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Abstract: Altered gut microbiota has been linked to obesity and may influence weight loss. We are
conducting an ongoing weight loss trial, comparing daily caloric restriction (DCR) to intermittent
fasting (IMF) in adults who are overweight or obese. We report here an ancillary study of the gut
microbiota and selected obesity-related parameters at the baseline and after the first three months of
interventions. During this time, participants experienced significant improvements in clinical health
measures, along with altered composition and diversity of fecal microbiota. We observed significant
associations between the gut microbiota features and clinical measures, including weight and waist
circumference, as well as changes in these clinical measures over time. Analysis by intervention
group found between-group differences in the relative abundance of Akkermansia in response to the
interventions. Our results provide insight into the impact of baseline gut microbiota on weight loss
responsiveness as well as the early effects of DCR and IMF on gut microbiota.
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1. Introduction

Nearly 40% of U.S. adults are afflicted with obesity, a condition that accounts for USD
147 billion in annual healthcare costs [1]. Obesity increases risk for numerous chronic
diseases, including cardiovascular disease and type 2 diabetes [1]. Even modest (5–10%)
weight loss facilitates significant improvements in cardiovascular and metabolic func-
tion [2]. Lifestyle interventions that focus on dietary energy restriction and increasing
physical activity are the cornerstone of obesity treatment [3]; however, there is substantial
inter-individual variability in weight loss with current lifestyle approaches [4,5]. A greater
understanding of factors that impact individual variability in the weight loss response may
pave the way towards more effective, personalized interventions [6].

The gut microbiota appear to play an important role in the development of obe-
sity [7–11], and may also significantly contribute towards this variability in weight loss
responsiveness [12,13]. Alterations in the composition or diversity of gut microbiota
(i.e., dysbiosis) have been linked to the pathogenesis of obesity in both animal models
and humans [14,15] through mechanisms involving energy balance/nutrient absorption,
inflammatory pathways, appetite regulation and/or the generation of small molecules
that alter the metabolism [16]. Weight loss has been shown to produce changes in the gut
microbiota [17], and there is evidence that gut microbiota and gut microbiota–derived
metabolites may be important mediators of the response to dietary energy restriction [18,19].
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For example, a more diverse baseline gut microbiota has been associated with enhanced
response to a dietary weight loss intervention [20].

In order to assess the potential role of the gut microbiota in weight loss, we collected
stool samples from participants in two recruitment cohorts of an ongoing randomized
behavioral weight loss intervention trial called DRIFT2 (Daily caloric Restriction versus
Intermittent Fasting Trial 2). The goal of DRIFT2 is to compare weight loss produced by
intermittent fasting (IMF, 80% restriction of energy intake on three non-consecutive days
per week with no restriction of intake on intervening days) to the current standard of
care dietary weight loss approach of daily caloric restriction (DCR). In this study, both
IMF and DCR groups target an equivalent weekly dietary energy deficit (34%), receive
identical exercise prescriptions, and receive a comprehensive group-based behavioral
weight loss program. In this ancillary study, we report the results of 16S rRNA gene
profiling of fecal microbiota among 59 individuals (n = 34 IMF and n = 25 DCR) at baseline
and three months into the intervention, the period when adherence was likely highest [21].
We examine how clinical measures and the gut microbiota change in response to the
first three months of the lifestyle weight loss intervention and assess the cross-sectional
and longitudinal relationships between the clinical measures and the gut microbiota.
We focus primarily on two key clinical health measures of response to a weight loss
intervention: weight and waist circumference. Weight loss is the primary endpoint of
the parent trial, and waist circumference is a critical indicator of overall cardiometabolic
health [22]. Since the trial is ongoing and the study investigators of the parent trial
are blinded to outcome measures by randomized group assignment, we do not report
differences in clinical measures (weight, waist circumference) by intervention group. We
focus most of our analyses on the overall cohort, and then we assess whether there are
differences in our findings among the participants undergoing DCR versus IMF dietary
interventions, acknowledging that interpretation of any between-group differences in the
gut microbiota is limited without concomitant knowledge of whether there are differences
between the groups in changes in clinical measures. Taken together, our results offer insight
into the role of the gut microbiota in these weight loss interventions.

2. Materials and Methods

This study is ancillary to an ongoing 12 month behavioral-based weight loss trial,
DRIFT2 (ClinicalTrials.gov NCT03411356; registered 26 January 2018), at the University of
Colorado Anschutz Medical Campus. The flow diagram of the study enrollment, allocation,
follow up, data collection and analysis is shown in Figure 1. This study was approved by
the Colorado Multiple Institutional Review Board and is conducted at the University of
Colorado Anschutz Health and Wellness Center (CU-AHWC). All research is performed in
accordance with relevant guidelines/regulations.

2.1. Participants and Intervention

This ancillary study included men and women who are overweight or obese
(n = 59 participants, DCR = 25, IMF = 34), participating in the parent pragmatic trial during
the initial 2 of 5 planned cohorts (starting 8 April 2018 and 13 February 2019). The data
for this ancillary study includes information collected at baseline and three months into
the intervention for the participants who provided a fecal sample at one of these study
visits. As described previously [23], all participants in the parent trial receive a 12 month
comprehensive behavioral weight loss intervention involving an energy-restricted diet,
increased physical activity, and group-based behavioral support. Participants are ran-
domized to focus on either IMF or DCR as the dietary strategy during the 12 month
intervention. Primary inclusion criteria for the parent trial included age of 18–55 years,
BMI of 27–45 kg/m2, sedentary (defined as self-report of < 150 min/week of voluntary
exercise at moderate or greater intensity over past three months), and live or work within
30 min of CU-AHWC. Primary exclusion criteria for the parent trial included cardiovas-
cular disease, diabetes, uncontrolled hypertension, uncontrolled thyroid disease, current
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nicotine use, use of medications known to affect body weight, weight change > 5% in the
past three months, major psychiatric disorder, eating disorder, current moderate to severe
depression, and current alcohol or substance abuse. Women who were pregnant, lactating,
or planning to become pregnant in the next 12 months were also excluded. After providing
written informed consent and undergoing study screening procedures, the participants
were assigned to treatment conditions (1:1), using an a priori randomization list generated
by the study statistician and blinded to principal investigators. The randomization list was
generated, using block randomization with a block size of 4 and stratified by the gender of
participants. The study statistician witnessed the process of assigning treatment run by
research assistants.
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individuals from DCR and three from IMF lost to follow-up. The gut microbiome analyses involved 25 individuals ran-
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Figure 1. Study design and CONSORT Diagram for DRIFT2 and this ancillary study. (A) DRIFT2 is a 12-month behavioral
weight loss intervention of daily caloric restriction (DCR) versus intermittent fasting (IMF) with data collections involving
anthropometry, blood and stool collections at the time increments shown. There is also a follow-up data collection six-
months post-intervention. This ancillary study focuses on measures collected at baseline and three months. (B) The DRIFT2
study assessed 86 individuals and randomized 71 (34 DCR and 37 IMF) in Cohorts 1 and 2. There were nine individuals
from DCR and three from IMF lost to follow-up. The gut microbiome analyses involved 25 individuals randomized to DCR
and 34 to IMF.
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2.2. Dietary Prescription

Weight maintenance energy requirements were determined for all participants as
the measured resting metabolic rate multiplied by an activity factor of 1.5. Participants
randomized to DCR were given a calorie goal designed to produce a ~34% daily energy
deficit from baseline estimated individual weight maintenance energy requirements, which
is a standard dietary approach to weight loss recommended in current obesity treatment
guidelines [3]. Participants randomized to IMF were given a calorie goal designed to limit
energy intake to 20% of the estimated baseline individual daily weight maintenance energy
requirements on three non-consecutive days per week and were instructed not to restrict
energy intake on intervening days (but they were encouraged to make healthy food and
portion choices). This strategy should result in a ~34% weekly energy deficit from baseline
estimated individual weight maintenance energy requirements in the IMF group. It is
important to note that since this is an ongoing trial, we are not reporting between-group
differences in clinical measures during the intervention by randomized group assignment.

2.3. Physical Activity Prescription

All participants were provided access to the CU-AHWC fitness center and received
a recommendation to gradually increase their moderate intensity physical activity levels
to 300 min/week over the initial 6 months. This target is consistent with current physical
activity guidelines for weight management [24,25]. Behavioral support for physical activity
was provided within the weight loss program.

2.4. Behavioral Support

Behavioral support involved group meetings (60–75 min) led by a registered dietician
(RD). The intervention groups met separately. Group meetings were held weekly during
the initial three months of the intervention, and then every two weeks for the remainder of
the 12 month intervention. Attendance at group sessions was tracked and body weight (for
participant feedback only) was assessed at weekly behavioral sessions. The curriculum
for DCR was based on the Colorado Weigh behavioral weight loss program, which uses a
skills-based approach and cognitive behavioral strategies for lifestyle modification with a
dietary focus on DCR [26,27]. The curriculum uses a mix of large group discussion, small
breakout discussions, visual demonstrations, and written exercises. Topics covered include
the following: realistic weight loss goal setting, calorie counting, portion control, self-
monitoring strategies including self-weighing and keeping food logs, mindful eating, stress
management, cognitive restructuring, improving personal food environments and social
networks, and strategies to overcome barriers to healthy eating. DCR participants were
guided to track daily caloric intake by keeping a daily food log and weighing and measuring
all foods. The RD reviewed all food logs and provided individualized written feedback.
The IMF curriculum involved comparable weekly themes to DCR with modifications to
focus on behavioral support specific to IMF. IMF participants were guided to track caloric
intake on fast days only by keeping a fast day food log and weighing and measuring all
foods. The RD reviewed all food logs and provided individualized written feedback.

2.5. Data Collection
2.5.1. Anthropometric Measurements

All measures were collected by trained study personnel blinded to the intervention
group. Body weight was measured, using a digital scale accurate to ±0.1 kg at baseline and
three months. Height was measured to the nearest 1 mm with a stadiometer at baseline.
Waist circumference was measured at baseline and three months with a tape measure just
over the iliac crest.

2.5.2. Dietary Intake

Patterns of energy intake on fed and fast days were collected at baseline and three
months, using seven-day diet records, which were analyzed by Colorado Clinical and
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Translational Sciences Institute Nutrition Core personnel blinded to the study group as-
signment, using Nutrition Data System for Research software (University of Minnesota,
Minneapolis, MN, U.S.A.). Energy intake and percentage intake of total carbohydrates,
protein and fat were used in our analyses.

2.5.3. Physical Activity

Participants were asked to wear the activPAL device (activPAL v4, PAL Technologies
Ltd., Glasgow, U.K.) continuously for seven days in order to assess physical activity
patterns. The device was waterproofed with a nitrile sleeve before attaching it onto the
participant’s anterior thigh, using a Tegaderm transparent film. Data recorded on the
device were processed using the CREA algorithm from the activPAL’s data processing
software, PALbatch (version 8.10.09.43, PAL Technologies Ltd., Glasgow, U.K.). We used
the most conservative PALbatch setting, the 24-h protocol, which allows for four hours of
non-wear time for each 24 h day. Data were considered valid and were used for analysis if
the device was worn for > 20 h/d on ≥ 4 days (including ≥ 1 weekend day). Average time
(min/day) spent stepping at a cadence of 75 steps/min and average time (min/day) spent
sitting were used in our physical activity analyses. The activPAL device has been shown to
be reliable and valid in estimating physical activity and sedentary behavior in adults [28]
with high accuracy in estimating different activity intensity categories [29].

2.5.4. Blood Collection

A 12-h fasting whole blood sample was obtained at baseline by a trained phlebotomist
and immediately processed for plasma, which was stored at −80 ◦C for future analyses.
Plasma was used for assessment of glucose, HDL, and triglycerides by the Colorado
Clinical and Translational Sciences Institute Core Laboratory, blinded to the randomized
group assignment.

2.5.5. Stool Collection

Participants were asked to provide stool samples at baseline and at three months into
the intervention. They were given EasySampler® Stool Collection Kits (ALPCO, Salem,
NH, U.S.A); they performed the stool collection at home and brought them on ice packs to
their in-person visit, at which time they were frozen at −80 ◦C. They were asked to provide
a sample from the day of their visit; in cases where this was not possible, they froze the
sample in their freezer and brought it the following day to their in-person visit.

2.5.6. 16S rRNA Gene Profiling

Stool samples were homogenized, using the Roche MagNA Lyser (Roche Inc, Basel,
Switzerland). DNA was extracted from the homogenized fecal isolates, using the QiaAmp
PowerFecal DNA kit (Hilden, Germany). Bacterial profiles were determined by broad-
range amplification and sequence analysis of 16S rRNA genes, following our previously
described methods [30,31]. In brief, amplicons were generated, using primers that target
approximately 400 base pairs of the V3V4 variable region of the 16S rRNA gene. PCR
products were normalized, using a SequalPrepTM kit (Invitrogen, Carlsbad, CA, U.S.A.),
pooled, lyophilized, purified and concentrated, using a DNA Clean and Concentrator Kit
(Zymo, Irvine, CA, U.S.A.). Pooled amplicons were quantified, using Qubit Fluorometer 2.0
(Invitrogen, Carlsbad, CA, U.S.A.). The pool was diluted to 4nM and denatured with 0.2 N
NaOH at room temperature. The denatured DNA was diluted to 15 pM and spiked with
25% of the Illumina PhiX control DNA prior to loading the sequencer. Illumina paired-end
sequencing was performed on the MiSeq platform with versions v2.4 of the Miseq Control
Software and of MiSeq Reporter, using a 600 cycle version 3 reagent kit.

2.5.7. Microbiome Data Processing

The reads were quality filtered and trimmed to a uniform length based on the av-
erage position of first low-quality base pair among all samples, using Qiime2 2019.10
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software [32]. DADA2 was run with default parameters to de-noise the data and find
exact sequence counts across samples. The quality-filtered sequences were inserted into
the Silva 12.8 taxonomic database [33] using SEPP [34]. Analyses were standardized at
3407 sequences per sample to maximize the inclusion of sequences and to avoid biases.

2.6. Statistical Analyses

We compared cohort demographic characteristics by intervention group, using Stu-
dent’s t-tests for continuous variables and chi-squared or Pearson’s exact tests for categori-
cal variables.

2.6.1. Change in the Gut Microbiota over Time

We used repeated measures permutational ANOVA of the unweighted and weighted
UniFrac [35] distance metrics to assess qualitative and quantitative changes in the overall
taxonomic composition over time, controlling for time, age, sex and intervention group,
evaluating a time by intervention interaction, and allowing for correlation by subject [36].
We used the ANCOM (analysis of composition of microbiomes) method [37] with linear
mixed models of the longitudinal data from baseline and three months to assess the gut
microbiota genera that changed over this time period or that showed interactions between
time and intervention group, additionally controlling for age and sex, and allowing for
correlation by subject. For ANCOM, we used a prevalence cutoff of 0.9 for inclusion and
a cutoff for the W statistic of 0.7. We used a multiple comparison-adjusted p-value of 0.1,
using the Benjamini–Hochberg false discovery rate (FDR) [38], due to the small sample size.
Four indices of alpha-diversity were examined (observed, evenness, Shannon diversity
index and Faith’s Phylogenetic Diversity (PD)), in order to assess different aspects of alpha-
diversity, such as evenness, richness and phylogenetic relatedness. Linear mixed regression
models were used with alpha-diversity at baseline and three months as outcomes and time,
age, sex, and intervention group as predictors with a random effect for individual. We also
evaluated a time by intervention interaction.

2.6.2. Cross-Sectional Associations between Gut Microbiota Measures and
Clinical Measures

We examined the cross-sectional association between demographic factors and gut
microbiota beta-diversity UniFrac metrics [35] at baseline and three months, using permu-
tational ANOVA [39]. We used similar methods, controlling for age and sex, as well as
intervention group at three months, to assess the association with clinical health metrics:
weight and waist circumference at baseline and three months, and additionally MetS score
and its components at baseline (triglycerides, glucose, blood pressure and HDL).

2.6.3. Association between Gut Microbiota and Change in Clinical Outcomes

We examined the association between the baseline gut microbiota beta-diversity UniFrac
metrics and percent change in weight and in waist circumference, using MiRKAT [40] and
controlling for age and sex. We used a similar approach to assess the association between
change in beta-diversity UniFrac metrics from baseline to three months (calculated using
PLDist) [41]. We repeated the MIRKAT analyses (1) stratified by intervention group and
(2) in the subsets of individuals with dietary information, controlling for caloric intake
and macronutrient percentages, and with physical activity data, controlling for moderate
cadence stepping time and sitting time (or change in these variables for the analysis of
change in beta-diversity). Linear regression models were used to model percent change
in weight and in waist circumference as a function of baseline alpha-diversity metrics,
controlling for age, sex, and intervention group as predictors.

2.6.4. Specific Gut Microbiota Taxa Predictive of Change Clinical Outcomes

In order to identify specific gut microbiota genera predictive of percent change in
weight and waist circumference, we used a feature selection technique based on random
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forests called VSURF (variable selection using random forests) [42]. We applied VSURF
to predict the percent change in these outcomes based on baseline relative abundance
of gut microbiota genera. We applied the same approach using change in abundance
of gut microbiota genera [41]. Random forests allow for complex relationships among
the selected predictors and between predictors and the outcome, which can be difficult
to interpret. Thus, we also evaluated the linear associations between each identified
predictor and the clinical outcomes using linear regressions, controlling for age, sex and
intervention group and evaluating the interaction between the identified predictors and
intervention group (using an interaction p-value cutoff of 0.1). In order to assess the
performance accuracy of random forests to predict the outcomes, we used repeated 3-fold
cross-validation (100 repetitions) of random forests using the following: (1) all genera that
were present in at least 10% of the samples and had a minimum relative abundance across
all samples greater than 0.1%; and (2) the subset of genera selected by VSURF as most
highly predictive [43].

2.6.5. Predictors of Changes in Gut Microbiota Beta-Diversity

We used permutational ANOVA [39] to assess whether the change in clinical measures
(percent change in weight and waist circumference), diet (change in average caloric intake
and in percentages of macronutrients) or physical activity (stepping time with cadence
≥ 75 and sitting time) were predictive of the change in gut microbiota beta-diversity based
on UniFrac metrics [41] from baseline to three months.

3. Results
3.1. Study Overview

This study is ancillary to an ongoing randomized lifestyle weight loss trial (DRIFT2),
comparing weight loss generated by IMF to DCR over one year in healthy adults who
are overweight or obese. The study design for the parent trial, DRIFT2, is depicted in
Figure 1A. Individuals who are overweight or obese (age 18–55 years, BMI: 27–45 kg/m2)
and who are otherwise healthy were randomized 1:1 to either DCR or IMF, stratified by
sex. To determine whether features of the gut microbiota assessed at either baseline or in
the first three months of the intervention are associated with early clinical outcomes, we
performed an ancillary study (Figure 1B) of baseline and three month samples collected
from 59 DRIFT2 participants (25 DCR and 34 IMF).

3.2. Characteristics of the Study Participants and Clinical Health Measures from Baseline to
Three Months

Table 1 shows the baseline characteristics of the participants in this ancillary study.
The participants were predominantly female (76.3%), White (89.8%) with a mean age of
40.7 years (SD: 9.8), weight of 94.4 kg (SD: 16.0) and BMI of 33.1 kg/m2 (SD: 4.4), with no
significant differences in baseline characteristics between the intervention groups. Anthro-
pometric measures were assessed at baseline and three months, which coincides with the
gut microbiota data used in this study. At three months, over half of the participants in
this ancillary study (n = 31; 59.6%) had lost at least 5% of their baseline weight, and 13.4%
(n = 7) had lost 10% of their baseline weight. On average, participants lost 5.8 ± 3.8 kg with
a corresponding decrease in waist circumference of 8.3 ± 5.7 cm (Figure 2A). Clinical health
measures at three months are not reported by the intervention group because the trial
is ongoing and primary study investigators are not yet unblinded. Metabolic syndrome
(MetS), as defined by the Adult Treatment Panel III (ATP-III) [44], was present at baseline
in 37.5% of participants (Figure 2B). The distribution of MetS score, which is the number of
components of MetS that exceed the thresholds shown in Figure 2B, and its components
are shown in Figure 2C. There were no significant differences between the intervention
groups in these clinical measures at baseline (Table S1).
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3.3. Gut Microbiota of Participants Shifted Significantly in Composition during the First Three
Months of the Intervention

Gut microbiota of participants at baseline and three months was dominated by the
phyla Firmicutes and Bacteroidetes (Figure 3A,B), as is commonly observed in Western
populations [45]. The most common genera at both time points were Faecalibacterium,
Subdoligranulum, Blautia and Bacteroides (Figure 3C,D). The overall microbiota community
structure (beta-diversity) shifted significantly from baseline to three months, controlling
for age, sex and intervention group assignment (p ≤ 0.001; Figure 3A–D). Using the anal-
ysis of composition of microbiomes (ANCOM) method [37], we observed five bacterial
genera that changed in relative abundance from baseline to three months (Subdoligranu-
lum, Collinsella, Parabacteroides, Alistipes, and Bacteroides; Figure 3E). Subdoligranulum and
Collinsella decreased in relative abundance, while the other three taxa increased. The diver-
sity of microbiota also increased from baseline to three months, as evidenced by increases
in four alpha-diversity indices that captured different aspects of the richness and evenness
of distribution of the types of microorganisms detected in each sample (Figure 3F).

Table 1. Characteristics of study cohort by intervention group. There were no significant differences
in characteristics between the intervention groups at baseline.

Overall DCR IMF p-Value

n 59 25 34

Age (mean (SD)) 40.7 (9.8) 42.0 (10.4) 39.8 (9.3) 0.384
Female sex 45 (76.3) 18 (72.0) 27 (79.4) 0.725
Race >0.99

White 53 (89.8) 22 (88.0) 31 (91.2)
Black or African

American 4 (6.8) 2 (8.0) 2 (5.9)

Asian 2 (3.4) 1 (4.0) 1 (2.9)
Hispanic ethnicity 10 (16.9) 6 (24.0) 4 (11.8) 0.297

Education 0.642
1 year College 1 (1.7) 1 (4.0) 0 (0.0)
2 year College 2 (3.4) 0 (0.0) 2 (5.9)
3 year College 3 (5.1) 1 (4.0) 2 (5.9)
4 year College 25 (42.4) 9 (36.0) 16 (47.1)

Master’s Degree 22 (37.3) 11 (44.0) 11 (32.4)
Doctorate Degree 6 (10.2) 3 (12.0) 3 (8.8)

Income 0.237
<25,000 5 (8.5) 2 (8.0) 3 (8.8)

25,000–40,000 5 (8.5) 1 (4.0) 4 (11.8)
45,000–70,000 12 (20.3) 5 (20.0) 7 (20.6)

70,000–110,000 15 (25.4) 10 (40.0) 5 (14.7)
>110,000 22 (37.3) 7 (28.0) 15 (44.1)

Marital status 0.113
Single 10 (16.9) 2 (8.0) 8 (23.5)

Committed
Relationship 8 (13.6) 2 (8.0) 6 (17.6)

Married 35 (59.3) 17 (68.0) 18 (52.9)
Divorced 5 (8.5) 4 (16.0) 1 (2.9)
Widowed 1 (1.7) 0 (0.0) 1 (2.9)

Body mass index
(kg/m2) 33.1 (4.4) 32.9 (4.7) 33.2 (4.1) 0.803

Stool collection
Stool at baseline 56 (94.9) 25 (100.0) 31 (91.2) 0.355

Stool at 3 months 55 (93.2) 22 (88.0) 33 (97.1) 0.399
Stool at both times 52 (88.1) 22 (88.0) 30 (88.2) >0.99
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Figure 2. Clinical characteristics of DRIFT2 participants. (A) From baseline to three months of 
the intervention, participants (n = 59) lost significant weight and waist circumference as shown in 
these violin plots. (B) Blood-based clinical health measures for DRIFT2 participants were assessed 
at baseline but not at three months. This tables shows the number of participants meeting each of 

Figure 2. Clinical characteristics of DRIFT2 participants. (A) From baseline to three months of the intervention, participants
(n = 59) lost significant weight and waist circumference as shown in these violin plots. (B) Blood-based clinical health
measures for DRIFT2 participants were assessed at baseline but not at three months. This tables shows the number of
participants meeting each of the criteria for metabolic syndrome (MetS) at baseline (n = 56). (C) These violin plots show the
distribution of metabolic syndrome (MetS) score (n = 56), which is the total number of components that define MetS that
exceed the thresholds shown in (B), and of the components of MetS. BP: blood pressure; MetS: metabolic syndrome; HDL:
high density lipoprotein.
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Figure 3. Changes in the overall gut microbiota of DRIFT2 participants from baseline to three months. The overall gut
microbiota community structure (beta-diversity) shifted significantly from baseline to three months (p < 0.001 for weighted
and unweighted UniFrac metrics). (A) Average relative abundance of the most prevalent gut microbiota phyla among study
participants at baseline (n = 56) and three months (n = 55). (B) Average relative abundance among study participants at
baseline (n = 56) and three months (n = 55) of the most prevalent gut microbiota genera and those that changed significantly
from baseline to three months. (C) Relative abundance of the most prevalent gut microbiota phyla for DCR and IMF study
participants at baseline (n = 25 DCR/31 IMF) and three months (n = 22 DCR / 33 IMF). (D) Relative abundance of the
most prevalent gut microbiota genera and those that changed significantly for DCR and IMF study participants at baseline
(n = 25 DCR / 31 IMF) and three months (n = 22 DCR/33 IMF). (E) Gut microbiota taxa showing significant (FDR p < 0.1)
overall change from baseline to three months. The y-axis shows the regression estimate from longitudinal models (using the
ANCOM method, controlling for age, sex, intervention group, time and an interaction between intervention group and
time, for n = 104 samples from 52 individuals) for the scaled proportion relative abundance of each taxa (with one unit
corresponding to one standard deviation) on the x-axis at three months relative to baseline. (F) These plots show the change
from baseline to three months for four indices of alpha-diversity: Observed OTUs, Evenness, Shannon diversity index,
and Faith’s Phylogenetic Diversity. These indices reflect different aspects of diversity, such as the richness, evenness, and
phylogenetic relatedness of the organisms detected in the samples. All alpha-diversity indices increased significantly over
the first three months of the intervention based on linear mixed models of the 111 samples from 59 individuals, controlling
for age, sex, intervention group, and time (interactions between intervention group and time were not significant and, thus,
not included). OTUs: operational taxonomic units (clusters of organisms that are grouped by gene sequence similarity); PD:
Phylogenetic Diversity.
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3.4. The Overall Gut Microbiota Composition Was Significantly Associated with Clinical Health
Measures in Cross-Sectional Analyses

The overall gut microbiota community structure at baseline, as quantified by weighted
and unweighted UniFrac beta-diversity indices, did not significantly correlate with demo-
graphic factors, including age, sex, race, ethnicity, income, or marital status (R2 ≤ 2.1%;
p > 0.36). Likewise, weight and waist circumference did not significantly correlate with the
beta-diversity metric at baseline (Figure 4). The MetS score was associated at baseline with
the unweighted UniFrac beta-diversity metric of the overall gut microbiota community
structure. Unweighted UniFrac is a qualitative measure of the gut microbiota composition,
reflecting the types of microbes present, whereas weighted UniFrac reflects the types and
abundance of microbes [46]. We explored the association with the MetS score further by
examining each of its components, and we observed that baseline triglyceride levels were
associated with both weighted and unweighted beta-diversity metrics. At three months,
the blood-based clinical components of MetS were not measured, but both weight and
waist circumference were significantly associated with unweighted UniFrac, but not with
weighted (Figure 4).
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Figure 4. Cross-sectional associations between the gut microbiota and clinical health measures. This
plot shows the cross-sectional associations between clinical health measures and the overall gut
microbiota composition at baseline (upper panel; n = 56) and three months (lower panel; n = 55) based
on permutational ANOVA models, controlling for age and sex, as well as intervention group for
analyses of data from three months. The color shows the p-value for the association, and the size of
the circles represents the amount of variation explained (R2) in the overall gut microbiota composition
as quantified by weighted (left) and unweighted (right) UniFrac metrics. While numerous clinical
measures were collected at baseline, including all of the components of MetS, weight and waist
circumference were the primary clinical measures collected at three months.

3.5. Baseline Gut Microbiota Composition Predicts Change in Waist Circumference at 3 Months

In order to evaluate the potentially contributory role of the gut microbiota towards
weight loss, we examined the relationship between the baseline gut microbiota beta-
diversity and percent change in body weight and in waist circumference from baseline to
three months. The beta-diversity metrics did not show significant associations with percent
change in weight, but the weighted UniFrac metric was significantly predictive of percent
change in waist circumference (p = 0.01; Table S2). We also examined these associations
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with the change in gut microbiota community structure from baseline to three months
based on UniFrac metrics, and the results were similar, with no detectible association with
weight change but a strong association between the weighted UniFrac metric and change
in waist circumference (p = 0.009; Table S2). We did not observe significant associations
between alpha-diversity and these outcomes (Table S3).

3.6. Baseline and Changes in Specific Gut Microbiota Genera Were Associated with Change in
Weight and Waist Circumference at 3 Months

We used random forests with feature selection techniques [42] to identify whether
specific bacterial genera at baseline were predictive of percent change in body weight
and in waist circumference at three months. Model metrics are presented in Table S4.
Four genera at baseline were selected as being jointly predictive of percent weight change.
Random forests allow for modeling of complex relationships among the selected predictors
and between predictors and the outcome. Hence, we do not expect all of these identified
predictors to individually show direct linear relationships with the outcomes, but we used
linear regressions in order to assist with interpretation of the findings. In the regression
models, we controlled for age, sex and randomized group assignment, and we assessed
whether there was a significant interaction between the predictor and intervention group.
The results of these regression models are shown in Figure 5A. Most of the identified
genera did not show significant linear relationships with weight loss; one exception was
that greater abundance of Subdoligranulum was associated with greater weight loss among
IMF but not DCR. Seven genera at baseline were identified in the random forests as
predictive of percent change in waist circumference (Table S4; Figure 5A). In regression
models of the identified taxa, greater abundance of Coriobacteriaceae other and Slackia at
baseline were associated with larger decreases in waist circumference; greater baseline
abundance of Lachnospiraceae other was associated with less decrease in waist circumference.
Greater baseline abundance of [Eubacterium] rectale group was associated with greater waist
circumference loss among IMF, whereas greater baseline abundance of Holdemanella and
Lachnoclostridium were associated with less waist circumference loss among IMF.

We applied a similar approach of random forests followed by regression models to the
change in genera from baseline to three months (Table S4). Changes in the abundance of four
genera from baseline to three months were identified as associated with percent weight
change (Figure 5B). An increase in the abundance of Lachnoclostridium and a decrease
in Coprococcus 3 and Fusicatenibacter were associated with greater weight loss; increased
Lachnospiraceae other abundance was associated with greater weight loss in DCR but not
in IMF. Changes in the abundance of seven genera were identified as associated with
percent waist circumference change (Table S4; Figure 5B). Increase in the abundance of
Lachnoclostridium, Phascolarctobacterium, and Ruminococcus 1 was associated with greater
waist circumference loss.

3.7. In Subset Analyses, Change in Energy Intake Was Predictive of Change in Gut Microbiota
Beta-Diversity

The relationship between the gut microbiota and weight loss is complex. The under-
lying assumption of most of the preceding analyses of clinical outcomes is that the gut
microbiota impacts these measures—possibly through direct effects or through a mediating
role between the intervention (involving changes in diet and physical activity) and changes
in these outcomes. However, it is also possible that weight loss causes the gut microbiota to
change (reverse causality). Thus, it is important to assess the potential impacts of changes
in weight-related health behaviors targeted by the behavioral weight loss intervention
(i.e., dietary intake and physical activity) on the gut microbiota, and to examine if the
relationships seen above between the gut microbiota and clinical outcomes reported above
are independent of diet and physical activity.
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Figure 5. Associations between the gut microbiota and change in clinical health measures. (A) Abundance of the plotted
genera were identified as the most predictive at baseline of percent change in weight and in waist circumference from
baseline to three months using a random forest-based prediction method called VSURF (n = 56). Linear regression modeling
(controlling for age, sex, and intervention group, and evaluating the interaction between the taxon and intervention group)
was used to help interpret the results. The forest plot shows regression estimates (x-axis) for one standard deviation change
in the relative abundance of the taxon in models predicting percent change in the clinical measure. Lower beta values
indicate that greater abundance of the taxon correlate with greater decreases in the clinical measure and vice versa. Some
of the selected taxa show different relationships with the outcomes among DCR (red) versus IMF (blue). For example,
greater abundance of Subdoligranulum was associated with greater weight loss among IMF but not among DCR. Some
selected predictors do not show statistically significant linear relationships with change in the clinical measure, but they
may interact with each other in complex ways in relation to the outcome. “Other” genera indicate sequences that could
only be classified to the family-level. (B) Change in the abundance of the shown taxa from baseline to three months were
identified as the most predictive of percent change in weight and in waist circumference from baseline to three months
using a random forest-based prediction method called VSURF (n = 52). Linear regression modeling (controlling for age,
sex, and intervention group, and evaluating the interaction between the taxon and intervention group) was used to help
interpret the results. Lachnospiraceae other showed a different relationship with percent weight loss among DCR versus IMF,
with increases in abundance associated with greater weight loss only among DCR. While some selected predictors do not
show statistically significant linear relationships with change in the clinical measure (shown in grey), these selected taxa
may interact with each other in complex ways in relation to the outcome. “Other” genera indicate sequences that could only
be classified to the family-level. MetS: Metabolic syndrome; HDL: High density lipoprotein; DCR: Daily caloric restriction;
IMF: Intermittent fasting.

In order to evaluate the change in dietary intake and physical activity as predictors
of change in the gut microbiota, we used permutational ANOVA of the change in beta-
diversity (based on UniFrac metrics) from baseline to three months among the n = 45
individuals with complete microbiota and dietary information at baseline and three months,
and the n = 42 individuals who also had valid physical activity data at these timepoints.
We examined the change in average energy intake (kcal/day) and in percent intake of
macronutrients based on seven-day diet records. We also examined the change in time
(min/day) spent engaging in moderate to vigorous physical activity (defined as stepping
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cadence ≥ 75 steps/minute) [29] and sitting time (min/day) based data from the activPAL
v4 device (PAL Technologies, Glasgow, Scotland) worn for 1 week (Figure S1A). The results
are shown in Figure S1B,C. We found that in models including change in weight and in
diet (controlling for age, sex and intervention group), the change in energy intake was
significantly predictive of change in the gut microbiota beta-diversity, as measured by
unweighted UniFrac; in contrast, weight change was not significant. The results were
similar for change in the waist circumference. In beta-diversity models using weighted
UniFrac and in models of change in physical activity, none of the included predictors
were statistically significant. Although alpha-diversity changed significantly over the
time period evaluated (Figure 3E), none of the examined predictors (change in diet or
physical activity) were significantly associated with the changes in alpha-diversity indices
(Table S5).

Given the evidence of association between energy restriction and the gut microbiota as
well as between the gut microbiota and change in weight and waist circumference, we next
assessed the association between change in dietary energy intake and change in weight
and waist circumference since the gut microbiota may mediate links between these factors
(focusing on energy intake as this was the only dietary variable showing an association with
overall GM composition); however, no evidence for an association between these variables
was noted (p ≥ 0.14). When additionally examining macronutrients, only protein showed
an association with increased protein associated with greater loss in waist circumference
(p = 0.044).

In the analyses described above of gut microbiota beta-diversity metrics as predictors
of clinical outcomes, we controlled for these same dietary and physical activity measures
in the subsets of individuals where this information was available. The relationships
described above persisted (Table S6).

3.8. Analyses Comparing DCR to IMF Reveal Differences in the Gut Microbiota over Time and the
Relationship with Clinical Measures

Since DRIFT2 is an ongoing randomized trial, we cannot report the clinical outcomes
by randomized intervention group due to the blinding of study investigators to intervention
group-specific outcomes. Understanding the between-group differences in the clinical
outcomes is part of the interpretation of between-group differences in the gut microbiota
over time. Thus, we focused our primary analyses on overall changes in the gut microbiota,
while controlling for the intervention group in the longitudinal analyses and assessing
time-by-group interactions. The change in the overall beta- and alpha-diversity metrics
did not show significant group by time interactions (Table 2, Figure 6A and Figure S2).
One taxon, Akkermansia, showed significant between-group differences in changes from
baseline to three months (Figure 6B), increasing significantly among IMF participants but
showing no significant change among DCR.

Table 2. Results of longitudinal permutational ANOVA models to assess whether changes in the
overall gut microbiota composition over the first three months of the intervention differed by group
(DCR versus IMF). Quantitative (weighted UniFrac) and qualitative (unweighted UniFrac) indices of
beta-diversity were used as summary measures of the gut microbiota composition among n = 111
samples from 59 individuals (47 samples from 25 DCR / 64 samples from 34 IMF). There were no
significant differences between intervention groups in the change in beta-diversity over time.

Metric Covariate F p-Value

Weighted UniFrac Time 8.3 <0.001
Group 1.7 0.970
Group*Time 0.6 0.474

Unweighted UniFrac Time 1.7 0.001
Group 2.0 0.650
Group*Time 0.8 0.118
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Figure 6. Changes in the gut microbiota of DRIFT2 participants from baseline to three months by intervention group.
(A) This plots shows the change from baseline to three months by intervention group of four indices of alpha-diversity:
Observed OTUs, Evenness, Shannon diversity index, and Faith’s Phylogenetic Diversity (PD), which reflect different aspects
of alpha-diversity, such as the richness, evenness, and phylogenetic relatedness of the organisms detected in the samples.
All alpha-diversity indices, except Faith’s PD, showed significant increases over time in both DCR (n = 47 samples from
25 individuals) and IMF (n = 64 samples from 34 individuals) groups based on linear mixed models by intervention group,
controlling for age, sex, and time. There were not significant differences between intervention groups (DCR versus IMF)
in the change in alpha-diversity over time (interaction p-values ≥ 0.48). (B) Only one gut microbiota taxon (Akkermansia)
showed significant differences between intervention groups in terms of the relative abundance change from baseline to
three months. The y-axis shows the regression estimate from longitudinal models (using the ANCOM method using the
ANCOM method, controlling for age, sex, intervention group, time, and an interaction between intervention group and
time, for n = 104 samples from 52 individuals; 22 DCR and 30 IMF) for the change in proportion relative abundance relative
to DCR at baseline. The * indicates significant change over time within the intervention group.

We examined whether the association between beta-diversity of the gut microbiota at
baseline and percent change in waist circumference observed in the overall cohort was evi-
dent in each intervention group. The associations between the baseline beta-diversity and
waist circumference may have been driven predominantly by IMF participants (Table S2).

4. Discussion

In this ancillary study, we examined the gut microbiome and its relationship to clinical
outcome measures in individuals who are overweight or obese, undergoing a lifestyle
weight loss intervention, focusing on either DCR or IMF as the dietary energy-restriction
strategy. We focused on the first three months of intervention when dietary adherence was
likely highest [21]. During this time, most participants lost a clinically significantly amount
of weight (~60% lost at least 5% of initial body weight). Our results provide evidence
that there are significant early changes in gut microbiota profiles in response to dietary
energy restriction, that some of these changes may differ between DCR and IMF, and that
the gut microbiota composition correlates with clinical health metrics and may contribute
towards responsiveness to the interventions. Future research in this cohort will help to
clarify the persistence of these microbial changes and the durability of these associations,
as well as the relationship between these changes and clinical outcomes within the DCR
and IMF groups.

In this study, we observed significant changes from baseline to three months in
the types and abundances of microbes present in the gut among both DCR and IMF
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intervention groups. We also observed changes in specific genera, including increases in
Bacteroides and Alistipes, and decreases in Collinsella. Increased abundance of Bacteroides has
been previously noted with hypocaloric weight-loss diets [47–49], although this association
has not been consistently observed [17]. Increases in the Alistipes genus have been observed
following surgical weight loss interventions [17], and higher baseline Alistipes abundance
has been correlated with greater success in long-term weight-loss maintenance following a
dietetic and lifestyle intervention [50]. Reductions in Collinsella abundance have been noted
during a structured hypocaloric weight loss program in a small cohort of type 2 diabetics
with obesity [51], as well in a reduced carbohydrate weight loss intervention of men who
were overweight [52].

In this study, Subdoligranulum also decreased during the intervention. This genus
has only one species, S. variabile, which has been previously associated with metabolic
syndrome. Interestingly, in an intervention study of fecal microbiota transplantation from
lean donors to men with metabolic syndrome [53], higher baseline S. variabile abundance
was predictive of greater improvements in insulin sensitivity. We likewise observed that
baseline Subdoligranulum was among the genera most predictive of change in weight
and waist circumference and that higher baseline abundance of Subdoligranulum was
predictive of greater weight loss among IMF participants (though not DCR). However,
a direct linear relationship was not found between baseline Subdoligranulum and loss
in waist circumference, suggesting that this genus is likely important in combination
with other taxa. Baseline abundances of two members of the family Coriobacteriaceae
(Slackia and an unclassified genus) were also predictive at baseline of greater loss in waist
circumference. This family has been linked to multiple adverse phenotypes, including
obesity [54]; however, higher baseline levels were also identified as contributing towards
the beneficial effects of Roux-en-Y gastric bypass among people with type 2 diabetes [55].
Furthermore, Slackia may help to increase the bioavailability of polyphenols, which would
be beneficial for cardiometabolic health [56].

We also examined whether changes in specific microbial taxa were predictive of
change in weight and waist circumference since the intervention could cause beneficial
changes in gut microbiota taxa that then contribute towards improvements in these clin-
ical outcomes. Changes in the abundances of numerous genera were associated with
enhanced loss of weight or waist circumference. For instance, a decrease in the abun-
dance of the genus Coprococcus 3 was associated with greater weight loss. Prior work
has shown that this genus was enriched among Mexican women with obesity and with
metabolic syndrome, compared to normal weight controls [57] and among Chinese youth
and Japanese adults with obesity [58,59]. Decreases in abundance of this genus have also
been noted with Laparoscopic sleeve gastrectomy [60] and a weight loss intervention
among adolescents [48]. In our study, an increase in the genus Phascolarctobacterium was as-
sociated with greater decreases in waist circumference. This is consistent with a prior study
that found a negative correlation between Phascolarctobacterium and percent body fat [61],
which the authors thought could reflect the relationship between excess body fat and
decreased insulin sensitivity since Phascolarctobacterium is likewise correlated with higher
insulin sensitivity. However, other studies have shown inconsistent relationships between
Phascolarctobacterium and markers of insulin sensitivity (as discussed in Naderpoor et al.,
2019). In this study, as well as in a prior multi-omic study using this same cohort, higher
Lachnospiraceae other abundance at baseline was associated with less reduction in waist
circumference [23], yet we also observed that an increase from baseline to three months in
this taxon was actually associated with greater weight loss among DCR participants. This
is a heterogeneous group with potentially diverse functional effects, and these associations
should be further explored, ideally using shotgun metagenomic sequencing data to resolve
species/strain-level taxonomy.

Increases in alpha-diversity have previously been noted during hypocaloric weight
loss interventions [20,51], as observed in our study. Lower microbial diversity has been
associated with numerous cardiometabolic health conditions and risk factors, including
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diabetes [62], non-alcoholic fatty liver disease [63], and obesity [64]. Prior research suggests
that decreased diversity may only be associated with obesity in a subset of individu-
als [65,66]. Interestingly, individuals with low baseline alpha-diversity may show greater
responsiveness to interventions aiming to improve cardiometabolic health, as was seen
in interventions involving fecal microbiota transfer from lean donors to individuals with
obesity [53,67]. We did not observe significant associations between changes in alpha-
diversity and change in weight or waist circumference, although future work in a larger
sample could specifically examine these relationships among individuals with low baseline
alpha-diversity. We were unable to identify statistically significant predictors of the change
in alpha-diversity, such as dietary macronutrient composition or summary measures of
exercise. All participants in the trial received counseling in healthy food choices and a
prescription to gradually increase physical activity. It is possible that the observed increases
in alpha-diversity were due to a combination of these lifestyle changes that are not ap-
parent when examining these factors individually or when using broad summary metrics
of diet and exercise. Again, a larger sample size may improve our ability to understand
these relationships.

This is the first study to examine gut microbiota during a lifestyle weight loss interven-
tion of DCR versus IMF as well as the largest human study to date of the gut microbiota and
IMF. Studies of IMF have documented that there may be enhanced health benefits relative
to DCR for many measures related to cardiometabolic health, including body composition,
resting energy expenditure, insulin sensitivity and inflammation [68–72]. We examined
whether changes in gut microbiota differed between the two intervention arms, and we
did not see significant differences between DCR and IMF in terms of how the overall gut
microbiota changed over time (alpha- and beta-diversity). The genus Akkermansia increased
significantly with IMF but did not change with DCR. While this difference could reflect
differences in weight loss or other clinical health metrics, it could also be due to differential
effects of more extended time periods of fasting with IMF. Akkermansia only contains two
known species, the most common of which, A. muciniphila, is a mucin-degrading bacterium
that has been causally linked in animal models to lowering body fat mass, improving
glucose homoeostasis, decreasing adipose tissue inflammation and increasing gut integrity,
as well as cardiometabolic improvements during dietary energy restriction [73–75]. Akker-
mansia is also an important producer of acetate, a short-chain fatty acid that may be a
key mediator of gut microbiota-dependent changes in the composition of adipose tissue,
specifically “beiging” of white adipose tissue, previously reported in animal models of
IMF [19]. Beiging is a process in which white adipose tissue takes on a more brown-like
phenotype, and it has important beneficial effects on insulin sensitivity and resting energy
expenditure [76]. Oral administration of A. muciniphila has likewise been shown to promote
beiging [77].

The gut microbiome is involved in extensive crosstalk with the host metabolic and
immune systems [78]. While some evidence supports the causal role of the gut microbiota
in obesity [7–11], gut microbiota also respond to changes in the environment (nutritional,
chemical and behavioral) [78]. Thus, gut microbiota may contribute towards weight loss
but may also shift in response to weight loss, and it is difficult to establish with confidence
the predominant direction of this relationship [79]. In this study, we assessed predictors
of the observed change in the gut microbiota composition during the intervention and
found that change in energy intake was the most significant driver of changes in the types
of microbes present in the gut (beta-diversity based on unweighted UniFrac), yet weight
loss was not a significant predictor of changes in the overall gut microbiota composition.
While these results are consistent with the hypothesis that dietary changes impact gut
composition and the changes in the gut microbiome then contribute to weight loss, we did
not observe evidence to support the second part of this mediation pathway, i.e., we did
not observe an association between the overall gut microbiota composition (beta-diversity)
and weight loss. We did, however, observe that baseline abundance of subsets of genera
were predictive of weight loss, and likewise that shifts in some genera were associated
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with weight loss, as discussed above. There is growing evidence to support the role of
gut microbiota as a mediator of the effects of diet on the host metabolic status [80], and
specifically of the effects of dietary energy restriction on metabolic improvements [19,81].
We also examined the association between change in physical activity and shifts in the gut
microbiota composition. Although some prior studies support that increases in aerobic
physical activity (both with and without resistance training) impact gut composition [82],
we did not see this association.

This study has both strengths and limitations. The parent trial is a rigorously designed
interventional weight loss trial, comparing IMF to DCR, and the dietary interventions are
designed to produce an equivalent weekly dietary energy deficit. This ancillary study is the
only study to date to examine gut microbial diversity and composition during a behavioral
weight loss trial comparing weight loss generated by IMF to DCR. Use of short-read 16S
rRNA amplicon sequences to profile gut microbiota limited our ability to examine gut
microbiota in terms of either species/strain-level shifts or changes in functional capacity.
This work is based on the first three months of data from two of five recruitment cohorts
from the parent trial; thus, the sample size is relatively small. Since the parent trial is
ongoing, we are not able to report differences in the clinical outcomes between the DCR
and IMF intervention groups, which limits our ability to interpret any differences in the
gut microbiome of these groups. The timing of food intake during IMF may impact the
clinical improvements associated with this approach [83], and the timing of the stool
collection (in a fasted versus fed state/time of day) and recent antibiotic use may impact
the gut microbiota [19,84], but this information was missing for many of the samples. Self-
reported dietary intake also suffers from considerable inaccuracies and bias [85]. Despite
these limitations and possible heterogeneity in the data, our findings show significant and
clinically relevant associations that will inform future work, including a more thorough
comparison of changes in gut microbiota features with DCR versus IMF once the trial
is unblinded.

5. Conclusions

This work adds to the growing body of literature demonstrating that the gut mi-
crobiota plays an important role in body weight regulation and may contribute towards
responsiveness during a weight loss intervention. During the first three months of a
lifestyle weight loss intervention involving an energy-restricted diet and increased physical
activity, gut microbiota of participants changed significantly. Of particular note, we found
that the baseline gut microbiota composition was predictive of change in waist circumfer-
ence at three months and that numerous bacterial taxa were associated with improvements
in weight and waist circumference measures. This suggests that the gut microbiota com-
munity structure may influence responsiveness to weight loss efforts, which is critical to
understand more fully, as gut microbiota profiles are alterable through various means, such
as probiotics/prebiotics [13], personalized dietary changes [86] or targeting gut microbiota
pathways and metabolites [87]. This is an exciting avenue for further research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nu13093248/s1, Figure S1. Change in diet and physical activity of DRIFT2 participants
from baseline to three months and the association with change in the gut microbiota community
structure (beta-diversity); Figure S2. Changes in the gut microbiota taxa of DRIFT2 participants from
baseline to three months by intervention group assignment; Table S1. Clinical characteristics of study
cohort by intervention group; Table S2. Association between baseline and change in participant
gut microbiota composition and two clinical outcome measures, percent change in weight and in
waist circumference; Table S3. Association between participant gut microbiota alpha-diversity and
outcome measures; Table S4. Performance metrics of random forests to predict percent change
in weight and in waist circumference using all taxa and those selected as most highly predictive
of these outcomes by machine learning techniques; Table S5. Regression models of the change in
alpha-diversity as a function of change in weight or waist circumference, change in dietary intake
and change in physical activity; Table S6. Association between baseline and change in participant gut
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microbiota composition and two clinical outcome measures, percent change in weight and in waist
circumference, controlling for change in dietary intake and physical activity.
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