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Prediction errors guide many forms of learning, providing teaching signals that help us
improve our performance. Implicit motor adaptation, for instance, is thought to be
driven by sensory prediction errors (SPEs), which occur when the expected and
observed consequences of a movement differ. Traditionally, SPE computation is
thought to require movement execution. However, recent work suggesting that the
brain can generate sensory predictions based on motor imagery or planning alone calls
this assumption into question. Here, by measuring implicit motor adaptation during a
visuomotor task, we tested whether motor planning and well-timed sensory feedback
are sufficient for adaptation. Human participants were cued to reach to a target and
were, on a subset of trials, rapidly cued to withhold these movements. Errors displayed
both on trials with and without movements induced single-trial adaptation. Learning
following trials without movements persisted even when movement trials had never
been paired with errors and when the direction of movement and sensory feedback tra-
jectories were decoupled. These observations indicate that the brain can compute errors
that drive implicit adaptation without generating overt movements, leading to the adap-
tation of motor commands that are not overtly produced.

predictive coding j forward model j mental imagery j supervised learning

Prediction errors help to optimize behavior by driving learning processes that correct
for our mistakes. Accordingly, their computation is thought to be a fundamental fea-
ture of the nervous system (1–4). Specific types of prediction errors are associated with
dissociable learning processes, with sensory prediction errors (SPEs) serving as putative
teachers of the implicit motor system. SPEs are thought to trigger the adaptation and
refinement of movements when the predicted and expected sensory outcomes of a
movement differ (5–8). Traditional formulations assume that movement execution is
critical for SPE computation (9, 10). However, it has been proposed that the forward
model estimates the consequences of movements before the relevant sensory feedback
(FB) reaches the brain, thereby overcoming intrinsic physiological delays in sensory sig-
nal conduction and allowing for the rapid motor control required by most vertebrates
(11). Following this line of thought to one logical extreme, it may be that motor execu-
tion is not necessary for the generation of predictions by a forward model.
Recent work offers indirect support for the claim that the brain predicts the sensory

consequences of movements before they can be performed, even when the agent does
not have a clear intention to move (12–16). Considering that sensorimotor prediction
may not in theory require movement, it may be that a prediction can be combined
with incoming sense data to support SPE computation without any actual motor exe-
cution. In other words, it may be that SPEs can be effectively computed based upon
only two events: the generation of a sensory prediction during the commission of a
motor command and the observation of subsequent sensory FB (Fig. 1A). On the other
hand, it may be that movement execution produces the actionable prediction signal
required for SPE computation (e.g., efference copy during movement). In this report,
we investigate these possibilities.
Prior work has illustrated that higher-level cognitive processes support visuomotor

learning without movement. For instance, motor adaptation can occur when an
observer witnesses another’s motor error (17–19). Motor adaptation in this case might
be driven by SPEs, by other types of learning processes and error formats (e.g., reward
prediction errors), or perhaps by a combination of multiple sources of error. Here, we
isolated implicit motor adaptation to specifically test whether it requires movement
execution.
To that end, we measured trial-by-trial implicit adaptation during a visuomotor task

in which human participants saw visual FB while performing—or withholding—hand
and arm movements, using a modified stop-signal paradigm. To isolate implicit adapta-
tion, we employed a recently developed approach that requires participants to move
directly through presented targets and disregard visual FB (20–25). We predicted that
single-trial motor adaptation would occur following both typical movement trials that
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generated sensory error and trials where movements were with-
held but simulated sensory errors were observed. If confirmed,
this result would imply that the brain can compute SPEs in the
absence of movement and can thus drive the adaptation of
planned movements that were never performed.

Results

Experiment 1: Simulated and Typical Visuomotor Rotations
Cause Motor Adaptation. In experiment 1, we measured
implicit motor adaptation in humans (n = 20) performing or
withholding straight reaches during a visuomotor adaptation
task (Fig. 1B). Vision of the hand and arm was occluded by a
mirror that reflected visual FB from a horizontally mounted
monitor. A white cursor provided FB about participants’ hand
positions as they reached from a starting location to a displayed
target. After a brief acclimation period, trials were organized
into triplets, such that each trial with cursor FB was flanked by
trials without cursor FB. This allowed for a reliable measure-
ment of single-trial learning (STL) in response to FB, quanti-
fied as the difference between the direction of hand movement
(hand angle) on the first and third trials of each triplet (Fig.
1C). Trials with cursor FB were either movement trials during
which a go signal prompted movement or no-movement trials
during which a stop signal immediately followed the go signal
to indicate that movements should be withheld. On movement
trials, FB involved a visuomotor error (±15° rotation added to
the visual cursor path; + = counterclockwise [CCW]; Fig. 1B,
Right and Fig. 2A, Left and Center). On no-movement trials,
sensory FB involved a simulation of the cursor’s path, using
timing variables based on ongoing measurements of participant

behavior (see Methods). Both flanking trials of each triplet were
go trials and thus required movements. The direction of the
error (clockwise [CW] or CCW) was pseudorandomly varied
across triplets to maintain overall adaptation near zero through-
out the session (Fig. 1D). This straightforward design allowed
us to test the hypothesis that motor adaptation does not require
movement and sensory FB to be causally linked (Fig. 1A).

Consistent with our predictions, rotated cursor paths (Fig. 2A,
Left and Center) on movement and no-movement trials both
caused subsequent hand trajectories to shift opposite the direction
of the rotation (Fig. 2B–D), with a two-way repeated-measures
ANOVA showing significant main effects of the direction of the
rotation applied (CW vs. CCW: F(1, 19) = 98.62, P = 5.89 ×
10�9, η2G = 0.76). While there was no main effect of withholding
movement (F(1, 19) = 1.79, P = 0.20), we observed an interac-
tion between rotation and movement conditions (F(1, 19) =
137.32, P = 3.87 × 10�10, η2G = 0.49). Post hoc pairwise com-
parisons showed that STL was sensitive to rotation direction dur-
ing both movement triplets (paired t test: t(19) = �12.92, Padj =
2.96 × 10�10, Cohen’s d = 5.12) and no-movement triplets
(t(19) = �4.39, Padj = 3.14 × 10�4, Cohen’s d = 1.63) and that
STL magnitude was greater across movement than no-movement
triplets (paired-samples signed-rank test, CW: V = 210, padj =
2.55 × 10�6, r = 0.88; CCW: t(19) = �9.43, Padj = 2.70 ×
10�8, Cohen’s d = 2.02). Thus, error-appropriate motor learning
occurred during both movement and no-movement triplets,
although adaptation was weaker when participants withheld their
movements. Notably, however, the overall amplitude of adapta-
tion observed both with and without movement was within the
range of implicit learning rates measured in previous studies (SI
Appendix, Fig. S1).
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Fig. 1. Schematics showing the proposed learning framework and task design. (A) Schematic showing how the forward model may support implicit motor
adaptation in the presence of sensory FB not causally related to self-generated movement. (B) Events on trials with visual FB. The robotic apparatus brought
the participant’s hand to the starting location to initiate a trial. On movement trials (Top), the target turned green (GO), cueing participants to reach through
the target. On trials with visual FB, participants observed a white FB cursor move along a rotated trajectory (Rotation). On no-movement trials (Bottom), the
target turned magenta 100 ms after turning green, cueing participants to withhold movement (STOP). After a delay, an animation played showing the FB cur-
sor moving 15° off-target (Animation). The hand is shown in the figure for illustrative purposes but was not visible during the experiment. (C) How STL was
computed using a triplet paradigm. Triplets were composed of two go trials without visual FB flanking either a movement or a no-movement trial with visual
FB. STL was measured as the difference between reach angles on the flanking trials. (D) Pseudorandomized order in which trials were presented for an
example participant. Color indicates movement condition (movement, green; no-movement, magenta).
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To address whether observed STL measured genuine implicit
learning, we checked whether adaptation persisted beyond the
trial after an error was experienced. We examined participants’
hand angles on the second trial after a perturbation relative to
the preperturbation baseline trial (i.e., hand angle on trial 1 of
triplet t + 1 relative to hand angle on trial 1 of triplet t,
remembered STL; Fig. 2B). As visual FB was withheld on both
of these trials, this approach provided a pure measure of persis-
tent memory in the absence of error-driven changes in perfor-
mance. Hand angle remained adapted in the direction opposite
the rotation on trials with nonzero perturbations regardless of
movement condition (Fig. 2E, Left), suggesting that genuine
implicit learning was observed in response to errors under both
movement conditions. Closer examination of the relative ratio
of remembered STL to initial STL revealed a marginally signifi-
cant difference between the relative amount of retention
observed between the movement conditions (t(19) = 2.07, Padj =
0.053; Fig. 2E, Right), leaving it unclear whether or not there
was a difference in the amount of retention between the move-
ment conditions. Nonetheless, relative retention ratios differed
significantly from zero after both movement triplets (t(19) =
26.20, Padj = 6.71 × 10�16, Cohen’s d = 5.86) and
no-movement triplets (t(19) = 9.20, Padj = 2.99 × 10�8,
Cohen’s d = 2.06; Fig. 2E, Right), indicating that the adaptation
memory was retained regardless of movement condition.

Experiment 2: Implicit Motor Adaptation Proceeds after
Simulated Errors in an Online Visuomotor Task. To address
whether the above observations are reproducible and generalize
across experimental contexts, we tested whether simulated
errors in no-movement trials also induced motor adaptation in
an online version of the task. Participants (n = 40) made hand
movements using their computer mouse or trackpad to move a
cursor toward a target. As in experiment 1, trials were presented
in triplets, allowing us to measure STL in response to cursor
FB presented during movement and no-movement trials at the
center of each triplet (Fig. 1B–D). For this online study, triplets
with 0° perturbations/simulated errors were also included to
provide an estimate of baseline changes in hand angle in the
event that participants exhibited strong movement biases in the
online platform.
Because this dataset did not satisfy the assumptions of a two-

way repeated-measures ANOVA, we used a linear mixed model
(LMM) to assess whether STL occurred during both movement
and no-movement triplets. The LMM revealed main effects of
rotated cursor FB (F(2, 2,223) = 136.46, P = 1.26 × 10�56,
partial R2 = 0.11) and movement condition (F(1, 2,248) =
4.74, P = 0.03, partial R2 = 0.002), as well as an interaction
(F(2, 2,229) = 12.40, P = 4.41 × 10�6, partial R2 = 0.01).
Post hoc pairwise comparisons revealed statistically significant
STL on both movement triplets (0° vs. 15° CW: t(2,227) =
9.14, Padj = 6.39 × 10�19, Cohen’s d = 0.61; 0° vs.
15° CCW: t(2,220) = 7.81, Padj = 2.61 × 10�14, Cohen’s d =
0.52) and no-movement triplets (0° vs. 15° CW: t(2,225) =
3.92, Padj = 1.39 × 10�4, Cohen’s d = 0.31; 0° vs. 15° CCW:
t(2,229) = 3.56, Padj = 4.84 × 10�4, Cohen’s d = 0.29; Fig.
2F and G). These results indicate that adaptation occurred in
both movement and no-movement triplets during this study.
Adaptation amplitudes observed both with and without move-
ment were within the range of implicit learning rates measured
in previous studies (SI Appendix, Fig. S1), although adaptation
was significantly greater in movement than no-movement trip-
lets for CW rotations (t(2,238) = 4.98, Padj = 1.26 × 10�6,

Cohen’s d = 0.37) and CCW rotations (t(2,239) = �2.06,
Padj = 0.04, Cohen’s d = �0.15).

Further echoing the results of experiment 1, STL on both
movement and no-movement trials was retained beyond the
triplet in which an error occurred (Fig. 2H). Remembered STL
was statistically significantly greater than zero for both move-
ment triplets (one-sample signed-rank test: V = 819, Padj =
1.09 × 10�11, r = 0.87) and no-movement triplets (V = 769,
Padj = 9.69 × 10�8, r = 0.76), but remembered STL did not
significantly differ between movement conditions (paired-sam-
ples signed-rank test: V = 441, Padj = 0.68).

Thus, experiment 2 successfully replicated the findings of
experiment 1: visual error FB on no-movement trials was suffi-
cient for STL, although adaptation was of greater amplitude
with vs. without movement. These data provide further support
for the claim that movements that are not performed can
undergo implicit motor adaptation, and they extend our find-
ings to a task with different movement demands (e.g., finger or
wrist movements vs. full, center-out arm reaches).

Experiment 3: Motor Adaptation during No-Movement Trip-
lets Does Not Depend on Participants’ Control over Cursor
Trajectory during Movement Trials. We note that rotated
visual FB on movement trials was sensitive to people’s actual
reaching directions because the rotation was simply added to
the measured reach direction, as is typical in visuomotor rota-
tion tasks. It is possible that these directional contingencies
affected participants’ responses to error, potentially encouraging
them to attempt to deliberately control the cursor’s position via
an explicit reaiming process (26). To rule this out, we recruited
a new group of participants (n = 37) to perform a variant of
the task where the visual cursor moved in a fixed path [error-
clamped FB (20); Fig. 2A, Left and Right] in one of three direc-
tions (0° or 15° CW/CCW) on the trials with FB.

Replicating and extending the findings reported above, partic-
ipants assigned to the error-clamp condition exhibited STL after
movement and no-movement trials (Fig. 2I and J). An LMM
detected statistically significant main effects of error-clamped
cursor FB (F(2, 1,829) = 79.46, P = 8.12 × 10�34, partial R2 =
0.08) and an interaction between error clamp and movement
condition (F(2, 1,832) = 8.45, P = 0.0002, partial R2 =
0.0003), although there was no main effect of movement condi-
tion (F(1, 1,844) = 0.60, P = 0.44). Post hoc comparisons
revealed significant STL in response to nonzero error-clamped
FB on both movement trials (0° vs. 15° CW: t(1,827) = 7.55,
Padj = 3.08 × 10�13, Cohen’s d = 0.56; 0° vs. 15° CCW:
t(1,828) = 5.57, Padj = 8.84 × 10�8, Cohen’s d = 0.41) and
no-movement trials (0° vs. 15° CW: t(1,830) = 3.21, Padj =
0.002, Cohen’s d = 0.29; 0° vs. 15° CCW: t(1,832) = 2.25,
Padj = 0.03, Cohen’s d = 0.22; Fig. 2J). Additionally, adapta-
tion in the presence of a 15° error clamp was significantly
greater on movement trials than no-movement trials for CW
clamps (t(1,846) = 3.49, Padj = 0.0009, Cohen’s d = 0.29)
and CCW clamps (t(1,846) = 2.29, Padj = 0.03, Cohen’s d =
0.19)—despite being in the range of previously observed
implicit adaptation learning rates under both movement condi-
tions (SI Appendix, Fig. S1)—following the same pattern of
results observed in experiments 1 and 2. Remembered STL was
significantly greater than zero after both movement triplets
(green; one-sample t test: t(36) = 11.31, Padj = 6.23 × 10�13,
Cohen’s d = 1.86) and no-movement triplets (magenta; one-
sample signed-rank test: V = 579, Padj = 5.96 × 10�5, r = 0.
64) but did not exhibit statistically significant differences
between movement conditions (paired t test: t(35) = 1.71, Padj
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= 0.09; Fig. 2K). This replication indicates that the learning
effect observed on no-movement trials was not dependent on the
type of cursor perturbation applied during movement trials,
strengthening the claim that motor adaptation does not require
movement.

Experiments 4 and 5: Adaptation during No-Movement Triplets
Does Not Depend on Within-Session Adaptation during Move-
ment Triplets. In two further experiments, we asked if adapta-
tion to errors in the no-movement condition was contingent
on sharing a context with the movement condition. In other
words, if learning in the no-movement condition only occurs
when there are neighboring trials in the movement condition
producing typical SPEs, it is possible that adaptive responses
observed in the no-movement condition reflect a cueing effect,
whereby an adapted sensorimotor map might be cued by obser-
vation of the visual error and then retrieved on the subsequent
trial or trials (27, 28). We opted to directly test this alternative
explanation in another pair of experiments conducted online.
Here, we only included 0° rotated (Fig. 3A, Left; n = 24 partic-
ipants, experiment 4) or error-clamped (Fig. 3A, Right; n = 37
participants, experiment 5) FB on movement trials but main-
tained 0° or 15° CW/CCW errors on the no-movement trials.
Thus, visual perturbations were never paired with movement.
The key results were again replicated: learning was preserved

in the no-movement condition even when perturbed FB had
never been associated with executed movements (Fig. 3C, rota-
tion; LMM: F(557) = 23.01, P = 2.07 × 10�6, partial R2 =

0.04; error clamp: F(802) = 9.41, P = 9.14 × 10�5, partial
R2 = 0.02). Post hoc pairwise comparisons showed that adapta-
tion was significantly different between triplets with CW and
CCW errors for both the rotation experiments (t(557) = 4.80,
P = 2.07 × 10�6, Cohen’s d = 0.4) and the error-clamp experi-
ments (t(1,453) = 4.32, P = 5.34 × 10�5, Cohen’s d = 0.37),
a hallmark of implicit motor adaptation. Overall levels of STL
observed on no-movement trials were comparable during these
two experiments to those discussed above and within the range
of learning rates previously observed in the literature (SI
Appendix, Fig. S1). Furthermore, both groups of participants
showed retention of STL that differed significantly from zero
(rotation, mean ± SEM: 0.53 ± 0.06 retention ratio, one-
sample t test: t(22) = 8.28, P = 3.34 × 10�8, Cohen’s d =
1.73; error clamp, median: 0.45, interquartile range 0.58,
one-sample signed-rank test: V = 507, P = 0.001, r = 0.53).
Overall, these experiments support the hypothesis that motor
adaptation can proceed without movement execution.

Discussion

Our results demonstrate that movements can be implicitly
refined even when they are not performed. Participants who
were cued to reach toward a target but suppressed that move-
ment after observation of a stop cue showed consistent, robust
STL in response to simulated errors (Figs. 2 and 3). As implicit
learning is thought to necessarily proceed subsequent SPEs
(20, 26, 29–33), our data may also provide evidence that SPEs
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are computed even when movements are not performed. These
findings support the fundamental assumptions of predictive
processing frameworks of motor adaptation, where precise sen-
sory predictions are generated from a movement intent (or plan
or goal) and compared against sensory observations to induce
error-based learning (11, 14, 16, 34, 35).
We argue that we have measured learning via an implicit pro-

cess and, by extension, that the STL observed in our study pro-
vides evidence that the errors used for implicit adaptation are
computed regardless of whether a movement is performed.
Although visuomotor learning tasks may sometimes recruit cog-
nitive strategies (e.g., deliberate reaiming of movements), multi-
ple factors indicate that our studies successfully measured
implicit learning (26, 36, 37). First, participants were instructed
to ignore the displayed cursor and try to contact the target on
every trial, a straightforward technique which has been consis-
tently shown to eliminate the explicit reaiming of movements
(20–23, 25, 32). Second, randomization of the presence and
direction of errors discourages explicit learning, reducing motiva-
tion to apply ineffective reaiming strategies (38). Third, data
from participants who appeared to not reliably recall the instruc-
tion to always aim directly at the target were excluded (see
Methods), decreasing the likelihood that strategic reaiming contam-
inated the analysis (though we note that all key results were repli-
cated without these exclusions; SI Appendix). Fourth, adaptation
persisted into subsequent no-FB trials (Figs. 2 E, H, K and 3E),
consistent with lingering implicit motor learning; it is unlikely that
strategies would be maintained when no FB is expected. Fifth, the
magnitude of STL observed was generally consistent with previous
studies that measured implicit motor adaptation rates (SI Appendix,
Fig. S1) (20, 22, 39). Lastly, the adaptation effects observed in the
no-movement conditions were not attributable to the recall of
learning that had occurred on movement trials (Fig. 3). Our data
thus provide converging evidence that movement is not required
for implicit adaptation.
The motor adaptation field has begun to consider the possibil-

ity that errors aside from SPE are involved in implicit adaptation.
For example, task success/failure as indicated by observation of
the cursor hitting or missing the target has been shown to influ-
ence the amount of implicit adaptation that occurs, indicating
that task errors may contribute to implicit adaptation (31,
40–42). Theoretical approaches have also highlighted a role for
task errors in adaptation (43). However, other evidence suggests
that inducing task errors in the absence of SPEs does not reliably
drive implicit adaptation (31, 44). While we believe that the
most parsimonious interpretation of our data in the context of
the current literature is that SPEs are responsible for the adapta-
tion that we observed on no-movement trials, future studies will
be needed to address a potential role for task errors.
Our data also indicate that participants showed significantly

stronger STL over triplets with movement trials vs. no-movement
trials. This suggests that movement provides additional training
input to the brain. Interestingly, this is consistent with patterns
of cerebellar activity during motor behaviors and current thinking
about mechanisms for learning in cerebellar-dependent tasks like
implicit reach adaptation (20). Purkinje cell complex spikes are
powerful teaching signals in the cerebellum, and these complex
spikes exhibit firing patterns that may be movement dependent
(45–48). During target-directed reaching, complex spikes related
to reach goal locations are generated after reach onset (49). If
these complex spikes are tied to motor performance and not to
motor planning, then the absence of these error signals on
no-movement trials may account for reduced levels of STL with-
out movement (50–53). Another non-mutually exclusive

possibility is that the precise timing of errors is less effective in
our no-movement condition than under normal movement con-
ditions: in the former case, the timing of simulated FB is con-
trolled by the experimenter and not triggered by the subject’s
actual movement, potentially injecting noise into the adaptation
process (54, 55). Irrespective of the fact that STL was of lesser
amplitude across no-movement than movement triplets, our data
support significant influence of the brain’s prediction signals on
learning: even without the ability to directly attribute sensory FB
to an actual movement, prediction of a planned movement’s sen-
sory consequences supports the error computations that drive
adaptation of future behavior.

It remains an open question as to precisely how the brain gen-
erates sensorimotor predictions and specifies their content. For-
ward models are thought to learn the relationship between motor
plans and their sensory consequences as agents explore the world
by generating motor commands and observing their consequences
(56–58). At face value, it may seem curious that participants could
generate relevant sensory predictions under the highly simplified
(and artificial) visual FB conditions employed in this and similar
motor learning studies (i.e., a disembodied circular cursor instead
of a hand attached to an arm). It may be that the forward model
computes sensory predictions in terms of abstract parameters, like
the trajectory and position of a specific controlled object, or in
terms of relatively simplified parameters of incoming sense data,
such as the presence of any change in visual motion in a particular
region of space relative to the movement goal. Alternately, it may
be that familiarization with the task and its visual cues during the
baseline period was sufficient to establish a context for generating
sensory predictions about the specific stimuli in our task (i.e., a
small white dot that moves in a straight line). Further work will
be necessary to clarify the format and content of the sensory pre-
dictions that the brain generates based on our motor plans.

We note that our findings add to a body of work indicating
that multiple forms of motor learning do not strictly require
movement-based practice. For instance, in Mattar and Gribble
(59), after human participants observed others adapting to a
force field applied during reaching movements, the observers
were able to partially compensate for that same force field when
they encountered it themselves. Interestingly, this observational
learning did not proceed if participants were executing other
task-irrelevant movements during the observation period. This
finding has been linked to subsequent neuroimaging data show-
ing that observational learning recruits brain areas associated
with motor planning, which taken together suggest that engage-
ment in a covert motor planning process may allow for force-
field adaptation via observation (59–61). Together, this related
prior work and the evidence we have provided here suggest that
there may be multiple routes to inducing motor planning and
ultimately driving motor adaptation.

Additional reports in the motor learning literature have pro-
vided evidence for cognitive compensation for observed motor
errors during reaching, improved visual tracking following obser-
vation of target movement without engagement in visual pursuit,
and improvement in movement speeds as a result of mental imag-
ery training; this work highlights the breadth of motor
performance-related processes that can be trained without engage-
ment in physical movements (17, 18, 62, 63). This points to a
potential opportunity for the development of motor training or
rehabilitation protocols that can be used when people are unable
to physically perform target motor behaviors, perhaps improving
performance beyond what physical practice can do alone.

Finally, our results echo the fact that other types of learning
can occur without overt task execution. As an example, fear
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associations can be extinguished by instructing participants to
imagine a fear-predicting stimulus even when they are not pre-
sented with the stimulus, and this imagination protocol gener-
ates neural signatures of the negative prediction errors observed
during naturalistic fear extinction (64, 65). Considering both
this prior work and the findings presented in this study, it may
be that the generation of predictions for comparison with sense
data are sufficient for error-based learning across motor and
nonmotor domains alike. In other words, task execution may
not always be required for learning, so long as the predictions
and observations needed to compute errors are both present.

Methods

Participants. Participants (n = 233, aged 18 to 35, 126 female) recruited from
the research participation pools at Princeton/Yale University and on Prolific pro-
vided informed consent to participate. This study was approved by the Princeton
University Institutional Review Board (IRB) and the Yale University IRB.

To limit any potential effects of explicit reaiming, we excluded data from
participants who showed evidence of not recalling or understanding the task
instructions. All data collected in the laboratory (experiment 1) were included
in the final analysis, as an experimenter was present during the study and
could address any confusion that arose about the task. Because we did not
have this luxury with data collected online (experiments 2 to 5), we queried
participants’ understanding of the instructions via a poststudy questionnaire
and excluded data from participants who responded incorrectly. The question-
naire asked participants to attest whether or not 1) their goal was to move the
real mouse and not the cursor straight through the green targets and whether
or not 2) their goal was to move the white cursor (not the real mouse) straight
through the green targets. Participants could select the options: true, false, or
not sure. The majority of participants answered both questions correctly
(1: true, 2: false; 138 of 213 participants [65%]), suggesting that most partici-
pants understood the task instructions but that many participants may not
have understood the distinction between mouse and cursor movement (an
unusual distinction to make in the context of everyday computer use). The
75 participants who did not answer both questions correctly were excluded
from our final analyses (experiment 2, 10 exclusions; experiment 3, 13 exclu-
sions; experiment 4, 26 exclusions; and experiment 5: 26 exclusions). We
note, however, that all the key results described here held with or without
these exclusions, as can be seen in the full dataset (freely available at https://
www.github.com/kimoli/LearningFromThePathNotTaken). We further note that
the samples used for the online experiments described in the text are around
twice the size of similar studies in the literature even after the aforementioned
exclusions, providing additional statistical power to compensate for the studies
being conducted remotely (66–68).

Task Setup: Experiment 1. Participants were seated in a chair and made bal-
listic reaching movements while grasping the handle of a robotic manipula-
ndum with their dominant hand (Kinarm End-Point). The manipulandum
restricted movements to the horizontal plane. All visual stimuli were projected to
the participant via a horizontal display screen (60 Hz) reflected onto a semisilv-
ered mirror mounted above the robotic handle. The mirror occluded vision of
the arm, hand, and robotic handle, preventing direct visual FB of hand position.
Tasks were programmed in MATLAB 2019a’s Simulink for deployment in
Kinarm’s Dexterit-E software (version 3.9). Movement kinematics were recorded
at 1 kHz.

Throughout the study, an experimenter was present in the room. Instructions
were shown on the display for participants to read through, and participants indi-
cated that they were ready to begin/resume trials by moving their hand into a
circle shown toward the left side of the workspace.

Each participant viewed a single target located at either 45°, 135°, 225°, or
315° (with target position counterbalanced across participants), 8 cm from a cen-
tral starting location. The target was visible throughout the experiment, except
when instructions were being displayed.

Task Setup: Experiments 2 to 5. Experiments were conducted remotely using
a custom JavaScript web application based on Phaser 3.24 (download available

at Photon Storm [69]), similar to an approach previously described (70). Each
participant viewed a single target located at either 45°, 135°, 225°, or 315°
(with target position counterbalanced across participants), 250 pixels from a cen-
tral starting location. The target was visible throughout the experiment, except
when instructions were being displayed.

Participants used an input device of their choice to control their computer cur-
sor during center-out movements. One participant reported using a touchscreen
device and was excluded from all analyses. The remaining participants reported
using either a trackpad (n = 112), an optical mouse (n = 86), or a trackball
(n = 14). An LMM did not show effects of mouse type on STL, although we
observed that participants using a trackpad exhibited longer reaction times than
others, consistent with a previous report (70).

Mouse position sampling rates depended on the exact hardware that each
participant used to complete the task. Sampling rates were likely affected by fea-
tures of the specific mouse used, along with features of the specific computer
used, as browsers may lock the input device report rate to the display refresh
rate. In general, sampling rates were around 60 Hz (median ± interquartile
range across all 213 online participants recruited: 62.46 ± 2.17 Hz) but ranged
from 19.23 to 249.69 Hz. Note that the vast majority of sampling rates were
near 60 Hz: Only 5% of sampling rates were <41.79 Hz, and only 5% of sam-
pling rates were >126.65 Hz.

Behavioral Task Protocol: Experiment 1. Before the onset of the baseline
phase, each participant read instructions to hold a hand in the center of the
screen to start a trial and slice through the target when it turned green (SI
Appendix, Extended Methods, E1 Instructions, Baseline). The robotic manipula-
ndum moved the participant’s hand to a central starting location depicted by a
gray circle at the middle of the display while hand and cursor FB were hidden.
After a delay (500 ms + random 0 to 500 ms in duration), the target changed
color from gray to green, indicating that the participant should slice through the
target. The cursor was displayed at the hand position while the participant
moved toward the target (online FB). When the participant passed the target,
the cursor was displayed at the point where the hand passed the target distance
for 50 ms (endpoint FB), after which time the cursor was extinguished. After
another 50 ms, the robot moved the hand back to the starting location. Partici-
pants completed five trials with this online and endpoint FB before another set
of instructions informed them that trials would proceed similarly but they would
no longer see the cursor position while they were moving (no-FB; SI Appendix,
Extended Methods, E1 Instructions, No-feedback). After five no-FB trials, partici-
pants viewed instructions indicating that they should withhold their reach if the
target turned magenta after turning green (SI Appendix, Extended Methods, E1
Instructions, No-movement). Participants then completed 10 alternating trials on
which the target turned green and stayed green (go trials) and on which the tar-
get turned magenta 100 ms after turning green, signaling that they should with-
hold their movement (stop trials). After this baseline phase, participants were
instructed to continue following these instructions for the remainder of the
experiment (SI Appendix, Extended Methods, E1 Instructions, Test block).

During the test phase, 480 total trials were divided into three-trial triplets
(Fig. 1C). The first and last trials of all triplets were go trials, and participants
received neither online nor endpoint FB about cursor location on these trials.
The second trial of each triplet was either a movement or a no-movement trial.
On movement trials, participants received rotated (15° CW [�] or CCW [+], with
sign randomized across trials) or veridical online and endpoint FB of their cursor
location. On no-movement (stop) perturbation trials, participants viewed a brief
animation of the cursor following a trajectory deflected by ±15° from the target
center. Animation onset latency was set as a running median of the participant’s
reaction times on the previous five trials, and animation duration was set as a
running median of the participant’s movement times on the previous five trials.
If a participant took longer than 400 ms to execute a movement, a participant
took longer than 800 ms to initiate the movement, their reach trajectory
changed by >10° during the movement, or the reach terminated ≥60° away
from the target, they received a warning and a 4-s timeout. If a participant
moved their hand > 5 mm (radius of the starting location) on a no-movement
trial, the trial was immediately aborted, and they received a warning and a 4-s
timeout. The stop manipulation was successful: Across the experiments, partici-
pants erroneously moved on 34.39 ± 20.63% (mean ± SD) of stop trials,
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suggesting that, for the most part, they were consistently planning movements
on stop trials.

We used four possible triplet perturbation trial types (movement/no-move-
ment: ±15°), each of which occurred 40 times throughout each session. Triplets
were pseudorandomly presented within each block, with the constraints that a
single rotation (±15°) could not occur on more than two consecutive triplets
and that the same movement condition (i.e., movement or no-movement) could
not occur on more than three consecutive triplets. Three repetitions of each trip-
let type occurred in blocks of 18 triplets, and participants received a break after
each of these blocks. Text indicating that each break period had arrived was
displayed to the participants, along with a reminder about the task instructions
(SI Appendix, Extended Methods, E1 Instructions, Break).

Behavioral Task Protocol: Experiment 2. This experiment was conducted
online. The procedure was largely the same as that described above for experi-
ment 1, and any differences are detailed in this section. Instructions differed
slightly from those shown in experiment 1 to account for these changes and
included animations to help clarify the instructions (SI Appendix, Extended
Methods, E2 Instructions and Movies S1–S5). If participants did not follow
instructions to aim toward the target (i.e., move within 60° of the target), move
quickly (i.e., movement duration < 400 ms or reaction time> 800 ms), or with-
hold movements on no-movement trials (i.e., move beyond the starting location
[4-pixel radius]), they experienced a 4-s timeout during which a reminder about
the relevant instruction was played (SI Appendix, Extended Methods, E2
Instructions and Movies S6–S9). Triplets during which one or more warnings
occurred were excluded from the analysis, as the resulting timeouts inflated the
intertrial interval and may have allowed for greater forgetting than trials without
warnings. Additionally, to allow participants to efficiently conduct the task on
their personal computers, the cursor automatically reappeared near the starting
location 100 ms after a trial ended, rather than requiring that the participant’s
hand return to the start.

Further changes were made to the trial structure: the test phase consisted of
270 total trials (90 triplets) to preemptively account for diminishing attentiveness
to the task without an experimenter present, and triplets with 0° perturbations
were included to verify that no implicit adaptation was observed when zero error
occurred in the online experimental context. During movement trials, 0° pertur-
bations involved veridical cursor FB. During no-movement trials, 0° perturba-
tions involved an animation showing the cursor moving directly to the target.
Examples of all possible perturbations on no-movement trials are shown in the
Movies S10–S12.

Behavioral Task Protocol: Experiment 3. This experiment was conducted
identically to experiment 2, with the exception that cursor FB perturbations fol-
lowed an error-clamp regime (20) instead of a rotational regime. Error-clamped
FB follows a fixed trajectory at a particular angle relative to the target, unlike
rotated FB, which appears at a particular angle relative to the participant’s hand
location (Fig. 2A). The change to error-clamped FB caused the cursor FB to
appear in identical locations on movement and no-movement trials with the
same amplitude and sign perturbation, whereas cursor FB locations may have
varied between trial types under the rotational regime due to variability in partic-
ipants’ movements.

Behavioral Task Protocol: Experiment 4. This experiment was conducted
identically to experiment 2 except that we used a reduced set of possible triplet
perturbation trial types (no-movement, 15° CW; no-movement, 15° CCW; move-
ment, 0° rotation). We maintained an equal number of movement and
no-movement triplets throughout the session to ensure that participants would
reliably respond to the go cue presented at the start of each trial. Thus, each
no-movement triplet type occurred 22 times, while the movement triplet type
occurred 44 times. Triplets were pseudorandomly presented within each block,
with the constraints that a single nonzero rotation (15° CW, 15° CCW) could not
occur on more than two consecutive triplets.

Behavioral Task Protocol: Experiment 5. This experiment was conducted
identically to experiment 3 except that we used a reduced set of possible triplet
perturbation trial types (no-movement, 15° CW; no-movement, 15° CCW;
no-movement, 0° perturbation; movement, 0° error clamp). We maintained an
equal number of movement and no-movement triplets throughout the session

in order to ensure that participants would reliably respond to the go cue pre-
sented at the start of each trial. Thus, each no-movement triplet type occurred
15 times, and the movement triplet type occurred 45 times. Triplets were pseu-
dorandomly presented within each block, with the constraints that a single
nonzero rotation (15° CW, 15° CCW) could not occur on more than two consecu-
tive triplets.

Data Analysis. Data were processed in Python 3.8.5 and MATLAB 2018a. Trials
with movement were excluded from analysis 1) if any of the reaches in the triplet
were not straight (aspect ratio > participantwise mean + 3 × participantwise
SD), 2) if the participant received any warning for failure to follow task instruc-
tions (see Behavioral Task Protocol: Experiment 1 and Behavioral Task Protocol:
Experiment 2, above), or 3) if the triplet included a no-movement, no-go pertur-
bation trial with any detectable mouse movement (>0 pixels online, >5 mm in
the laboratory).

Reach endpoint angle was computed as the angular distance between the
center of the target and the point at which the mouse passed the target’s radial
distance. Because mouse sampling rates did not always allow us to measure
mouse position at the exact target radius during the online study, we used the
last sample before and the first sample after the mouse passed the target radius
to compute an interpolated mouse position at the target radius, as described in
a previous report (70). We note that analyses comparing these measures to
measurements at the last sample of the reach (even when it was beyond the tar-
get) or the hand angle at peak velocity did not result in substantially different
hand angle measurements or statistical outcomes.

STL was measured as the difference between reach endpoint angle on the
third and first trial of each triplet. For our initial analyses, the sign of STL corre-
sponded to the direction of the relative change in hand angle, with CW changes
in hand angle taking a negative sign and CCW changes in hand angle taking a
positive sign. When we collapsed STL data across rotation directions, we normal-
ized the sign of STL so that changes in hand angle opposite the direction of the
imposed rotation took a positive sign and changes in the direction of the rotation
took a negative sign.

Remembered STL was quantified as the difference between reach endpoint
angle on the first trial of one triplet and reach endpoint angle on the first trial of
the previous triplet. When remembered STL was reported as a ratio, this value
was computed by dividing remembered STL by the STL attributable to a given
triplet.

Statistics. Statistical tests were conducted in R (version 4.0.3): packages rsta-
tix (71), coin (72), MuMIn (73), lmerTest (74), lme4 (75), r2glmm (76),
emmeans (77), effsize (78), effectsize (79), magrittr (80), ggplot2 (81),
ggpubr (82), and ggeffects (83). The reproducible code and data are available
at https://www.github.com/kimoli/LearningFromThePathNotTaken. Data from
in-laboratory experiments were analyzed using a two-way repeated-measures
ANOVA. If an ANOVA showed a significant main effect or interaction, post hoc
pairwise tests were performed. When samples failed to satisfy the normality
assumption of the pairwise t test (assessed via a Shapiro-Wilk test), we used
the more robust paired-samples Wilcoxon signed-rank test. Otherwise, we
used the more powerful paired t test. Effect sizes for ANOVA main effects/
interactions were quantified via generalized η2 (η2G), we quantified the effect
sizes for t tests using Cohen’s d, and we used the Wilcoxon effect size (r) to
quantify effect sizes for signed-rank tests. For these and all subsequent analy-
ses, we corrected for multiple comparisons using the false discovery rate
approach to maintain family-wise alpha at 0.05.

Data from the experiments conducted online did not satisfy multiple assump-
tions of the two-way repeated-measures ANOVA (nonexistence of extreme out-
liers and sphericity), so we employed an LMM (R packages lmerTest and lme4)
approach for analysis of these data. LMMs for experiments 2 and 3 included
fixed effects of perturbation size and movement condition, as well as random
effects of subject. LMMs for experiments 4 and 5 included fixed effects of pertur-
bation size and random effects of subject. Degrees of freedom were estimated
using the Kenward-Roger approach, and LMM outcomes were reported using
ANOVA-style statistics. Partial R2 was computed to report effect sizes for the LMM
factors (R package r2glmm). Post hoc pairwise comparisons were performed
between estimated marginal means computed from the LMM (R package
emmeans).
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For one-off comparisons between samples or to distributions with 0 mean,
we checked samples for normality. When samples were normally distributed, we
ran t tests and computed Cohen’s d to report effect sizes for statistically signifi-
cant results. Otherwise, we ran Wilcoxon-signed rank tests and measured effect
sizes using the Wilcoxon effect size (r).

Data Availability. Anonymized reproducible code and data have been deposited
in GitHub (https://www.github.com/kimoli/LearningFromThePathNotTaken) [84]. All
other study data are included in the article and/or supporting information.

ACKNOWLEDGMENTS. This work was supported by a grant from the NIH to
O.A.K. (F32-NS122921).

1. H. E. M. den Ouden, P. Kok, F. P. de Lange, How prediction errors shape perception, attention, and
motivation. Front. Psychol. 3, 548 (2012).

2. A. Clark, Whatever next? Predictive brains, situated agents, and the future of cognitive science.
Behav. Brain Sci. 36, 181–204 (2013).

3. K. Friston, The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 11, 127–138
(2010).

4. C. Hull, Prediction signals in the cerebellum: Beyond supervised motor learning. eLife 9, e54073
(2020).

5. D. M. Wolpert, R. C. Miall, M. Kawato, Internal models in the cerebellum. Trends Cogn. Sci. 2,
338–347 (1998).

6. R. C. Miall, D. J. Weir, D. M. Wolpert, J. F. Stein, Is the cerebellum a smith predictor? J. Mot.
Behav. 25, 203–216 (1993).

7. L. S. Popa, T. J. Ebner, Cerebellum, predictions and errors. Front. Cell. Neurosci. 12, 524
(2019).

8. D. M. Wolpert, J. R. Flanagan, Motor prediction. Curr. Biol. 11, R729–R732 (2001).
9. R. Shadmehr, M. A. Smith, J. W. Krakauer, Error correction, sensory prediction, and adaptation in

motor control. Annu. Rev. Neurosci. 33, 89–108 (2010).
10. R. Held, S. J. Freedman, Plasticity in human sensorimotor control. Science 142, 455–462

(1963).
11. D. M. Wolpert, R. C. Miall, Forward models for physiological motor control. Neural Netw. 9,

1265–1279 (1996).
12. K. Kilteni, B. J. Andersson, C. Houborg, H. H. Ehrsson, Motor imagery involves predicting the

sensory consequences of the imagined movement. Nat. Commun. 9, 1617 (2018).
13. M. Voss, J. N. Ingram, P. Haggard, D. M. Wolpert, Sensorimotor attenuation by central motor

command signals in the absence of movement. Nat. Neurosci. 9, 26–27 (2006).
14. H. R. Sheahan, D. W. Franklin, D. M. Wolpert, Motor planning, not execution, separates motor

memories. Neuron 92, 773–779 (2016).
15. H. R. Sheahan, J. N. Ingram, G. M.�Zalalyt_e, D. M. Wolpert, Imagery of movements immediately

following performance allows learning of motor skills that interfere. Sci. Rep. 8, 14330 (2018).
16. I. S. Howard, D. M. Wolpert, D. W. Franklin, The value of the follow-through derives from motor

learning depending on future actions. Curr. Biol. 25, 397–401 (2015).
17. N. T. Ong, N. J. Hodges, Absence of after-effects for observers after watching a visuomotor

adaptation. Exp. Brain Res. 205, 325–334 (2010).
18. S. B. Lim, B. C. Larssen, N. J. Hodges, Manipulating visual-motor experience to probe for

observation-induced after-effects in adaptation learning. Exp. Brain Res. 232, 789–802 (2014).
19. J. A. Taylor, R. B. Ivry, Flexible cognitive strategies during motor learning. PLOS Comput. Biol. 7,

e1001096 (2011).
20. J. R. Morehead, J. A. Taylor, D. E. Parvin, R. B. Ivry, Characteristics of implicit sensorimotor adaptation

revealed by task-irrelevant clamped feedback. J. Cogn. Neurosci. 29, 1061–1074 (2017).
21. J. S. Tsay, D. E. Parvin, R. B. Ivry, Continuous reports of sensed hand position during sensorimotor

adaptation. J. Neurophysiol. 124, 1122–1130 (2020).
22. H. E. Kim, J. R. Morehead, D. E. Parvin, R. Moazzezi, R. B. Ivry, Invariant errors reveal limitations in

motor correction rather than constraints on error sensitivity. Commun. Biol. 1, 19 (2018).
23. G. Avraham, J. R. Morehead, H. E. Kim, R. B. Ivry, Reexposure to a sensorimotor perturbation produces

opposite effects on explicit and implicit learning processes. PLoS Biol. 19, e3001147 (2021).
24. E. Poh, N. Al-Fawakari, R. Tam, J. A. Taylor, S. D. McDougle, Generalization of motor learning in

psychological space. bioRxiv [Preprint] (2021). Accessed 30 June 2021. https://doi.org/10.1101/
2021.02.09.430542.

25. A. M. Hadjiosif, J. W. Krakauer, A. M. Haith, Did we get sensorimotor adaptation wrong? Implicit
adaptation as direct policy updating rather than forward-model-based learning. J. Neurosci. 41,
2747–2761 (2021).

26. J. A. Taylor, J. W. Krakauer, R. B. Ivry, Explicit and implicit contributions to learning in a
sensorimotor adaptation task. J. Neurosci. 34, 3023–3032 (2014).

27. S. Pollmann, M. Maertens, Shift of activity from attention to motor-related brain areas during
visual learning. Nat. Neurosci. 8, 1494–1496 (2005).

28. B. Hommel, Event files: Evidence for automatic integration of stimulus-response episodes. Vis.
Cogn. 5, 183–216 (1998).

29. Y. W. Tseng, J. Diedrichsen, J. W. Krakauer, R. Shadmehr, A. J. Bastian, Sensory prediction
errors drive cerebellum-dependent adaptation of reaching. J. Neurophysiol. 98, 54–62 (2007).

30. P. A. Butcher, J. A. Taylor, Decomposition of a sensory prediction error signal for visuomotor
adaptation. J. Exp. Psychol. Hum. Percept. Perform. 44, 176–194 (2018).

31. J. S. Tsay, A. M. Haith, R. B. Ivry, H. E. Kim, Interactions between sensory prediction error and task
error during implicit motor learning. PLOS Comput. Biol. 18, e1010005 (2022).

32. S. D. McDougle, R. B. Ivry, J. A. Taylor, Taking aim at the cognitive side of learning in sensorimotor
adaptation tasks. Trends Cogn. Sci. 20, 535–544 (2016).

33. P. Mazzoni, J. W. Krakauer, An implicit plan overrides an explicit strategy during visuomotor
adaptation. J. Neurosci. 26, 3642–3645 (2006).

34. A. L. Wong, M. Shelhamer, Sensorimotor adaptation error signals are derived from realistic
predictions of movement outcomes. J. Neurophysiol. 105, 1130–1140 (2011).

35. D. W. Franklin, D. M. Wolpert, Computational mechanisms of sensorimotor control. Neuron 72,
425–442 (2011).

36. J. W. Krakauer, A. M. Hadjiosif, J. Xu, A. L. Wong, “Motor learning” in Comprehensive Physiology,
R. Terjung, Ed. (Wiley, ed. 1, 2019) 613–663.

37. S. D. McDougle, J. A. Taylor, Dissociable cognitive strategies for sensorimotor learning.
Nat. Commun. 10, 40 (2019).

38. S. A. Hutter, J. A. Taylor, Relative sensitivity of explicit reaiming and implicit motor adaptation.
J. Neurophysiol. 120, 2640–2648 (2018).

39. K. Wei, K. K€ording, Uncertainty of feedback and state estimation determines the speed of motor
adaptation. Front. Comput. Neurosci. 4, 11 (2010).

40. L.-A. Leow, W. Marinovic, A. de Rugy, T. J. Carroll, Task errors contribute to implicit aftereffects in
sensorimotor adaptation. Eur. J. Neurosci. 48, 3397–3409 (2018).

41. H. E. Kim, D. E. Parvin, R. B. Ivry, The influence of task outcome on implicit motor learning. eLife 8,
e39882 (2019).

42. L.-A. Leow, W. Marinovic, A. de Rugy, T. J. Carroll, Task errors drive memories that improve
sensorimotor adaptation. J. Neurosci. 40, 3075–3088 (2020).

43. S. T. Albert et al., Competition between parallel sensorimotor learning systems. eLife 11, e65361 (2022).
44. A. Oza, A. Kumar, P. K. Mutha, Learning from failure: Action performance errors stimulate

intentional strategies, not implicit learning. bioRxiv [Preprint] (2021), Accessed 15 June 2022,
https://doi.org/10.1101/2020.11.13.381285.

45. S. G. Lisberger, The rules of cerebellar learning: around the Ito hypothesis. Neuroscience 462,
175–190 (2021).

46. M. Ito, Mechanisms of motor learning in the cerebellum. Brain Res. 886, 237–245 (2000).
47. C. I. De Zeeuw, S. G. Lisberger, J. L. Raymond, Diversity and dynamism in the cerebellum. Nat.

Neurosci. 24, 160–167 (2021).
48. M. D. Mauk, J. F. Medina, W. L. Nores, T. Ohyama, Cerebellar function: Coordination, learning or

timing? Curr. Biol. 10, R522–R525 (2000).
49. S. Kitazawa, T. Kimura, P.-B. Yin, Cerebellar complex spikes encode both destinations and errors in

arm movements. Nature 392, 494–497 (1998).
50. M. M. ten Brinke et al., Evolving models of pavlovian conditioning: Cerebellar cortical dynamics in

awake behaving mice. Cell Rep. 13, 1977–1988 (2015).
51. S. Ohmae, J. F. Medina, Climbing fibers encode a temporal-difference prediction error during

cerebellar learning in mice. Nat. Neurosci. 18, 1798–1803 (2015).
52. R. R. Llin�as, Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the

basis for motor error correction. Neuroscience 162, 797–804 (2009).
53. V. Romano et al., Olivocerebellar control of movement symmetry. Curr. Biol. 32, 654–670.e4 (2022).
54. S. N. Brudner, N. Kethidi, D. Graeupner, R. B. Ivry, J. A. Taylor, Delayed feedback during

sensorimotor learning selectively disrupts adaptation but not strategy use. J. Neurophysiol. 115,
1499–1511 (2016).

55. A. Suvrathan, H. L. Payne, J. L. Raymond, Timing rules for synaptic plasticity matched to behavioral
function. Neuron 92, 959–967 (2016).

56. M. I. Jordan, D. E. Rumelhart, Forward models: Supervised learning with a distal teacher. Cogn.
Sci. 16, 307–354 (1992).

57. A. N. Meltzoff, M. K. Moore, Explaining facial imitation: A theoretical model. Early Dev. Parent. 6,
179–192 (1997).

58. J. C. Dooley, G. Sokoloff, M. S. Blumberg, Movements during sleep reveal the developmental
emergence of a cerebellar-dependent internal model in motor thalamus. Curr. Biol. 31,
5501–5511.e5 (2021).

59. A. A. G. Mattar, P. L. Gribble, Motor learning by observing. Neuron 46, 153–160 (2005).
60. N. Malfait et al., fMRI activation during observation of others’ reach errors. J. Cogn. Neurosci. 22,

1493–1503 (2010).
61. H. R. McGregor, P. L. Gribble, Functional connectivity between somatosensory and motor brain

areas predicts individual differences in motor learning by observing. J. Neurophysiol. 118,
1235–1243 (2017).

62. R. Gentili, C. E. Han, N. Schweighofer, C. Papaxanthis, Motor learning without doing: Trial-by-trial
improvement in motor performance during mental training. J. Neurophysiol. 104, 774–783
(2010).

63. M. Cain, Y. Botschko, M. Joshua, Passive motor learning: Oculomotor adaptation in the absence of
behavioral errors. eNeuro 8, ENEURO.0232-20.2020 (2021).

64. A. Mendelsohn, A. Pine, D. Schiller, Between thoughts and actions: Motivationally salient cues
invigorate mental action in the human brain. Neuron 81, 207–217 (2014).

65. M. C. Reddan, T. D. Wager, D. Schiller, Attenuating neural threat expression with imagination.
Neuron 100, 994–1005.e4 (2018).

66. D. J. Herzfeld, P. A. Vaswani, M. K. Marko, R. Shadmehr, A memory of errors in sensorimotor
learning. Science 345, 1349–1353 (2014).

67. R. J. van Beers, Motor learning is optimally tuned to the properties of motor noise. Neuron 63,
406–417 (2009).

68. H. G. Wu, Y. R. Miyamoto, L. N. Gonzalez Castro, B. P. €Olveczky, M. A. Smith, Temporal structure of
motor variability is dynamically regulated and predicts motor learning ability. Nat. Neurosci. 17,
312–321 (2014).

69. R. Davey, Photon Storm: Phaser, Version 3.24.1 (2020). https://github.com/photonstorm/phaser/
releases/tag/v3.24.1. Accessed 4 February 2021.

70. J. S. Tsay, R. B. Ivry, A. Lee, G. Avraham, Moving outside the lab: The viability of conducting
sensorimotor learning studies online. arXiv [Preprint] (2021). https://arxiv.org/abs/2107.13408.
Accessed 30 July 2021.

71. A. Kassambara, rstatix: Pipe-friendly framework for basic statistical tests (2021). https://cran.r-
project.org/package=rstatix. Accessed 22 December 2021.

72. T. Hothorn, K. Hornik, M. A. van de Wiel, A. Zeileis, Implementing a class of permutation tests: The
coin package. J. Stat. Softw. 28, 1–23 (2008).

73. K. Barto�n, MuMIn: Multi-model inference (2020). https://CRAN.R-project.org/package=MuMIn.
Accessed 22 December 2021.

74. A. Kuznetsova, P. B. Brockhoff, R. H. B. Christensen, lmerTest package: Tests in linear mixed effects
models. J. Stat. Softw. 82, 1–26 (2017).

75. D. Bates, M. M€achler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4. arXiv
[Preprint] (2014). https://doi.org/10.48550/arXiv.1406.5823 (Accessed 22 December 2021).

76. B. Jaeger, r2glmm: Computes R squared for mixed (multilevel) models (2017). https://CRAN.R-
project.org/package=r2glmm. Accessed 22 December 2021.

77. R. V. Lenth, emmeans: Estimated marginal means, aka least-squares means (2021). https://CRAN.
R-project.org/package=emmeans. Accessed 22 December 2021.

PNAS 2022 Vol. 119 No. 30 e2204379119 https://doi.org/10.1073/pnas.2204379119 9 of 10

https://www.github.com/kimoli/LearningFromThePathNotTaken
https://doi.org/10.1101/2021.02.09.430542
https://doi.org/10.1101/2021.02.09.430542
https://doi.org/10.1101/2020.11.13.381285
https://github.com/photonstorm/phaser/releases/tag/v3.24.1
https://github.com/photonstorm/phaser/releases/tag/v3.24.1
https://arxiv.org/abs/2107.13408
https://cran.r-project.org/package=rstatix
https://cran.r-project.org/package=rstatix
https://CRAN.R-project.org/package=MuMIn
https://doi.org/10.48550/arXiv.1406.5823
https://CRAN.R-project.org/package=r2glmm
https://CRAN.R-project.org/package=r2glmm
https://CRAN.R-project.org/package=emmeans
https://CRAN.R-project.org/package=emmeans


78. M. Torchiano, effsize: Efficient effect size computation (2020). https://CRAN.R-project.org/
package=effsize. Accessed 22 December 2021.

79. M. Ben-Shachar, D. L€udecke, D. Makowski, effectsize: Estimation of Effect Size Indices and
Standardized Parameters. J. Open Source Softw. 5, 7 (2020).

80. S. M. Bache, H. Wickham, RStudio, magrittr: A forward-pipe operator for R (2020). https://CRAN.R-
project.org/package=magrittr. Accessed 22 December 2021.

81. H. Wickham, ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

82. A. Kassambara, ggpubr: “ggplot2” based publication ready plots (2020). https://CRAN.R-project.org/
package=ggplot2. Accessed 22 December 2021.

83. D. L€udecke, ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source
Softw. 3, 772 (2018).

84. O.A. Kim, A. D. Forrence, S. D. McDougle, Data and code repository for "Motor learning without
movement" (2022). https://github.com/kimoli/LearningFromThePathNotTaken. Deposited 27
December 2021.

10 of 10 https://doi.org/10.1073/pnas.2204379119 pnas.org

https://CRAN.R-project.org/package=effsize
https://CRAN.R-project.org/package=effsize
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=magrittr
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://github.com/kimoli/LearningFromThePathNotTaken

