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Abstract

Introduction Drug-induced prolongation of the QT

interval on the electrocardiogram (long QT syndrome,

LQTS) can lead to a potentially fatal ventricular arrhythmia

known as torsades de pointes (TdP). Over 40 drugs with

both cardiac and non-cardiac indications are associated

with increased risk of TdP, but drug–drug interactions

contributing to LQTS (QT-DDIs) remain poorly

characterized. Traditional methods for mining observa-

tional healthcare data are poorly equipped to detect QT-

DDI signals due to low reporting numbers and lack of

direct evidence for LQTS.

Objective We hypothesized that LQTS could be identi-

fied latently using an adverse event (AE) fingerprint of

more commonly reported AEs. We aimed to generate an

integrated data science pipeline that addresses current

limitations by identifying latent signals for QT-DDIs in the

US FDA’s Adverse Event Reporting System (FAERS) and

retrospectively validating these predictions using electro-

cardiogram data in electronic health records (EHRs).

Methods We trained a model to identify an AE finger-

print for risk of TdP for single drugs and applied this model

to drug pair data to predict novel DDIs. In the EHR at

Columbia University Medical Center, we compared the

QTc intervals of patients prescribed the flagged drug pairs

with patients prescribed either drug individually.

Results We created an AE fingerprint consisting of 13

latently detected side effects. This model significantly

outperformed a direct evidence control model in the

detection of established interactions (p = 1.62E-3) and

significantly enriched for validated QT-DDIs in the EHR

(p = 0.01). Of 889 pairs flagged in FAERS, eight novel

QT-DDIs were significantly associated with prolonged

QTc intervals in the EHR and were not due to co-pre-

scribed medications.

Conclusions Latent signal detection in FAERS validated

using the EHR presents an automated and data-driven

approach for systematically identifying novel QT-DDIs.

The high-confidence hypotheses flagged using this method

warrant further investigation.
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Key Points

Drug–drug interactions that prolong the QT interval

(QT-DDIs) can can lead to potentially fatal

arrhythmias but remain poorly characterized.

We developed an integrative data science pipeline

that combines mining for latent QT-DDI signals in

the US FDA Adverse Event Reporting System

(FAERS), and retrospective analysis of

electrocardiogram laboratory results in electronic

health records, at Columbia University Medical

Center.

Using latent evidence of long QT syndrome to detect

QT-DDIs in FAERS significantly outperformed use

of solely direct evidence of this adverse event in the

detection of established interactions. The pipeline

significantly enriched for novel QT-DDIs and

identified eight novel interactions that warrant

experimental validation.

1 Introduction

Long QT syndrome (LQTS) is a genetic or acquired change

in the electrical activity of the heart that can increase the

risk of torsades de pointes (TdP), a dangerous ventricular

tachycardia that can lead to sudden cardiac death [1].

Diagnosed using an electrocardiogram (ECG), LQTS is

characterized by a prolonged QT interval and represents an

abnormally increased cardiac action potential duration.

While the link between QT prolongation and TdP is

complex and involves the interplay of multiple factors, a

QT interval[500 ms (vs. a normal range of 350–440 ms)

is nonetheless considered a significant risk for arrhythmo-

genesis [2].

Since the first reports of TdP in the 1960s [3], mutations

in 13 genes coding for cardiac ion channels and their

associated proteins have been found to play roles in LQTS

[1, 4–6]. Congenital LQTS can result from mutations that

disrupt the IKs, IKr, or INa ion currents; however, the

acquired form of LQTS (which is often drug-induced) is

almost exclusively due to block of the human ether-à-go-

go-related gene (hERG) channel (KCNH2), which plays a

role in the IKr delayed rectifier potassium current respon-

sible for ventricular repolarization [3]. Drug-induced

inhibition of IKr was first discovered for the antiarrhythmic

quinidine [7], and since then over 40 drugs with both

cardiac and non-cardiac indications have been found to

possess either a known, possible, conditional, or congenital

link to dangerously prolonging the QT interval [8]. Ter-

fenadine (an allergy medication) and cisapride (used to

treat acid reflux) were withdrawn from the market in 1997

and 2000, respectively, for prolonging the QT interval [9],

and risk of TdP is now the second leading cause for

approved drug withdrawal [2].

Drug–drug interactions (DDIs) such as those between

methadone (an analgesic) and quetiapine (an antipsychotic)

have also been reported to increase the risk for TdP [10].

Despite the increasingly comprehensive resources available

to clinicians for linking single drugs to TdP, little remains

known about DDIs (QT-DDIs). We define a QT-DDI as a

measurable change in effect (QT interval duration) for a

drug pair compared with the effect observed for either drug

alone. This includes both pharmacokinetic interactions

(such as the increased plasma concentrations of methadone

in patients also taking quetiapine [10]), as well as phar-

macodynamic interactions. While the FDA has required

clinical studies to assess the effects of drug interactions, it

is intractable to prospectively evaluate every possible drug

combination. With DDIs thought to play a role in upwards

of 17 % of adverse events (AEs), and an increasingly aging

population taking multiple drugs concurrently [11, 12],

there is a pressing need for methods to identify potential

interactions.

Molecular mechanism-based approaches such as bio-

logical network analysis have been previously used to

prioritize drugs with molecular links to LQTS genes, but

they remain limited to known drug targets and often only

apply to individual drugs [6]. More recent work using

machine learning on network data can overcome the

requirement for known targets [13]; however, this approach

has only been validated for individual drugs.

Observational healthcare datasets such as the US FDA

Adverse Event Reporting System (FAERS) and electronic

health records (EHRs) provide invaluable resources for

adverse event prediction, but their use is tempered by

multiple limitations. Spontaneous reporting systems such

as FAERS are known to suffer from both reporting bias and

sampling variance [14], and methods for mining FAERS

traditionally rely on direct evidence between a drug

exposure and AE (i.e. the number of reports with the drug

and AE co-mentioned). While methods have been devel-

oped to limit high false positives by correcting for unsub-

stantiated drug–AE signals [15], this leads to a tradeoff

between reducing false positive rates and the ability to

actually detect AEs. Direct detection of AEs falters in the

prediction of DDIs, where reporting numbers are often

lower than for single drugs and unanticipated or unex-

pected events with no understood molecular explanation

can go unreported. A number of advances have been made

in the field, including the observation that additive baseline

models tend to outperform multiplicative ones [16] and that
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case reports can be combined with mechanistic information

such as shared cytochrome P450 (CYP) metabolism to

develop more sophisticated triage algorithms [17].

Nonetheless, most DDI signal detection algorithms have

had limited success [18–20]. Additionally, AE detection in

EHRs can be challenging as such data are often complex,

inaccurate, and missing [21]. While use of either

dataset alone can thus be problematic for QT-DDI detec-

tion, integration of these two sources using data science

offers an opportunity for improved performance.

In previous work, we demonstrated that a novel signal

detection algorithm could be used for detecting latent

signals of previously unknown DDIs for eight severe AE

classes [22, 23]. Importantly, each individual drug in the

drug pair had no previously known connection to the AE

class of interest. In this study, we introduce an updated

pipeline called DIPULSE (Drug Interaction Prediction

Using Latent Signals and EHRs) that uses latent signal

detection in FAERS to generate an AE fingerprint for

LQTS. This AE fingerprint—trained on individual drugs

with a known link to prolonging the QT interval—repre-

sents a profile of more commonly reported side effects that

together are highly predictive of underlying QT interval

prolongation. We apply this fingerprint model to an inde-

pendent test data set of drug pairs to predict new QT-DDIs

where neither drug alone has a known association to this

phenotype. We validate these predictions using ECG lab-

oratory results in EHRs.

2 Methods

A graphical overview of DIPULSE can be found in

Fig. 1. The individual steps of the pipeline corresponding

to each panel of the figure are described in detail below.

Briefly, we used AE reporting frequencies for individual

drugs to identify an AE fingerprint for increased risk of

TdP. We then apply this model to a test data set of AE

reporting frequencies for drug pairs. We filtered for high-

confidence predictions and proceeded to validate these

putative QT-DDIs in the EHR by comparing the QTc

(heart rate-corrected QT) intervals of patients prescribed

the flagged drug pair with patients prescribed either drug

alone. Finally, we perform a confounder analysis to

remove any associations that can be explained by co-

prescribed medications, and generated a final candidate

list of novel QT-DDIs.

In developing the pipeline, our rationale was to priori-

tize high precision over high recall to obtain a final list of

high-confidence interactions; therefore, the choices we

made in designing the filtering steps described below

reflect this conservative approach. We implemented the

method using Python 2.7.9 and R 3.1.0.

2.1 Primary Data Sources

We downloaded a snapshot of the FAERS database con-

taining 1,851,171 reports (corresponding to the first quarter

of 2004 to the first quarter of 2009). Each report in FAERS

contains the drugs prescribed to the patient, the drug

indications, and the observed AEs. We included suspected,

interacting, and concomitant drugs on the reports.

As positive controls, we downloaded a list of 180 drugs

with known (n = 47), possible (n = 75), conditional

(n = 31), or congenital (n = 27) risk of TdP from Credi-

bleMeds, an online compendium of drugs associated with

LQTS [8]. We also obtained a list of 2856 critical and

significant DDIs from the Veteran Affairs Hospital [24].

To validate our DDI predictions, we used EHR data

from Columbia University Medical Center (CUMC). In

addition to patient demographics, drugs prescribed, and

diagnosis codes, we also used QTc (heart rate-corrected QT

interval) values obtained from ECG laboratory results. The

study was approved by the CUMC Institutional Review

Board.

2.2 Generating Adverse Event (AE) Reporting

Frequency Tables

We pre-processed the reports from FAERS to generate the

intermediate AE reporting frequency tables in the OFFSIDES

(single drug) and TWOSIDES (drug pair) databases [25].

OFFSIDES and TWOSIDES were created by training propensity

score matching models to match patients exposed to a

single drug or drug pair to unexposed controls on the basis

of co-prescribed medications and drug indications; an

advantage of this approach is that only patients for whom

controls could be matched are used for drug safety pre-

diction [25].

An intermediate step in this process is the assembly of

AE frequency reporting tables for both single drugs and

drug pairs, as seen in Fig. 1, with each row representing a

drug and each column representing one of the AEs in

FAERS. For single drugs, the value at a given row and

column represents the frequency of reporting Fik, defined

as the fraction of reports for drug i containing the AE

k. Similarly, for drug pairs, the reporting frequency Fijk

corresponds to the fraction of reports for drug pair (i,

j) containing the AE k. We used the former matrix to train

the fingerprint model, and the latter for DDI prediction.

2.3 Training AE Fingerprint Model

We used the AE reporting frequencies (Fik) in the fre-

quency table for single drugs as features to train a logistic

regression classifier. The binary classifier models the log

odds ratio of a drug prolonging the QT interval as a linear
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combination of each AE reporting frequency in the model

multiplied by a weight (known as a b coefficient);

depending on the probability threshold set, a drug above

the threshold is classified as increasing the risk of TdP, and

a drug below the threshold is classified as safe. Training the

model requires both positive and negative examples. As

positive examples, we used the subset of the 47 drugs with

a known risk of TdP in CredibleMeds that were also in

FAERS (n = 23). As negative controls, we selected all

drugs in FAERS that did not appear in CredibleMeds (i.e.

have no known, possible, conditional, or congenital risk of

TdP; n = 530).

Because the number of features (11,305 AEs) is much

greater than the number of examples (553 drugs), overfit-

ting of the model to the training data is a concern. To

ensure the model generalized to our test data set (drug

pairs), we reduced the number of features by using L1

(lasso) regularization [26]. Unlike L2 (ridge) regularization

(which penalizes the squares of the feature weights), L1

regularization penalizes their absolute values and is

therefore preferred because it results in sparse models (i.e.

most of the feature weights will be driven to zero). We

generated five models, each of which contained between 5

and 20 features obtained by varying the regularization
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…
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Single Drugs

1 M-1 M
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Fig. 1 Overview of DIPULSE pipeline, which combines mining of

FAERS and EHRs to flag novel QT-prolonging DDIs. FAERS: We

generate an AE reporting frequency table (dimensions, N drugs by

M AEs) for single drugs in FAERS. The value at a row and column

represents the fraction of reports for drug i containing AE k (Fik). We

label a drug as a positive example (shown in red) if it has a known

risk of TdP (obtained from http://www.CredibleMeds.org). All drugs

not found in CredibleMeds were labeled as negative examples (shown

in green). We use machine learning to generate an AE fingerprint

model that identified the most predictive subset of features (AE

reporting frequencies, Fik) as latent evidence for predicting whether a

drug does or does not prolong the QT interval (gray boxes). We then

apply this fingerprint model to an independent test data set consisting

of a matrix (with AE reporting frequencies Fijk) for drug pairs. We

send pairs receiving high classifier probabilities (but where neither

individual drug is known to prolong the QT interval) for EHR

validation (in this case pairs (DN-1, DN-2) [purple-blue] and (DN-1,

DN) [purple-orange]). EHR: We validate putative interactions using

electrocardiogram laboratory results in the EHRs by determining

whether patients prescribed a predicted interacting drug pair had

increased QTc intervals compared with patients taking either drug

alone. In this example, patients prescribed the drug pair (DN-1, DN-2)

have a significantly increased QT interval compared with patients on

either drug alone. This is not observed for drug pair (DN-1, DN) so it

is filtered out. Finally, we performed a confounder analysis to confirm

that the significant increase observed in QTc interval is not due to

other co-prescribed medications. DIPULSE Drug Interaction Predic-

tion Using Latent Signals and EHRs, EHRs electronic health records,

FAERS FDA Adverse Event Reporting System, DDIs drug–drug

interactions, AE adverse event, TdP torsades de pointes, QTc heart

rate-corrected QT interval
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strength for the given model. We evaluated these models

using 10-fold cross-validation, and then re-fit the classifier

using only the selected features. The features for each of

these models constitute an AE fingerprint that represents

latent evidence for QT interval prolongation.

As a control, we generated a logistic regression model

built solely using direct evidence of QT interval prolon-

gation (standardized Medical Dictionary for Regulatory

Activities [MedDRA] query for ‘Torsade de Pointes/QT

prolongation’). There were only six AEs corresponding to

QT interval prolongation or TdP (electronic supplementary

Table 1), and therefore feature selection was not necessary.

2.4 Predicting Novel Drug–Drug Interactions

(DDIs) Using the Fingerprint Model

We next applied the QT fingerprint model to an independent

test data set consisting of the AE reporting frequencies (Fijk)

in the frequency table for drug pairs. The model outputs a

probability for a given drug pair to prolong the QT interval.

We assessed model performance using two references. In the

first, we labeled each drug pair containing a drug known to

increase the risk of TdP as a positive example. While these

may not be bonafide DDIs, they demonstrate the ability of the

fingerprint model to ‘re-discover’ drugs known to prolong

the QT interval within the drug pair data. We used this val-

idation to select the optimal fingerprint model. We also

performed an additional validation using a list of critical and

significant DDIs from the Veteran Affairs Hospital. For both

of these evaluations, we compared the performance of the

‘latent’ AE fingerprint model with the ‘direct evidence’

control model using DeLong’s test [27].

To obtain a candidate list of novel DDIs predicted by the

fingerprint model, we first removed all drug pairs con-

taining a drug in the CredibleMeds list. We then filtered for

all novel predictions found at a classifier probability below

a 4 % false positive rate according to the CredibleMeds

evaluation. We chose this false positive rate threshold by

modeling the expected increase in false discovery rate as a

function of false positive rate (see electronic supplemen-

tary Fig. 1 and accompanying legend for a description of

the analysis). Finally, we removed drug pairs that would

receive high classifier scores regardless of the features used

in the model by generating 100 logistic regression models

using randomly chosen features and estimating empirical

p values for each drug pair. We removed any drug pairs

receiving an empirical p value C0.01.

2.5 Validating Novel DDIs Using Electronic Health

Records

While the novel DDIs predicted using our signal detection

algorithm each contain latent evidence for prolonging the

QT interval, ECG values in EHRs allow us to retrospec-

tively evaluate the effect of these drug pairs (our cases) on

QT interval duration compared with either drug alone (our

controls). Because QT interval durations differ between

males and females [28], we evaluated the effects of a given

drug pair on each sex separately.

To obtain cases, we selected patients at New York-

Presbyterian Hospital/Columbia University Medical Center

who were prescribed each drug in a given drug pair within

a 7-day period. Patients were also required to have an ECG

lab—and corresponding QTc (heart rate-corrected QT

interval)—within 36 days of the second drug prescription.

We chose this limit to minimize the potential for new

confounding drug prescriptions or interventions; addition-

ally, because follow-up visits are often scheduled in units

of weeks, we allowed for 5 weeks plus 1 day for laboratory

tests to be performed [22]. For patients with multiple QTc

values within this time period, we used the maximum

value.

To obtain controls, we selected patients taking which-

ever individual drug in the pair yielded the greatest median

QTc within a 36-day period from drug prescription; we call

this drug the ‘control’ drug. We then compared QTc values

between cases and controls and assessed significance using

a Mann–Whitney U test, correcting for multiple hypothesis

testing using Bonferroni’s method.

In order to demonstrate that the predictions being sent

for EHR validation were enriched for drug interactions that

actually prolonged the QT interval, we ran the above EHR

case-control analysis on a set of drug pairs equal in number

to that generated by the latent signal detection but ran-

domly chosen from the frequency table for drug pairs. To

generate a more representative comparison, we required

that each pair be comprised of a randomly chosen drug

paired with a ‘control’ drug (i.e. the drug with the greatest

QTc interval alone from the latent evidence pairs). Addi-

tionally, to ensure equivalent statistical power we matched

the number of patients in the case groups of the randomly

chosen pairs to the case group sizes of the pairs prioritized

by the latent signal detection. We counted the number of

random pairs that had significant increases in QT interval,

and repeated this sampling procedure 1000 times to build

an empirical distribution of how many significant results

would be expected after EHR analysis by chance alone.

Finally, we adjusted for confounders by confirming that

the elevated QTc interval on the drug pair was not due to

other co-prescribed medications. For each of our sets of

cases (patients on a given drug pair) and controls (patients

on an individual drug in the pair), we identified possible

confounder drugs by counting the number of exposures to

each drug prescribed up to 36 days prior. We evaluated

each potential confounder by confirming that it was cor-

related both with the exposure condition and with QTc
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values. For the former, we determined whether the

covariate was more likely to be prescribed with the drug

pair compared with the single drug using a Fisher’s exact

test; for the latter, we compared the QTc values for patients

exposed to the covariate versus those unexposed using a

Mann–Whitney U test. Both of these evaluations were

performed using a Bonferroni correction for multiple

hypothesis testing. We collected all drug covariates that

passed these two requirements and assessed their signifi-

cance (for males and females separately) using an analysis

of covariance (ANCOVA). To obtain the final list of val-

idated novel DDIs, we only kept those results (drug pairs

for a given sex) receiving significant ANCOVA p values

(p\ 0.05) for the DDI.

3 Results

3.1 QT Fingerprint Model Significantly

Outperforms Model Built Using Only Direct

Evidence

Of the five fingerprint models evaluated, we found that the

model containing 13 features achieved the best perfor-

mance for drug pair data (area under the curve

[AUC] = 0.69 using pairs containing a known Credi-

bleMeds drug) (electronic supplementary Fig. 2); see

Table 1 for the list of features that constitute the QT AE

fingerprint. Importantly, the QT fingerprint model signifi-

cantly outperformed the model built using direct evidence,

as evaluated by both the CredibleMeds (p = 1.62E-3) and

Veteran Affairs (p = 5.22E-10) drug pair standards

(Fig. 2). We also compared these models to a previously

published additive baseline model for predicting DDIs [19]

and found that the latent evidence model outperformed this

method (electronic supplementary Fig. 3; CredibleMeds:

p\ 2.2E-16; Veteran Affairs: p = 2.18E-11). After fil-

tering using both empirical p-values and the 4 % false

positive rate cutoff, we obtained 889 putative novel DDIs

to be validated in the EHR.

3.2 EHR Validation and Confounder Analysis

Confirms Novel Drug Interactions Prolonging

the QT Interval

Our EHR evaluation yielded 49 results (drug pairs for

males and/or females) that had significantly increased QTc

intervals on the drug pair compared with either drug alone

(electronic supplementary Fig. 4). This number of results

was significantly greater than for randomly generated input

to the EHR validation (p = 0.01) (electronic supplemen-

tary Fig. 5). After confounder analysis, we obtained ten

results (corresponding to eight distinct drug pairs) which

represented validated novel DDIs that increase the risk of

acquired LQTS (Table 2).

The greatest increase in median QTc (30 ms) was for

octreotide (a somatostatin analog used to lower growth

hormone levels) and lactulose (administered to treat con-

stipation) compared with octreotide alone (p = 2.48E-4) in

males, and males prescribed this pair were 2 times as likely

to have a QTc interval C 500 ms (electronic supplementary

Table 2). For females, co-prescription of mupirocin and

vancomycin was associated with a 20 ms increase in median

QTc compared with vancomycin alone (p = 1.3E-4);

females prescribed the pair were 1.7 times as likely to have a

QTc interval C 500 ms. A complete list of retrospectively

validated interactions and the number of patients in the case

and control groups can be found in Table 2.

4 Discussion

Drug-induced LQTS and its potential for fatal arrhythmia

(TdP) make this disorder of critical importance both to drug

discovery and pharmacovigilance. Indeed, an important step

in the drug development process is confirming that the lead

compound does not significantly block the hERG channel that

contributes to TdP [2]. However, the inability to prospectively

identify this risk is highlighted by the increasing number of

drugs found to increase the risk for TdP [8]. Even more dif-

ficult to detect are DDIs that contribute to LQTS, as experi-

mental evaluation of all possible QT-DDIs is not feasible and

traditional methods for mining observational data are poorly

equipped to handle low reporting numbers and high false

positive rates. Because analyses of spontaneous reporting

systems (such as FAERS) and EHRs alone have many limi-

tations, in this study we developed an integrative pipeline that

incorporates multiple dimensions of observational data to

Table 1 Features in QT fingerprint model

Adverse event Beta

Drug interaction 0.52

Atrial fibrillation 0.50

Arrhythmia 0.29

Electrocardiogram QT prolonged 0.28

Tachycardia ventricular 0.28

Asystole 0.27

Torsades de pointes 0.24

Completed suicide 0.21

Rhabdomyolysis 0.17

Agitation 0.07

Drug ineffective -0.36

Hemorrhage -0.25

Myocardial infarction -0.18
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allow for identification of true QT-DDI signals. We demon-

strated the applicability of this data science approach by

identifying latent signals of LQTS in FAERS and retrospec-

tively validating these novel QT-DDI predictions using EHRs.

Comparing our AE fingerprint model for QT prolongation

with a direct evidence control demonstrated that latent evi-

dence of drug-induced LQTS in FAERS can outperform direct

evidence in the detection of established interactions.

While most drugs prolong the QT interval by interacting

with the hERG channel, the clinical data used in this

analysis do not permit a mechanistic explanation for the

synergistic effects of the identified DDIs. Electrophysiol-

ogy experiments to directly assay the effect of individual

drugs and drug pairs on hERG channel activity can provide

further evidence for, and molecular mechanisms of, these

effects [2]. Importantly, QTc correction formulas still used

today were developed in 1920 and are known to be inac-

curate when heart rate changes occur outside the baseline

range used to define the formula [2]. As such, drugs that do

not directly affect ventricular repolarization but instead

alter the patient’s heart rate may be incorrectly attributed to

increasing the QTc. It is possible that some of the inter-

actions we identified were confounded by this complexity.

This limitation highlights the need for experimental vali-

dation of our QT-DDI predictions to directly assess hERG

channel block or effects on other ion channels.

A B

Fig. 2 Receiver operating characteristic curves for adverse event

fingerprint model and direct evidence control. a Model validation was

performed by labeling drug pairs containing a drug with known

increased risk of TdP as positive examples. We compared the

performance of a model built using latent evidence (AE fingerprint

model) to a control model using only direct evidence of QT

prolongation. b A second evaluation performed using a list of critical

and significant DDIs from the Veteran Affairs Hospital in Arizona.

For both validations, the AE fingerprint model significantly outper-

formed the model built solely with direct evidence. Area under the

curve (AUC) is indicated in parentheses. DDIs drug–drug interac-

tions, TdP torsades de pointes, AE adverse event

Table 2 List of novel DDIs generated by DIPULSE and validated in the EHR

Drug 1 Drug 2 Control Sex Estimate p value Median

QTc cases

Median QTc

controls

DQTc

(ms)

No. of

cases

No. of

controls

Octreotide Lactulose Octreotide M 74.8 2.48E-04 485 455 30 333 603

Mupirocin Vancomycin Vancomycin F 54.5 1.30E-04 476 456 20 810 10,165

Metoprolol Fosphenytoin Metoprolol M 40.9 2.19E-07 462 444 18 549 24,717

N-Acetylcysteine Vancomycin Vancomycin M 17.4 3.74E-04 469 453 16 2633 9789

Cefazolin Meperidine Cefazolin F 27.6 1.29E-05 455 441 14 1025 9172

Cefazolin Meperidine Cefazolin M 18.2 8.97E-08 452 440 12 2110 10,013

Ceftriaxone Lansoprazole Ceftriaxone M 39.1 4.21E-09 458 446 12 934 5734

N-Acetylcysteine Morphine N-Acetylcysteine M 12.1 3.19E-02 460 451 9 2525 6046

Meperidine Vancomycin Vancomycin F 34.6 4.77E-03 464 457 7 1105 9894

N-Acetylcysteine Morphine N-Acetylcysteine F 22.3 7.93E-04 459 455 4 1900 4803

The bolded column highlights the DQTc for a given drug pair

DDIs drug–drug interactions, DIPULSE Drug Interaction Prediction Using Latent Signals and EHRs, EHRs electronic health records, M male,

F female, QTc corrected QT interval
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In considering the features selected for the QT finger-

print model (Table 1), many of the features are expected,

including ECG QT prolonged, TdP, arrhythmia, and even

rhabdomyolysis, as this condition can be induced by

hypokalemia which also predisposes patients to LQTS [3,

29]. However, other features are more unexpected,

including completed suicide and agitation. One explanation

for the selection of these features is that a number of the

positive control drugs (including chlorpromazine, citalo-

pram, and haloperidol) from CredibleMeds are indicated

for conditions characterized by agitation and suicidality.

We purposefully did not manually exclude any features on

the basis of wanting to develop a purely data-driven model

that is not limited to current clinical knowledge of (non-

cardiac) side effects that are highly predictive of underly-

ing QT prolongation; however, because of the relatively

small number of positive controls (predominantly with

psychological, antibacterial, and anti-arrhythmic indica-

tions), we acknowledge the possibility that inclusion of

these features may be driven by the indications of the

positive controls rather than their effects on QT

prolongation.

Our EHR control analysis (while limited to comparing

the number of significant findings prior to confounder

adjustment) demonstrated that our method significantly

enriched for QT-prolonging drug pairs compared with

random selection. Approximately 4 % of pairs investigated

‘passed’ the EHR validation prior to confounder analysis.

Of the 889 pairs flagged by latent signal detection in

FAERS, 251 of these pairs (28 %) had no patients pre-

scribed the pair in our EHR and therefore could not be

evaluated. The other pairs that did not pass validation were

either prescribed at low numbers (and could therefore be

false negatives due to insufficient statistical power) or may

be false positives from FAERS. While we believe the 7-day

window between drug prescriptions represents a fairly

stringent cutoff for confirming that patients were taking

both drugs in a pair concurrently, challenges in estimating

the duration of treatment in EHRs also has implications for

accurately selecting all of the desired patients in the case

group. Follow-up analyses could repeat the EHR analysis

at additional institutions to both replicate these results and

investigate drug pairs that could not be validated in our

EHR.

Because our EHR analysis filtered for interactions (pairs

with significantly greater QT interval prolongation com-

pared with either drug alone), a final potential explanation

for pairs identified in FAERS that could not be validated in

the EHR is that the highlighted pair represented a novel

single drug that prolongs the QT interval. While we limited

the scope of this study to identifying QT-DDIs, resources

such as CredibleMeds continue to use signals in FAERS as

part of their evidence portfolio for the inclusion and

removal of new individual drugs to/from the database [30].

An important challenge to overcome in the evaluation of

potential QT-prolonging single drugs in the EHR would be

the identification of proper controls; propensity score

matching offers one opportunity for addressing this [25].

We note that the AE reporting frequencies for drug pairs

(Fijk) cannot intrinsically distinguish between interactions

and single-drug effects from either drug i or drug j alone.

To distinguish between these two explanations for a drug

pair receiving a high classifier score, it is therefore nec-

essary to remove all single-drug effects (attributable to not

only a known but also possible, conditional, or congenital

link to TdP). CredibleMeds uses a number of signals (in-

cluding FAERS, laboratory and clinical research reports,

and clinical trial data) to populate their database [30].

Thus, while it is possible that CredibleMeds does not

contain complete coverage of all QT-prolonging drugs, we

believe it represents the most reliable resource for justify-

ing removal of drug pairs that receive high scores due to

the effects of single drugs. Application of our method to

other AEs would therefore necessitate a similarly reliable

resource of single-drug effects to minimize the possibility

of falsely labeled interactions. While our confounder

analysis investigated the effects of co-prescribed medica-

tions in addition to the drug pair of interest, follow-up work

could also incorporate the dose of each drug in the pair as a

potential confounder.

While cases of drug-induced LQTS have predominantly

been found to be due to blocking of IKr, we do not discount

the possibility for other potential mechanisms of these QT-

DDIs. Biological network analysis [6, 13] may be useful

for identifying other proteins, in addition to or instead of

hERG, that are affected by these drugs.

5 Conclusions

In this study we have developed and validated DIPULSE,

an automated integrated pipeline for flagging novel DDIs

that can prolong the QT interval using data from both

spontaneous reporting systems (FAERS) and EHRs. By

identifying latent signals of QT interval prolongation, this

method is able to overcome some of the limitations in

mining for DDIs. The method significantly outperforms

DDI detection solely using direct evidence for QT pro-

longation in the detection of established interactions. This

study highlights the utility of integrative data science

approaches in mining for new and potentially fatal DDIs.
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