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Abstract: Muscle Invasive Bladder Cancer (MIBC) is a subset of bladder cancer with a significant risk
for metastases and death. It accounts for nearly 25% of bladder cancer diagnoses. A diagnostic work-
up for MIBC is inclusive of urologic evaluation, radiographic imaging with a CT scan, urinalysis, and
cystoscopy. These evaluations, especially cystoscopy, are invasive and carry the risk of secondary
health concerns. Non-invasive diagnostics such as urine cytology are an attractive alternative
currently being investigated to mitigate the requirement for cystoscopy. A pitfall in urine cytology
is the lack of available options with high reliability, specificity, and sensitivity to malignant bladder
cells. Exosomes are a novel biomarker source which could resolve some of the concerns with urine
cytology, due to the high specificity as the surrogates of tumor cells. This review serves to define
muscle invasive bladder cancer, current urine cytology methods, the role of exosomes in MIBC, and
exosomes application as a diagnostic tool in MIBC. Urinary exosomes as the specific populations
of extracellular vesicles could provide additional biomarkers with specificity and sensitivity to
bladder malignancies, which are a consistent source of cellular information to direct clinicians for
developing treatment strategies. Given its strong presence and differentiation ability between normal
and cancerous cells, exosome-based urine cytology is highly promising in providing a perspective of
a patient’s bladder cancer.

Keywords: muscle invasive bladder cancer; exosomes; biomarkers; bladder cancer screening; bladder
cancer diagnosis

1. Introduction

The bladder is part of the urinary system, located in the pelvic cavity, and serves as a
short-term reservoir for urine [1–3]. The bladder is comprised of four layers as depicted
in Figure 1. The innermost layer is the transitional epithelium [4]. This tissue type is
important in bladder structure due to flexible stretching ability. Transitional epithelium’s
high elasticity allows for substantial surface area to store urine. The next layer out is the
lamina propria which serves to reinforce the inner lining and is made of elastic connective
tissue. The third layer of the bladder is the smooth muscle layer also known as the detrusor
muscle, which is three layers thick and contracts to evacuate urine. The fourth outermost
layer of the bladder is the serosal layer, which serves as a barrier to decrease friction
between the bladder and surrounding organs.

Bladder cancer manifests as two broad classifications, non-muscle invasive bladder
cancer (NMIBC) and muscle invasive bladder cancer (MIBC). The pathophysiology of
bladder cancer is described as a dual pathway and can be best defined by the presence of
papillary and nonpapillary lesions [3,4]. NMIBC accounts for 75% of all bladder cancer
cases, it does not extend beyond the first layer of the bladder [5]. Papillary lesions typically
indicate non-muscle invasive bladder cancer (NMIBC), which accounts for most bladder
cancer diagnose. NMIBC is characterized by chromosome nine deletion, which holds the
CDKN2A gene that codes for tumor suppressor proteins [6]. Additionally, mutations arise
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on fibroblast growth factor receptor 3 (FGFR3), PI3K, and telomerase reverse transcriptase
(TERT) [7–10]. Muscle invasive bladder cancer is the second route of the dual pathway
as illustrated in Figure 1. It is defined by tumor infiltration beyond the epithelial layers
of the bladder and into the detrusor muscle. MIBC also has a deletion of chromosome 9
and mutations in FGFR3, PI3K, TERT [11–13]. Additionally, retinoblastoma protein 1
(Rb1) and p53 are mutated and/or deleted [14–18]. In MIBC, Rb1 is truncated which
promotes tumorigenesis. There is also an ~50% increase in p53 mutations in muscle invasive
bladder cancer which leads to impaired DNA repair capabilities and loss of function in
p53 associated tumor suppressor genes [17]. MIBC accounts for 25% of all bladder cancers
and, depending on the aggravating factors, has a five-year survival of 70% [19]. The dual
pathway of this malignancy contributes to the intricacies in presentation, diagnosis, and
treatment.
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Figure 1. (A) The bladder cancer dual pathway involves the presence of papillary or non-papillary
lesions. papillary lesions harbor mutations in FGFR3, TERT, PIP3, and deletion of CDKN2A on
Chromosome 9. Papillary lesions typically present as NMIBC. Non-papillary lesions include mutation
of TERT, PIP3, FGFR3, p53, Rb1, and deletion of CDKN2A on chromosome 9. Non-papillary lesions
typically describe MIBC. (B) The bladder consists of four layers: the epithelium, submucosa, detrusor
muscle, and parietal peritoneum. Staging for bladder cancer is depicted in this figure. Tumors are
classified based on the TNM grading system where T describes the primary tumor in terms of its size
and tissue penetration. N characterizes the involvement, or lack thereof, lymph nodes. M describes
the presence of absence of metastasis. MIBC is characterized by being T2 and can present with or
without nodal or metastatic involvement.

In 2022, there will be approximately 81,000 new cases of bladder cancer in America [19].
Of those cases, 25% will be MIBC. Muscle invasive bladder cancer is more predominant in
men than women with a median age at diagnosis of 73. It is also twice as common in White
men than Black or Latino men. Modifiable risk factors for muscle invasive bladder cancer
include environmental exposures to aromatic amines, cigarette smoke, and chronic bladder
infections. Non-modifiable risk factors for muscle invasive bladder cancer include a family
history of bladder cancer and being diagnosed with Lynch syndrome [20].

MIBC often presents with a myriad of symptoms such as hematuria, dysuria, and
general constitutional symptoms. These symptoms may be transient, and it should be
noted that it can be observed in other non-malignant urogenital disease states. Due to the
ambiguity of bladder cancer presentative symptoms, delayed diagnosis is often among
patients. The later a patient is diagnosed, the higher the risk for initial diagnosis with MIBC.
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Patients presenting with concerning symptoms will undergo a comprehensive clinical
work-up. A work-up may include a urologic evaluation, radiographic imaging with a
CT scan, urinalysis, and cystoscopy. Of the available diagnostic methods, cystoscopy is
currently the standard for bladder cancer diagnosis [21–23]. Once a diagnosis is confirmed,
bladder cancer will be staged using the TNM staging system. Bladder cancer is considered
MIBC once it is determined a T2 lesion is present. A T2 lesion or higher indicates the
invasion of the cancer into the muscular layer of the bladder. The associated risk for
metastasis is higher with muscle invasive bladder cancer and metastatic sites can be local
or distant. Local metastatic sites include adipose tissue, lymph nodes, and the peritoneum.
Distant sites include the patient’s bones, liver, and lungs [24]. The gold standard of care
treatment for muscle invasive bladder cancer is cisplatin-based neoadjuvant chemotherapy
with radical cystectomy.

2. Biomarkers in Bladder Cancer Diagnosis

Liquid biopsy is popular in cancer diagnostics because samples are collected with less
invasive means than solid tissue biopsy. Liquid biopsy can be employed for diagnostics,
prognosis, and theragnostic [22,23,25–27]. There are several types of samples which can be
used for biopsy, including blood, urine, and cerebrospinal fluid (CSF) [21,28]. Biomarkers
are biological molecules found within a given biopsy specimen used to detect and monitor
illnesses and/or conditions. Popular biomarkers of interest in cancer include circulating
free DNA (cfDNA), circulating tumor cells (CTAs), circulating proteins and cytokines,
circulating extracellular vesicles and exosomes, and T-cells [29,30]. The generation and
unique clinical utility of exosomes are the focus of this review. Of the types of liquid
biopsy, urine samples are optimal for application in bladder cancer, because urine is
stored in the bladder and has the most direct source connecting with bladder cancerous
cells [31,32]. There are several urinary biomarker tests approved by the FDA which will be
discussed in this review. However, none of them can achieve all the qualities required for
a clinically useful urinary biomarker test for bladder cancer diagnosis. An ideal urinary
biomarker test needs to incorporate several components including specificity, sensitivity,
cost-effectiveness, and ease of interpretation [26,27,33]. The low false-positive rate and
low risk of false negatives and undiagnosed disease progression are essential. The cost-
effectiveness is critical for both health systems to employ on a large scale and for patients
to pay for.

3. Exosomes in Muscle Invasive Bladder Cancer
3.1. Exosomes Defined

Exosomes are a subgroup of extracellular vesicles (EVs) in size range < 200nm, and
derived from the membranes of multivesicular bodies [34,35]. They are released from
several cell types, including diseased, malignant, and normal cells. Across the cell types,
exosomes communicate and influence physiology at local and distant sites within the
body. Exosomes are enriched with CD63, and can be found in blood, breast milk, urine,
serum, saliva, mesenchymal, tumor, and dendritic cell samples [36–39]. They can also cross
several internal barriers such as the blood-brain-barrier, the retinal barrier, stromal barrier,
placental barrier, and cerebral spinal fluid barrier [40–43]. Exosomes are heterogenous by
their surface molecules and cargos such as proteins, lipids, mRNA, miRNA, lncRNA, and
DNA [44]. mRNA is implicated in tumor progression and metastasis through the abnormal
upregulation of anion transport, cell growth factors, and the MAPK cascade [45]. Exosome
miRNAs have roles in regulation of gene expression and tumor microenvironment in
both healthy and malignant cells [46]. lncRNA contributes to the growth and survival
of tumors [47]. Exosome DNA may protect tumor cells from regulatory inflammation
processes, in turn supporting tumor survival [48]. Exosome biogenesis is largely supported
by the endosomal sorting complex required for transport (ESCRT) and micro-vesicular
bodies (MVB) [49–51]. Prior to exosome release, they are loaded with cargos which may
consist of miRNA, proteins, and/or lipids. Once loaded with cargo, further release is
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regulated via synergistic ESCRT dependent and independent pathways [52]. They are
selectively up-taken into cells via endocytosis, receptor–ligand interaction, or cellular
membrane fusion [52]. Within the scope of cancer, exosomes are implicated in cancer
development and survival [53–56].

Exosomes have a prominent role in cellular communication, which may lead to the
promotion of malignancies as tumors release exosomes carrying pro-tumor genetic infor-
mation. These pro-tumor exosomes mediated actions are illustrated in Figure 2. Through
autocrine interaction, exosomes can change the direction of exosome releasing cells leading
to tumor promotion [53,55,57–59]. Via paracrine interactions, exosomes can modulate intra-
cellular interaction and the microenvironment of the cells. Angiogenesis is promoted by
exosomes, especially in hypoxic conditions [60–62], which leads to downstream signaling
cascades that can promote malignancies [62]. Cancer promoting histological changes are
also influenced by exosomes. They are thought to be highly involved in the epithelial to
mesenchymal transition (EMT) malignant lesions undergo as cancer develops [63]. Lastly,
exosomes are impactful in angiogenesis to grow and maintain tumor survival. Cells under
stress or in hypoxic conditions often release more exosomes [64,65]. Cancerous cells are un-
der stress and experience hypoxic conditions, in turn, an increased release of exosome and
signaling is observed [66,67]. Exosomes also contribute to pre-metastatic environments and
metastasis. In pre-metastatic environments, exosomes are released from tumors and sent to
distant sites to condition the environment into a suitable tumor micro-environment [68–70].
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Figure 2. Exosomes are involved in cancer cell development, proliferation, and survival. (A) Through
autocrine communication, exosomes communicate to the cells they are released from to promote
a suitable microenvironment for tumors and contribute to the activation of pro-tumor mutations
within their host cell. (B) Paracrine communication allows exosomes to communicate to nearby cells.
They can modify the signaling pathways leading to changes in gene expression of surrounding cells.
(C) Exosome’s role in the epithelial to mesenchymal transition (EMT). (D) In hypoxic conditions exo-
somes can promote the growth of new blood vessels, often called angiogenesis. Through this process,
nutrients can be sent to malformed cells to support their growth and proliferation into cancer cells.
(E) Through exosome regulation of cellular communication, changing the histology of the tissue could
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create a more suitable tumor microenvironment. This process supports more malignant forms of
cancer. The cellular communication of exosomes to distant sites allows them to prepare distant organs
for later infiltration of tum or cells.

3.2. Exosomes Involvement in MIBC Progression

The role of exosomes in MIBC progression is not fully understood in current literature.
It has been suggested that high quantity of exosomes from MIBC may attribute from the
pro-cancer actions such as increased tumor growth, invasion, and angiogenesis [71–73].
Starting with proliferation, tumor-derived extracellular vesicles (TEVs) and exosomes alter
the operations of tumor suppressor genes to create a protumor microenvironment [74].
The accompanying hypoxia often found in tumor microenvironments further supports the
actions of TEVs [75–78]. A key role of exosomes in high grade tumors and eventual MIBC
is promoting metastasis. Exosomes support metastasis by carrying, transferring oncogenic
cargoes, and hindering tumor suppressor exosomes [75]. Examples of such activity are
evident in bladder cancer exosomes activating the ERK1/2 MAP kinase signaling pathway
to promote malignancy of low tumor grade bladder cancer cells [79]. As bladder cancer
metastasis continues, the tumor has a higher chance of developing into MIBC. A cornerstone
characteristic of muscle invasive bladder cancer is the epithelial to mesenchymal transition
(EMT). EMT describes the process of epithelial, urothelial cells in the case of bladder
cancer, transforming into mesenchymal tissue (Figure 2C). Mesenchymal tissue can support
carcinogenesis which contributes to larger, faster-growing tumors. The clinical significance
of the processes from EMT is the development into higher grade aggressive tumors as MIBC.
Due to the fast-growing nature of bladder cancer tumors, especially with upregulated pro-
tumor EVs and exosomes, MIBC could lead to a complicated clinical picture.

Exosomes are highly implicated in the development and progression of muscle in-
vasive bladder cancer [75,76]. Several in vitro studies have described the presence of
carcinogenic activity being mediated by exosomes. In vitro exosomes demonstrate cellular
communication between cancerous bladder cells and histologically diverse tissue, support-
ing the proposal of exosome mediated metastasis [80,81]. Carcinogenic exosomes had an
increase in unfolded endoplasmic reticulum proteins, which leads to the oxidative stress
response mechanism within cells when they are proliferating quickly [82]. This oxidative
stress phenomenon was observed in mice models utilizing bladder cancer cells [83,84].
Demonstrated using muscle invasive bladder cancer cells, the presence of EMT underscores
the impact exosomes have in the setting of MIBC [84]. It was observed that exosomes
induce and promote the upregulation of mesenchymal markers in urothelial cells [73,85].
Lastly, exosomes have been documented as upregulating Bcl2 and Cyclin D which promote
tumorigenesis [84]. These findings support the role of exosomes in cancer as well as the
specific contributions in muscle invasive bladder cancer [82,85,86]. Additionally, to the
above findings, there are several exosome biomarkers implicated in bladder cancer tu-
morigenesis [85,87–89]. These urine-based markers are characterized in Table 1. Exosomes
established role in muscle invasive bladder cancer and documented urine biomarkers yield
opportunity for an exosome-based urine biomarker test for MIBC diagnosis.

3.3. Exosome Biomarkers for Muscle Invasive Bladder Cancer Diagnosis

Urinary exosome biomarkers are not currently used as diagnostic tools for MIBC
detection. However, exosomes would make an excellent source for biomarkers for several
reasons. Exosomes participate in cell-to-cell communication and stimulation of immune
responses [90,91]. They can receive feedback and respond to their cellular environment.
This quality can be manipulated to identify biomarkers to detect tumors. Additionally,
exosomes are reported to be released in a larger quantity in malignant cells than healthy
cells [92,93]. So, exosome biomarkers used in a biomarker test would reveal clear results
segregating healthy from diseased areas of the bladder. Table 1 lists the biomarkers that
are present in urinary exosomes and are implicated in the promotion of bladder cancer.
It should be noted that several of these biomarkers are found in other tumor types and
therefore not unique to bladder cancer, such as EDIL-3 found also in sarcomas exosomes
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modulating angiogenesis [94]. The main modes of action for these biomarkers include
an increase in tumor cell migration, proliferation of tumor cells, angiogenesis, decreased
apoptosis of cancer cells, and pro-tumor microenvironment support. Although this table
list is not an exhaustive list of all the discovered biomarkers, it is inclusive of well described
urinary exosomes derived biomarkers. Current research suggests there are many more
urinary exosome biomarkers to be discovered.

Table 1. Identified Urinary Biomarkers for Bladder Cancer.

Urinary Biomarkers EV Source Mechanism of Action Effect Reference

CD36 Urine protein Increases fatty acid uptake
Increase migration,

proliferation,
and angiogenesis

[84,95,96]

CD73 Urine protein Regulates cellular signaling
Increase migration,

proliferation,
and angiogenesis

[84,95,96]

CD44 Urine protein Docks proteases on cell membrane
Increase migration,

proliferation,
and angiogenesis

[84,95,96]

CD9 Urine protein
Exosome mediation of

metastasis in conjunction
with NUGC-3 and OCUM-12

Promotion of tumor
invasion and metastasis [96,97]

TSG101 Urine protein

regulates ubiquitin-mediated
protein degradation,

cellular transcription, cell
proliferation, and division.

Promotes an increase in
downstream cellular stress [98]

EDIL-3 Urine protein gene
Promotes angiogenesis

and metastasis in
malignant environments

Enhances the
aggressiveness and

growth of the tumor/s
[76]

Alpha 1-antitrypsin Urine protein Immunity regulation Decrease apoptosis [99]

MUC1 Urine protein gene
Promotes histological morphologies

and metastasis through several
routes of cellular communication

Cancer progression
and metastasis [100]

MUC4 Urine protein gene Enhances the EMT process and
influences immunomodulation

Promotes aggressive
metastatic cancers [101]

MAGE-B4 Urine protein Increase tumorigenesis
and proliferation

Increase ubiquiation and
degradation of p53 [89,95]

miR-21 Urine miRNA Decrease AKT and MAPK pathways Increase invasion [77,84,95]

GALNT1 Urine RNAs, lncRNAs
Mediates O-linked

glycosylation of sonic hedgehog
to promote its activation

Maintains bladder
cancer stem cells and

bladder tumorigenesis
[95,102–104]

UCA1 Urine RNAs, lncRNAs Regulates CREB Increase proliferation [95,102–104]

MALAT-1 Urine RNAs, lncRNAs Antagonize miR-125b Decrease apoptosis [95,102–104]

UCA 201 Urine RNAs, lncRNAs

Increase the expression
levels of ZEB1 and ZEB2

decrease the expression of
hsa-miR-145 and the

downstreamactin-binding
protein FSCN1

Increase migration
and invasion [95,102–104]

4. FDA Approved Urine-Biomarker Tests for Bladder Cancer

In addition to the standard of care in bladder cancer for diagnosis as cystoscopy,
there are several urine based methods for bladder cancer diagnosis, including florescence
cystoscopy, urine cytology, urine-based marker detection, and urinary tract imaging as
the well-recognized methods to support cystoscopy findings [105]. Urine-based markers
are comprised of proteins emitted from tumors, DNA, RNA, exosomes, or other cellular
components. They are of particular interest because the collection is inexpensive and non-
invasive in terms of developing detection methods with good sensitivity even in low-grade
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tumors. Currently, six FDA approved urine biomarker tests for bladder cancer have been
depicted and summarized in Table 2.

The NMP22BC test kit is a protein-based immunoassay test for bladder cancer diagno-
sis which utilizes the biomarker nuclear matrix protein 22 (NMP-22). NMP-22 is a cellular
protein, which after bladder cell apoptosis, is increased in its release into the urine. Its
median sensitivity is ~61% and its specificity is 71% [106]. The NMP-22 BladderChek has
an advantage over the NMP22 test because it can be rapidly completed in 30 min. NMP-22
BladderChek is approximately 55.7% specific and approximately 85.7% sensitive at the 95%
confidence interval. Both the NMP-22 BladderChek and NMP22BC test kit are affected by
tumor grade, staging and concurrent genitourinary pathologies.

The BTA TRAK and BTA stat are quantitative and qualitative tests, respectively.
BTA stat is an adjunctive rapid immunochromatographic assay to cystoscopy. It utilizes
monoclonal antibodies to identify complement-factor H-related protein, associated with
bladder cancer, to identify malignancy. The BTA stat sensitivity is 67% and the specificity
is 70% [107], and both values are influenced by the presence of other urinary conditions
because it can confound the results of the test. BTA TRAK is not as widely used as its stat
counterpart, which may be due to its high false-positive and negative rate. BTA Trak’s
median sensitivity is ~75.5% and its median specificity is 53.5%.

ImmunoCyt/uCyt+ is used as an adjunctive test to cystoscopy for monitoring re-
current bladder cancer. It is an immunocytochemical test that utilizes three fluorescent
antibodies. The corresponding antigens include two mucins associated with bladder cancer
and one carcinoembryonic antigen which are only found in exfoliated cancerous bladder
cancer cells. Their sensitivity and specificity are both 78% [96].

Lastly, UroVysion utilizes fluorescence in situ hybridization (FISH) to detect bladder
cancer. It has a clinical sensitivity of 75% and specificity of 93% [108]. It should be noted that
this assay has a profound anticipatory effect due to its sensitivity. Thus, it is imperative that
positive test using this method are closely monitored. There are several options available
for cytological bladder cancer detection. However, as described with each available test,
further improvement regarding sensitivity and specificity of the measurements is needed.
Table 2 listed the six FDA approved urinary biomarker tests for bladder cancer. None of
these tests are used alone for bladder cancer diagnosis due to their low sensitivity and
specificity. The ideal urinary biomarker tests for bladder cancer would need to have high
specificity, high sensitivity, being cost-effective, and easy to replicate.

Table 2. FDA Approved Urine Biomarker Tests for Bladder Cancer.

Test Type of Test Biomarker Tested Sensitivity Specificity Reference

NMP22 BC test kit Sandwich ELISA NMP22 61% 71% [106]

NMP22 Bladder Check Sandwich ELISA NMP22 55.7% 85.7% [106,109]

BTA TRAK ELISA Complement factor
H-related protein 75.5% 53.5% [106]

BTA stat Sandwich ELISA Complement factor
H-related protein 67% 70% [106,110]

ImmunoCyt/uCyt Immunofluorescent cytology Monoclonal
antibodies 78% 78% [106,111,112]

UroVysion FISH DNA of malignant
urothelial cells 75% 93% [106,113–115]

5. Muscle Invasive Bladder Cancer Diagnostic Tests in Clinical Trials

Presently, only two exosome-based biomarker diagnosis for muscle invasive bladder
cancer clinical trials currently being conducted as summarized in Table 3. However, a
few more clinical trials are investigating other circulating biomarkers including cell free
DNAs in muscle invasive bladder cancer. An American multi-facility observational cohort
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study called Clinical Performance Evaluation of the C2i-Test, MIBC patients are submitting
blood samples for detection of molecular residual disease via ctDNA analysis [116]. The
measured primary outcome is predicting three-year recurrence free survival post definitive
treatment. The AURORAX-0093A: Glycosaminoglycan Profiling for Prognostication of
Muscle-invasive Bladder Cancer—a Pilot Study (AUR93A) is an observational cohort
study based in Italy and Sweden, which is utilizing glycosaminoglycan profiling scores to
determine the prognosis of MIBC. The primary outcome is the proportion of patients who
have complete response at the first post-radical cystectomy visit. The Samsung Medical
Center in Seoul, Republic of Korea is conducting an observational cohort study called
Clinical Utility of VI-RADS in Diagnosis of MIBC, which is studying the application of
Vesical Imaging Report and Data System (VI-RADS) in Diagnosis of Muscle Invasive
Bladder Cancer. The primary endpoint is measuring the accuracy of the VI-RADS scoring
system in MIBC diagnosis [117]. Currently, there are 92 in total as the pioneer clinical trials
utilizing exosomes for diagnosing cancers mainly including lung cancer, breast cancer,
pancreatic cancer, prostate cancer, and colorectal cancer. The absence of clinical trials
involving exosomes in MIBC diagnosis indicates the need for more research in this area.

Table 3. Clinical Trials Utilizing Extracellular Vesicles and Exosomes as Biomarkers for Bladder
Cancer Diagnosis. Information is from searching via clinicaltrials.gov.

ClinicalTrials.Gov Identifier Trial Status Cancer Type Primary Endpoint

NCT04155359 Recruiting Bladder Cancer

The test measures up to 280 sncRNA present
in urine exosomes and produces a

dichotomized assessment of “−1” (no cancer)
and “+1” (cancer) based on the expression

profiles of the exosomal sncRNAs

NCT05270174 Not yet recruiting
Preoperative Diagnosis of
Lymphatic Metastasis in

Patients with Bladder Cancer

Explore Whether lncRNA-ElNAT1
in Urine Exosomes Can be Used as a

New Target for Preoperative
Diagnosis of Lymph Node Metastasis

6. Discussion

The bladder is a urinary reservoir consisting of four distinct layers: (1) the transitional
epithelium; (2) lamina propria; (3) detrusor muscle; (4) and serosal layer. Bladder cancer
can develop into non-muscle invasive bladder cancer or muscle invasive bladder cancer.
These tumor growth patterns are best described in the dual development pathway of
bladder cancer. Papillary lesions have mutations and cellular disorders, however, there is
no infiltration to the bladder tissue beyond epithelium. Non-papillary lesions have further
disorder due to deletion of p53 and Rb1. These lesions extend to the detrusor muscle and
are considered a higher risk version of bladder cancer. Bladder cancer is highly prevalent in
the United States and 25% of all bladder cancer cases will be muscle invasive bladder cancer.
This cancer mainly affects elderly white men. Modifiable risk factors for developing ladder
cancer include environmental exposures to aromatic amines, cigarette smoke, and chronic
bladder infections. To diagnose bladder cancer, patients will undergo a work-up inclusive
of a urologic evaluation, radiographic imaging with a CT scan, urinalysis, and cystoscopy.
Many efforts have been made to replace this procedure with a less invasive method of
diagnosis, such as urine biomarker tests. However, due to the low sensitivity and specificity
of currently available tests, urinary biomarkers have not been able to replace cystoscopy
in bladder cancer diagnosis. Urinary exosomes are the promising alternative. Exosomes
are a key biological player in the development of MIBC and implicate several pro-tumor
actions such as tumor proliferation, metastasis, and survival. Exosome’s largest role in
muscle invasive bladder cancer is the epithelial to mesenchymal transition, which has been
observed that exosomes induce and promote the upregulation of mesenchymal markers in
urothelial cells [118]. This transition leads to a strong pro-tumor microenvironment within
the layers of the bladder. EMT supported tumor growth, which can lead to more invasive
bladder cancer such as muscle invasive bladder cancer. Identifying exosome biomarkers
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strongly associated with the EMT process, which will progress the strategies employed to
diagnose invasive bladder cancers early and save patients’ lives.

EVs and Exosomes are a promising source of biomarkers for muscle invasive bladder
cancer. However, they are not without flaws. Exosomes have pitfalls in their isolation and
purification methods. The Minimal information for studies of extracellular vesicles 2018
([119,120]) describes several isolation and purification techniques [121]. The consensus is
ultracentrifugation and ultrafiltration may have the largest amount of yield, however, it
will co-isolate other membrane particles and protein aggregate. As described by Doyle and
Wang, these two methods have a high risk of destroying exosomes in the process of isola-
tion and purification leading to low yield amounts of pure exosomes [91]. From a clinical
standpoint, it is imperative that standards be established for exosome biomarker character-
istics to accommodate for the variety of patient populations [122] and to accommodate for
the natural heterogeneity of patient populations. Therefore, the isolation and purification
methods for extracting exosomes from various clinical fluids are critical. The EVs and
exosomes isolation techniques have been intensively developed in the past decade. Vast
amount of review papers regarding EV isolation techniques have been reported [123–136].
The well-documented methods for isolating exosomes from biological samples include,
but not limited to, differential ultracentrifugation, size-exclusion chromatography and
immunoaffinity capture [137]. The MISEV describes the application of the exosomes as the
deciding factor in the type of separation to use [121]. The downstream characterization of
EV and exosome quality and biomarker expression is also challenging. The well accepted
nanoparticle tracking analysis suffers from largely scattered variations [138]. In the case
of clinical research and for application in biomarker identification, collecting the purest
EV population is imperative. It is recommended to employ ultracentrifugation in conjunc-
tion with ultrafiltration as a conventional approach, due to their wide accessibility and
cost-effectiveness compared to other isolation methods. However, ultracentrifugation has
a low recovery rate of 2–25%. Note that recovery and purity of exosomes are dependent
on the density, size, quantity, and molecular relevance of the sample [91]. Ultrafiltration is
subject to EV destruction due to the shear force of membrane filtration. Currently, affinity
purification such as immunomagnetic beads and affinity column are getting more recog-
nition in terms of homogeneous population and purity relevant to interests [139]. Due to
variance in EV isolation and variable return of results from widely accepted methods, it
is important that highly specific and sensitive isolation techniques are developed in the
future for improving diagnostic outcomes.

The tests currently approved by the Food and Drug Administration (FDA) for bladder
cancer diagnosis do not unlock the power of exosomes. Given the vast array of exosome
biomarkers identified in the development and survival of bladder cancer, the huge needs of
exosome biomarker diagnostic test are presented. For developing exosome based diagnostic
test, the well-established exosome isolation and characterization are critical and need to
be standardized. Some pioneer research work has been reported recently to overcome the
isolation challenge and ensure the exosome purity and specificity [84,96,139]. However,
clinical translation is still lacking. More efforts on clinical translation will be needed in the
future research.
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