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Abstract: Based on first-principles calculations, we propose van der Waals (vdW) heterojunctions
composed of one-dimensional carbon nanotubes (CNTs) and two-dimensional GeSe. Our calcula-
tions show that (n,0)CNT/GeSe (n = 5–11) heterojunctions are stable through weak vdW interac-
tions. Among these heterojunctions, (n,0)CNT/GeSe (n = 5–7) exhibit metallic properties, while
(n,0)CNT/GeSe (n = 8–11) have a small bandgap, lower than 0.8 eV. The absorption coefficient of
(n,0)CNT/GeSe (n = 8–11) in the ultraviolet and infrared regions is around 105 cm−1. Specifically, we
found that (11,0)CNT/GeSe exhibits type-II band alignment and has a high photoelectric conversion
efficiency of 17.29%, which suggests prospective applications in photoelectronics.

Keywords: germanium selenide; carbon nanotubes; heterojunction; photoelectric conversion efficiency

1. Introduction

As a fascinating carbon material, single-wall carbon nanotubes (SWCNTs) [1] have
attracted widespread attention due to their unique properties [2–4]. The outstanding
physical properties of CNTs make them a good candidate basic material for next-generation
electronic devices [3,4]. The accurate prediction of CNTs’ electronic properties is very
important for their possible applications [5]. For large-diameter CNTs, the CNTs are metals
or semiconductors depending on their chiral indices (n,m) [6]. When (n − m) is equal to 3p,
where p is an integer, the CNT is a metal. Otherwise, the CNT is a semiconductor [6]. The
above criterion is not applicable to CNTs with small diameters due to curvature effects or
s-p rehybridization [7–15].

Monolayer germanium selenide (GeSe) is a semiconductor that has a direct bandgap [16].
Few-layer GeSe, including monolayer GeSe, is non-toxic and can exist stably at room tem-
perature [17,18]. Our group successfully prepared a single layer of GeSe using mechanical
stripping and laser-thinning technology [19]. First-principles studies, combined with pho-
toluminescence spectra, proved that a direct bandgap exists for less than three layers in a
few-layer GeSe [20]. Under conditions of high temperature and high pressure, the GeSe
conductivity is higher than that of black phosphorus and graphene [21]. Our previous
study showed that monolayer GeSe, with point defect engineering, has a good adsorption
effect on toxic gases [22]. Moreover, we found that the bandgap can be tuned by stacking
order and external strain in bilayer GeSe [23]. Our designed GeSe/SnSe heterojunction,
based on first principles, exhibited a superior photoelectric conversion efficiency (PCE) of
21.47% [24].

Duan et al. [25] recently proposed a state-of-the-art material design called van der
Waals (vdW) integration [25]. They suggest combining a two-dimensional (2D) material
with materials with other dimensions. For example, 2D and one-dimensional (1D) materials
could be combined by the vdW interaction. The literature reported that a 2D/2D GeSe/SnS
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heterojunction has stronger optical absorption than GeSe or SnS [24]. A 0D/2D photodiode
was proposed by integrating quantum dots or plasma nanoparticles on graphene, which
will not damage the original graphene lattice, enhancing the photocurrent [26–28]. More-
over, 1D/2D high-speed transistors are obtained through vdW integration of 1D core-shell
nanowires and 2D graphene, which has a high cut-off frequency [29–32]. Based on this
progress, in this paper, we propose combining 1D CNTs and 2D GeSe with vdW interaction
and explore their electronic properties through first-principles calculations. We aim to
provide a theoretical proposal for 1D/2D integration through CNTs and a GeSe monolayer,
which has potential applications in the field of optoelectronic devices.

2. Computational Method and Model

Our first-principles calculations used the Vienna ab initio simulation package (VASP) [33].
Based on density functional theory (DFT), a plane wave basis expanded the CNT/GeSe
hybrid wave function. To represent the interaction of exchange and correlation between
the electrons, the Perdew, Burke, and Ernzerhof (PBE) function in the framework of a
generalized gradient approximation was used [34–36]. To ensure sufficient accuracy, we
found that a cut-off energy of 450 eV was satisfactory for the convergence standards. The
energy convergence was 10−6 eV, while a force of 0.01 eV/Å on each atom was sufficient
for the calculations. In the structural relaxation and self-consistent calculation, we set a
Monkhorst-Pack grid of k points of 8 × 5 × 1 [37] for sampling. When calculating the
density of states (DOS) and optical properties, we used a denser Monkhorst-Pack grid
of 16 × 10 × 1 k-point sampling. For the simulation of a heterostructure between 1D and
2D materials, vdW interaction is especially important. Our simulations adopted semi-
empirical dispersion-corrected D3 (DFT-D3) [38] to represent the weak interaction between
CNTs and the GeSe monolayer.

We selected a series of zigzag (n,0)CNTs (n = 5–11) with an axial length of 4.26 Å to
form a composite structure with monolayer GeSe. To build a reasonable 1D/2D model,
we first enlarged the unit cell of monolayer GeSe to a 1 × 5 supercell (4.25 Å × 19.95 Å).
Based on this supercell, we placed the CNT above the GeSe monolayer along the x-axis.
In our model, there was only a 0.2% lattice mismatch. We set 28 Å along the z-axis as the
vacuum layer, which avoids interaction between the adjacent supercells. Figure 1 shows
the schematic structural model. To better present the schematic model, we enlarged the
indicated lattice constant four times along the x-axis.

Figure 1. Schematic diagram of the side view of different zigzag CNTs (n,0) (n = 5–11) on monolayer
GeSe. C, Ge, and Se atoms are represented by gray, green, and orange spheres, respectively. d is the
interfacial spacing between the CNT and monolayer GeSe.
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In our optical calculations using the VASP code, the frequency-dependent dielectric matrix
after the electronic ground state was determined [39]. As suggested in [39], the imaginary part
can be determined by a summation of the empty states using the following formula:

ε2(ω) =
4π2e2

Ω
lim
q→0

1
q2 ∑

c,v,k
2wkδ(εck − εvk −ω)× (uck + eαq|uvk)(uck + eβq|uvk)

where the indices c and v refer to the conduction and valence band states, respectively.
In [39] it is stated that uck is the periodic cell part of the orbitals at the k-point k, while the
k-point weights, wk, are defined such that their sum is one. In addition, in [39], the real part
of the dielectric tensor, ε1(ω), is obtained using the usual Kramers–Kronig transformation:

ε1(ω) = 1 +
2
π

P
∫ ∞

0

ε2(ω
′)ω′

ω′2 −ω2 + iη
dω′

where P denotes the principal value while η is an infinitesimal number. In addition,
the number of empty bands in the above calculations is twice that of the self-consistent
calculations for total energies.

3. Results and Discussion
3.1. Configurations and Stability of 1D/2D Heterostructures

In this work, six types of zigzags (n,0)CNTs (n = 5–11) with diameters ranging from 3.92
to 7.83 Å were simulated. It is critical that the 1D CNT and 2D GeSe form a stable composite
structure. Figure 2 indicates the optimized configurations of (n,0)CNT (n = 5–11) on 2D
GeSe. From the perspective of the geometrical structure, CNT/GeSe hybrids maintain their
original structure. In (n,0)CNT/GeSe (n = 5–11) with optimized structures, the average C–C
bond length of the CNT changes little compared to their components, varying between
0.001 to 0.003 Å. Due to compatibility, the average GeSe bond length in GeSe has only
minor variations, ranging from 0.006 to 0.009 Å. The interfacial spacing between the top Se
atom of monolayer GeSe and the C atom in a CNT ranges from 2.97 to 3.02 Å (see Table 1).
According to previous studies [40–42], large interlayer spacing implies weak interaction
between GeSe and the CNTs. The calculated formation energy is estimated using the
following formula:

E f = ECNT/GeSe − ECNT − EGeSe (1)

where ECNT/GeSe, ECNT , and EGeSe are the total energies of the CNT/GeSe heterostructure,
CNT, and the monolayer GeSe, respectively.

Table 1. Diameter and bandgaps of (n,0) CNTs (Eg) (n = 5–11) and formation energy, Ef, bandgap,
Eg

a, and interfacial spacing, d, of optimized CNT/GeSe hybrids. Bader charge: the positive value
indicates gained electrons, while a negative value reveals lost electrons.

Hybrid Diameter (Å) Eg (eV) Eg
a (eV) Ef (eV) d (Å)

Bader Charge (e)

GeSe CNT

CNT(5,0)/GeSe 3.92 0 0 −3.517 2.97 −0.1098 0.1098
CNT(6,0)/GeSe 4.70 0 0 −3.959 3.02 −0.0490 0.0490
CNT(7,0)/GeSe 5.48 0.1746 0 −4.078 3.02 −0.0280 0.0280
CNT(8,0)/GeSe 6.27 0.5908 0.2112 −4.273 3.00 −0.0204 0.0204
CNT(9,0)/GeSe 7.05 0.1568 0.1643 −4.283 3.02 −0.0159 0.0159
CNT(10,0)/GeSe 7.83 0.7222 0.4669 −4.513 3.01 −0.0280 0.0280
CNT(11,0)/GeSe 8.59 0.9519 0.5924 −4.709 3.01 −0.0174 0.0174
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Figure 2. Optimized structures of different CNTs on monolayer GeSe: (a–g) and (a′–g′) are side and top view of (n,0)
CNTs/GeSe (n = 5–11), respectively. d is the equilibrium spacing between the top Se atomic layer and the annotated wall.
Gray, orange, and green spheres represent C, Se, and Ge atoms, respectively.

According to the above definition of formation energy, when Ef is negative, the system
tends to be stable. As indicated in Table 1, the negative formation energy of all calculated
1D/2D CNT/GeSe combinations implies the stability of our proposed heterostructures.
Our results indicate that the formation energies decrease with increasing CNT diameter.
The decreasing formation energy is related to the increased contact area between CNTs and
2D GeSe. In addition, the interlayer interaction of the CNT/GeSe composite structure is
reflected by the charge transfer between the CNT and GeSe. We conducted a Bader charge
analysis to explore the charge transfer between CNTs and GeSe (see Table 1). A positive
Bader charge value indicates that electrons are gained, while a negative value indicates
that electrons are lost. Table 1 shows a certain number of electrons are transferred from
the 2D GeSe to the CNTs. There are small fluctuations in the amount of charge transfer
in (n,0)CNT/GeSe (n = 5–11), ranging between 0.0159 e to 0.0490 e. The small amount of
charge transfer suggests weak interaction between the CNTs and the GeSe monolayer.

Based on the analysis of the charge density difference, the charge transfer and redis-
tribution at the interface in these hybrids can be evaluated (as shown in Figure 3) by the
following relationship:

∆ρ = ρCNT/GeSe − ρCNT − ρGeSe (2)

where ρCNT/GeSe, ρGeSe, and ρCNT are the charge densities of CNT/GeSe, CNT, and mono-
layer GeSe, respectively. As Figure 3 indicates, the redistributed charge is visible due to the
interaction between the 1D CNTs and 2D GeSe.
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Figure 3. Charge density differences for CNT(n,0)/GeSe with n = (a) 5, (b) 6, (c) 7, (d) 8, (e) 9, (f) 10, and (g) 11. The isovalue
is set to 0.0015 e/Å3. The yellow and green regions represent charge loss and gain of electrons, respectively.

As shown in Figure 3, at the interface between GeSe and the CNTs, the charge is
transferred from the GeSe to the CNTs. Though the amount of charge transfer is very
small, the interaction between CNTs and 2D GeSe can be validated. Moreover, the amount
of charge transfer in the (5,0)CNT/GeSe is larger than that in other composites. This is
because the interlayer distance between the GeSe and (5,0)CNT is 2.97 Å, which is smaller
(as shown in Table 1) than in other hybrid structures.

3.2. Band Structure and Density of States

To explore the electronic properties of CNT/GeSe hybrids, we calculated their band
structures and DOS. As shown in Table 1, CNT(5,0) and CNT(6,0) are metals while CNT(n,0)
(n = 7–11) are semiconductors. Our results using first-principles calculations are consistent
with previous reports in the literature [5]. As shown in Figure 4h, the obtained bandgap of
monolayer GeSe is 1.14 eV with our PBE calculation, which is the same as a previous re-
port [43]. As shown in Figure 4a–c and Table 1, (n,0)CNT/GeSe (n = 5–7) all have bandgaps
of zero, while the bandgaps of (n,0)CNT/GeSe (n = 8–11) are 0.21 eV, 0.16 eV, 0.47 eV, and
0.59 eV. This indicates that CNT/GeSe heterojunctions with small diameter CNTs are metal-
lic. As the diameter of the CNTs increases, the bandgaps of our proposed (n,0)CNT/GeSe
(n = 8–11) heterojunctions gradually increase. However, the bandgap of (9,0)CNT/GeSe is
smaller than those of (8,0)CNT/GeSe and (10,0)CNT/GeSe. This is because the bandgap
of the (9,0)CNTs/GeSe heterojunction is mainly determined by the energy level of the
bands in the (9,0)CNT. In contrast, in (8,0)CNT/GeSe and (10,0)CNT/GeSe heterojunctions,
the bandgap is a subtraction between the energy level of the conduction band minimum
(CBM) in the corresponding CNTs and the energy level of the valence band maximum
(VBM) in the GeSe monolayer. As a result, the bandgap of (9,0)CNT/GeSe is smaller than
those of (8,0)CNT/GeSe and (10,0)CNT/GeSe. As the diameter of CNTs increases, the
bandgaps of our proposed (n,0)CNTs/GeSe (n = 8–11) heterojunctions gradually increase.
The projected energy band shown in Figure 4 confirms that the CNTs mainly provide the
bands near the Fermi surface in the band structure of a CNT/GeSe heterojunction. In other
words, whether (n,0)CNT/GeSe (n = 5–11) heterojunctions composed of (n,0)CNTs (n =
5–11) and 2D GeSe are metals or semiconductors is mainly determined by the conduction
bands near the Fermi level. Due to the weak van der Waals interaction between CNTs
and 2D GeSe, we can use CNTs with different diameters to obtain suitable bandgaps in
CNT/GeSe heterojunctions with the variation of the band structure in CNTs.
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Figure 4. Projected band structures of (n,0)CNT/GeSe hybrids with n = (a) 5, (b) 6, (c) 7, (d) 8, (e) 9,
(f) 10, and (g) 11. The red and green circle size denotes the weight of the CNT and monolayer GeSe in
the CNT/GeSe configuration band structure. (h) is the band structure of pristine 2D GeSe calculated
for comparison. A horizontal dashed line represents the Fermi level.

In Figure 5, we show the partial DOS (PDOS) of (n,0)CNT/GeSe (n = 5–11) and
monolayer GeSe. Compared with the PDOS of monolayer GeSe, the PDOS of GeSe in
the heterojunction is the same as that of the monolayer GeSe. The total DOS of the
CNT/GeSe heterojunction can be viewed as a superposition of the DOS in the CNT and in
the 2D GeSe. This further proves that there is a weak vdW interaction between the CNTs
and 2D GeSe. From the perspective of the PDOS, the conduction band near the Fermi
surface of the CNT/GeSe heterojunction is provided by the CNT and GeSe together. In
contrast, the valence band is mainly provided by the 2p orbital of carbon atoms. Aside
from the 2p orbital of carbon atoms, the orbital DOS of the other elements is unchanged.
It is the 2p orbital of carbon that determines the top position of the valence bands, thus,
affecting the band structure of the heterojunction. As shown in Figure 5a–c, the 2p orbital of
carbon in (n,0)CNT/GeSe (n = 5–7) passes through the Fermi level, so those heterojunctions
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are metallic. The 2p orbital of carbon in (8,0)CNT/GeSe and (9,0)CNT/GeSe is closer to
the Fermi surface than that in the (10,0)CNT/GeSe and (11,0)CNT/GeSe heterojunctions,
which leads to smaller bandgaps in (8,0)CNT/GeSe and (9,0)CNT/GeSe heterojunctions
than those in (10,0)CNT/GeSe and (11,0)CNT/GeSe heterojunctions.

Figure 5. PDOS of CNT(n,0)/GeSe hybrids with n = (a) 5, (b) 6, (c) 7, (d) 8, (e) 9, (f) 10, (g) 11, and a (h) monolayer GeSe.
The Fermi level is set to zero.

To further confirm the distribution of electronic states near the Fermi surface of
the CNT/GeSe, in Figure 6 we show the electronic state distribution of (n,0)CNT/GeSe
(n = 8–11). The CNT and GeSe provide the holes at the top of the valence band, with most
holes provided by the CNT. In comparison, the electrons at the bottom of the conduction
band are provided by the CNT alone. From the previous discussion of the PDOS, the
2p orbital of carbon contributes electrons at the bottom of the conduction band. Therefore,
the electronic properties in CNT/GeSe heterojunctions are mainly influenced by CNTs
with varying tube diameters. In other words, we found that the bandgap of our studied
heterojunctions can be tuned by varying the tube diameter of the CNTs. Our calculated
results predict that the bandgap of the heterojunction is smaller than that of monolayer
GeSe, which is beneficial for optical absorption.
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Figure 6. Maps of the hole and electron density distributions for (a–d) VBM and (e–h) CBM of CNT(8,0)/GeSe,
CNT(9,0)/GeSe, CNT(10,0)/GeSe, and CNT(11,0)/GeSe with an isovalue of 0.007 e/Å3, respectively. Blue and yellow
regions denote the hole and electron density distributions of the VBM and CBM, respectively. Brown, cyan, and purple
spheres represent C, Se, and Ge atoms, respectively.

3.3. Optical Absorption Properties

To evaluate the optical absorption properties of CNT/GeSe heterojunctions, we uti-
lized the following formula to assess the optical coefficient:

α(ω) =
√

2ω

[√
ε2

1(ω) + ε2
2(ω)− ε1(ω)

] 1
2

(3)

where ε1(ω) and ε2(ω) are the real and imaginary parts of the complex dielectric function,
respectively. In Figure 7, we present the calculated optical absorption coefficient, α(ω) of a
monolayer GeSe, pure CNT, and CNT/GeSe hybrids. According to previous studies [16],
GeSe reportedly had good optical absorption properties. By combining 2D GeSe with CNTs,
the bandgap of the hybrid system is smaller than that of 2D GeSe, which is helpful for the
separation of photogenerated electrons and holes. Figure 7 shows the optical absorption of
our studied CNT/GeSe hybrids. For comparison, the calculated optical absorption of a
GeSe monolayer and CNTs are plotted together. The results indicate that (n,0)CNT/GeSe
(n = 8–11) all have good optical absorption in the visible light region, which has a high
optical absorption peak of about 6× 105 cm−1. In the infrared region, the optical absorption
coefficients of (n,0)CNT/GeSe (n = 8–11) are significantly enhanced compared to those
of GeSe. The optical absorption peaks of (8,0)CNT/GeSe and (11,0)CNT/GeSe in the
infrared region reach 2 × 105 cm−1. The optical absorption peak of (10,0)CNT/GeSe is
close to 2 × 105 cm−1. In the ultraviolet region, the light absorption of the CNT(n,11)/GeSe
(n = 8–11) composite is greatly enhanced compared to the corresponding components of
GeSe and CNT. Our results prove that the optical absorption of the combined structure of
(n,0) CNTs (n = 8–11) and 2D GeSe is substantially enhanced compared with that of 2D
GeSe and (n,0) CNTs (n = 8–11).
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Figure 7. Optical absorption coefficient, α, of (a) (8,0)CNT/GeSe, monolayer GeSe, and (8,0)CNT; (b) (9,0)CNT/GeSe,
monolayer GeSe, and (9,0)CNT; (c) (10,0)CNT/GeSe, monolayer GeSe, and (10,0) CNT; and (d) (11,0)CNT/GeSe, monolayer
GeSe, and (11,0)CNT at the zigzag direction.

According to the theory suggested by Scharber et al., [44], the PCE η of CNT/GeSe
can be described as follows:

η =
JSCVOCβFF

PSOLAR
=

0.65
(

Ed
g − ∆Ec − 0.3

) ∫ ∞
Ed

g

P(hω)
hω d(hω)∫ ∞

0 P(hω)d(hω)
(4)

where the fill factor (βFF) is 0.65. The maximum open-circuit voltage (VOC) is estimated
by
(

Ed
g − ∆Ec − 0.3

)
, where Ed

g is the donor bandgap. ∆Ec is the conduction band offset
(CBO) between the donor (GeSe) and acceptor (CNT). P(hω) is the AM1.5 solar energy flux
at the photon energy (hω). The integral in the numerator is the short circuit current (JSC)
performed by applying an external quantum efficiency limit of 100%, and the integral in
the denominator in Equation (4) is the incident solar radiation (PSOLAR = 1000 Wm−2). As
mentioned in our analysis of the band structure, the donor layer is the GeSe monolayer with
a bandgap of 1.14 eV, while the value of the CBO in the (10,0)CNT/GeSe heterostructure
is 0.48 eV. We found that the PCE of the (10,0)CNT/GeSe heterostructure reaches 11.04%
following the calculated definition. To achieve a higher PCE by combining CNTs and GeSe,
we further obtain the optimized structure of (11,0)/GeSe and the corresponding band
structure using the same simulation method. As shown in Figure 8, the (11,0)CNT/GeSe
heterostructure has type-II band alignment. The type-II heterostructure facilitates the sepa-
ration of photogenerated carriers and holes. The value of the CBO in the (11,0)CNT/GeSe
heterostructure is 0.22 eV. The PCE of the (11,0)CNT/GeSe heterostructure reaches 17.29%.
The obtained high PCE in the (11,0)CNT/GeSe heterostructure is comparable to that in
bilayer phosphorene/MoS2 (16%–18%) [45] and GeSe/SnS (18%) [46] heterostructures.
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Figure 8. (a) Schematic representation of the band alignment of the (11,0)CNT/GeSe heterostructure. (b) Contour plot of
power conversion efficiency (%) for the (11,0)CNT/GeSe heterostructure.

4. Conclusions

We proposed new types of CNT/GeSe heterojunctions by combining a 1D CNT
(n = 5–11) and 2D GeSe, and calculated their electronic and optical properties based on
DFT. Our calculations show that CNT/GeSe (n = 5–11) are stable through weak vdW
interactions. Among the structures, (n,0)CNT/GeSe (n = 5–7) exhibit metallic properties,
while (n,0)CNT/GeSe (n = 8–11) have small bandgaps, lower than 0.8 eV. Due to their small
bandgaps, (n,0)CNT/GeSe (n = 8–11) have excellent optical absorption properties, espe-
cially in ultraviolet and infrared absorption. The absorption coefficient of (n,0)CNT/GeSe
(n = 8–11) in the ultraviolet region can reach the order of 105 cm−1. In particular, we
found that the (11,0)CNT/GeSe heterostructure exhibits type-II band alignment and a high
PCE of 17.29%. Our study implies that 1D/2D GeSe/CNT heterostructures have potential
applications in photoelectronics and photodetection.
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