls, increased oxidative stress in

endothelial cells, and possibly increased intracellular calcium in

vascular smooth muscle cells (161, 162, 192).

mTOR inhibitors

Both sirolimus and everolimus have been associated with

a more favorable vascular profile and their clinical efficacy in

reducing the rate of progression of cardiac allograft vasculopathy

has led to widespread use in heart transplant recipients

(175, 176, 183). In addition to reducing signaling associated

with endothelial dysfunction, mTOR inhibitors have been

shown to reduce vascular smooth muscle proliferation, intimal

hyperplasia, and infiltration by inflammatory cells (170–173,

193, 194). Everolimus, in particular, was shown to reduce pro-

inflammatory signaling by decreasing IL-9, VEGF release, and

TNFα induced adhesion of endothelial cells (184). These effects

have led to wide adoption of everolimus- and sirolimus-eluting

stents in the treatment of coronary artery disease (179, 195, 196).

In several trials of kidney transplant patients, a switch

from CsA to mTOR inhibitor was associated with stabilization

or improvement in parameters of arterial stiffness, including

pulse wave velocity (PWV), carotid systolic blood pressure,

pulse pressure, and augmentation index (177, 178). One notable

exception was a secondary analysis of the ELEVATE trial, where

no difference in PWV was found with switch from CsA to

everolimus, which was attributed to significant variation in

baseline PWV in the study population (75).

In addition to reducing allograft vasculopathy, the anti-

vascular proliferation signal conferred by mTOR inhibitors

has made the drug class of substantial interest in oncology

to suppress tumor neovascularization. Nonetheless, while

this anti-proliferation profile offers a substantial benefit, it

carries some drawbacks; Namely, both mTOR inhibitor drugs

are associated with an increased incidence of lymphedema,

which is thought to be driven by inhibition of lymphatic

endothelial cell proliferation (197, 198). The incidence of such

side effects must be considered in oncologic therapy, where

drug dosage is typically higher than that used in transplant

immunosuppression (199).

Purine synthesis inhibitors

Purine synthesis inhibitors appear to confer a beneficial

vascular remodeling profile. MMF has been associated with

reduced atherosclerosis progression and CAV in patients and

animal models (119, 142, 185). Animal models point to a

signal of decreased vascular oxidative stress and inflammation

as the driving mechanism of that benefit (187, 200, 201).

Reduced endothelial and smooth muscle proliferation in

association with MMF have also been proposed as a possible

mechanism, although the evidence is more limited than for

mTOR inhibitors (190).

Dyslipidemia

Immunosuppressive medications are associated with

dyslipidemia. Each drug class is associated with individual

variations in affected lipid particles and more importantly in the

conferred risk of atherosclerosis (Table 6).
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Calcineurin inhibitors

CsA use is associated with a dose-dependent increase in

total cholesterol and low-density lipoprotein (LDL) cholesterol,

a decrease in high-density lipoprotein (HDL) cholesterol, and

an increase in serum triglycerides (202, 203). These changes

are driven by a decrease in lipoprotein lipase and an increase

in activity of cholesteryl ester transfer protein (204, 229).

Additionally, CsA may reduce expression of the LDL receptor,

thereby impairing LDL clearance (230–232). Tacrolimus is

associated with a similar, but milder, dyslipidemia profile

compared to CsA (130, 209–212). CsA appears to be associated

with an increase in oxidized LDL, which confers a higher risk

of atherosclerosis, while the data for tacrolimus effect on LDL

oxidation are mixed (206–208).

mTOR inhibitors

Sirolimus is a stronger inducer of hyperlipidemia than

CNI, associated clinically with an increase in serum LDL and

triglyceride levels (70, 218, 233). The mechanism remains

unclear, although it may be due to a combination of reduced

catabolism, an increase in the free fatty acid pool, increased

hepatic production of triglycerides, and secretion of very low

density lipoprotein (VLDL) (204, 217). In addition, sirolimus is

associated with an increase in serum PCSK9 levels, which acts

as a post-transcriptional regulator of LDL receptor expression

(234). Clinical data on the risk of dyslipidemia associated with

everolimus has been mixed. In clinical studies, everolimus

was not associated with an increased risk of dyslipidemia

compared to CNI (220, 222, 223, 235–237). However, a meta-

analysis comparing mTOR inhibitors to CNI adverse events has

noted no difference between sirolimus and everolimus in the

incidence of dyslipidemia (238). This suggests that everolimus

may contribute to dyslipidemia, but at an intensity that is

between CNI and sirolimus.

Interestingly, despite the increase in serum lipids,

mTOR inhibitors are associated with an overall lower risk

of atherosclerosis (195). Sirolimus reduces oxidized-LDL

adhesion and uptake to endothelial cells, and can promote

its autophagic degradation (214, 215). Additionally, sirolimus

reduces intracellular lipid accumulation in vascular smooth

muscle cells, and increases cholesterol efflux via increased

expression of the ATP binding cassette protein ABCA1 (216).

Similarly everolimus treatment in LDL receptor knockout mice,

everolimus increased VLDL/LDL levels but reduced the rate

of atherosclerosis. Thus, regardless of dyslipidemia profile,

mTOR inhibitors appear to result in a net reduction in the

rate of atherosclerosis, which may explain the overall clinical

benefit observed.

Purine synthesis inhibitors

Both MMF and azathioprine appear to have a neutral effect

on lipids with no significant changes observed in lipid profile in

clinical studies (131, 226–228). In vitro studies suggest thatMMF

increases cholesterol efflux, but another study demonstrated

inhibition of lipoprotein lipase activity—the opposing effects

may explain the net neutral profile conferred by the drug.

Drug exposure and bioavailability

It is important to note that the bioavailability and

exposure levels of the immunosuppression drugs have varied

tremendously across clinic and scientific studies in the field.

This may explain the differences observed between pre-clinical

and clinical studies or even discrepancies between different

clinical studies. Part of this variation is not simply investigator

mediated, but is driven by variability in clinical practice by

geographic area and changes in clinical practice over time. Early

CsA trough concentrations in kidney transplant patients ranged

200–500µg/ml, whereas in Europe, they were typically lower

(100–200µg/ml). Similarly, tacrolimus trough levels ranged 12–

20 ηg/ml in the US, and lower in Europe (8–15 ηg/ml). There

were also variations in sirolimus and everolimus levels when

used in combination with CNI. MMF was previously prescribed

at higher doses than is typically used now (2–3 g twice daily to

1 g twice daily) (12, 55, 107, 131).

Conclusions

Immunosuppressive agents exert significant effects on

the heart and vasculature. Mechanistic studies point toward

immunosuppression drug-specific influences on changes

in cell proliferation, mitochondrial function, inflammatory

cytokines, and altered calcium handling as potential mediators

of these phenotypes. Calcineurin inhibitors promote cardiac

hypertrophy, hypertension, dyslipidemia, and vascular

remodeling, while mTOR inhibitors have an anti-proliferative

effect with attenuation of cardiac hypertrophy and vascular

remodeling despite promoting dyslipidemia. Purine synthesis

inhibitor are less well studied, but may have a neutral to mildly

positive effect on hypertension and vascular remodeling. These

phenotypes are associated with significant morbidity in patients

taking immunosuppressive medications, carrying increased

risks of heart failure, cardiovascular disease, and kidney

dysfunction. While preclinical studies have provided invaluable

insight into mechanisms of cardiovascular remodeling, the

discordance with clinical data, such as in the case of CNI

and hypertrophy, highlights the importance of caution in

generalizing the results of cell-based and animal models.

Further translational research is needed to identify actionable
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targets to treat associated cardiovascular side effects of

immunosuppression drugs.
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