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Simple Summary: Upper tract urothelial carcinoma (UTUC) represents 5 to 10% of urothelial carci-
noma. Their mutational profile is different as compared to bladder urothelial carcinoma (UC). While
immune checkpoint inhibitors are now part of the therapeutic landscape of urothelial carcinoma,
data concerning their use in UTUC patient’s treatment remain scarce. The aim of this review is to
summarize the available evidence and the biological rationale of using immune checkpoint inhibitors
in high-grade UTUC. We reviewed the latest molecular characterization data and proposed an insight
for future therapeutic strategies based on molecular alteration profiles.

Abstract: Upper tract urothelial carcinoma (UTUC) represents a rare and aggressive malignancy
arising from the renal pelvis or ureter. It can develop sporadically or have a hereditary origin, such
as Lynch syndrome, caused by DNA mismatch repair deficiency, leading to microsatellite instability
phenotype. According to molecular characterization studies, UTUC presents different mutational
profiles as compared to urinary bladder urothelial carcinomas. In particular, it has been reported
that UTUC harbored a higher level of FGFR3 alterations associated with a T-cell depleted immune
microenvironment. The therapeutic landscape in urothelial carcinoma is rapidly evolving, with
immune checkpoint inhibitors forming part of the standard of care. A greater understanding of the
molecular alterations and immune microenvironment leads to the development of new treatment
combinations and targeted therapy. This review summarizes the available evidence concerning
the use of immune checkpoint inhibitors and the biological rationale underlying their use in high-
grade UTUC.

Keywords: immune checkpoint inhibitors; immunotherapy; upper tract urothelial carcinoma; UTUC;
genetic; epigenetic

1. Introduction

Urothelial carcinoma (UC) represents the fourth most common malignancy worldwide,
with an urgent need for tailored approaches in the management of the metastatic disease [1].
Depending on the level of muscle invasion seen on the pathological exam, UC is divided
into muscle-invasive (MI) and non-muscle invasive (NMI) disease. MIUC of the bladder
represents 25% of tumors [2] as compared to 60% in upper tract urothelial carcinoma
(UTUC), explaining their increased aggressiveness [3–6]. The 5-year extravesical recurrence
and overall survival rates are 28% and 23% for UTUC and bladder UC, respectively [7].
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While bladder origin represents 90–95% of UCs, UTUC is less common. It represents 5–10%
of UCs and can arise within the renal pelvis or ureter, which are derived from a different
embryologic origin as compared to the bladder [1,8].

There is a strong relationship between UC of the bladder and UTUC since approxi-
mately 50% of patients with UTUC will have urinary bladder urothelial carcinomas either
at presentation or subsequently, justifying the need to perform annual cystoscopy in the
follow-up of these patients [1].

For high-risk localized disease, nephroureterectomy along with peri-operative chemother-
apy is the standard of care management approach [1]. In the metastatic setting, platinum-based
chemotherapy regimen remains the first-line recommended treatment [1]. However, there
is a growing body of evidence concerning the use of immune checkpoint inhibitors (ICI) in
the treatment of urothelial carcinoma [1,9] with the approval of several compounds in the
first and second-line settings of advanced UCs. However, given their rarity, patients with
UTUC represent a minority of patients included in clinical trials, and there is a paucity of data
concerning ICI use in this setting.

UTUC has a different behavior as compared to bladder UC [10], and while molecular
alterations of urothelial bladder carcinoma have been widely studied by The Cancer
Genome Atlas, data about such alterations in UTUC remain scarce [4,11,12]. However, the
novel molecular insights provided by these studies led to a better understanding of this
aggressive disease and provided a rationale for new therapeutic approaches.

This review summarizes the available literature regarding the use of ICIs and the biologi-
cal rationale underlying their use in high-grade urothelial upper tract carcinoma management.

2. The Molecular Landscape of UTUC

Despite histological similarities, UTUC displays different molecular and genetic fea-
tures as compared to bladder UC [11,13–15]. Bladder UC was classified into 5 molec-
ular subtypes, according to the TCGA: luminal-papillary, luminal-infiltrated, luminal,
basal/squamous, and neuronal [14,16]. However, UTUC was not included in this analysis.

In the past few years, several studies have focused on the molecular characteriza-
tion of UTUC using next-generation sequencing [4–6,11–13,17–24]. The most frequently
mutated genes were FGFR3 (40–80%), KMT2D (35–56%), KMT2A (32–47%), and TP53
(18–26%) [4,5,11,13,22]. Other common mutations involving oncogenes or tumor suppres-
sor genes, such as HRAS, NRAS, KRAS, ARID1A, PIK3CA and CDKN2A were also reported
in these studies. Alteration of TP53/MDM2 was associated with more aggressive disease
and worse outcomes, whereas FGFR3 alterations were linked to a better prognosis [13,20].
Comparable mutation rates were seen in UTUC and bladder UC, with a strong APOBEC
signature, but FGFR3, chromatin remodeling gene such as KMT2D, and CDKN2A were
mutated at a higher frequency in UTUC compared in bladder UC [4]. Conversely, the
frequency of TP53 mutations was lower. However, the associations between these somatic
alterations and response to immunotherapy in UTUC are unclear. This is, for instance, the
case for CDKN2A loss, which has been shown to be associated with decreased response to
atezolizumab in bladder UC [25].

UTUC is represented in the spectrum of Lynch syndrome, an autosomal-dominant
familial cancer syndrome caused by germline mutations in the DNA mismatch repair
(MMR) genes MLH1, MSH2, MSH6, or PMS2 [26–28]. It is particularly associated with
MSH2 mutations, with such mutations found in approximately 70% of UC integrated in
Lynch syndrome [26,27,29,30]. Loss of function in the MMR system, either caused by an
inherited mutation or a sporadic event, results in microsatellite instability (MSI) throughout
the genome [31]. MSI have been found between 3.9% to 20% in UTUC as compared
to <1% in UBC [32,33]. High MSI is correlated with a better prognosis, particularly in
patients younger than 71 years old with T2-T3N0M0 tumors [34]. Furthermore, high MSI
is associated with a higher tumor mutational burden (TMB) and correlated to a higher
response rate with ICI treatment [35,36]. Recent retrospective data in advanced high MSI
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UTUC patients treated with immune checkpoint inhibitors have demonstrated excellent
clinical activity [28].

Using a combination of whole-exome sequencing and RNA sequencing, some studies
described biological differences between UTUC and bladder UC [11]. Four molecular sub-
groups of UTUC were defined through RNA-sequencing by Moss et al. [4]. Comparison to
the TCGA dataset has revealed that cluster 1 was similar to luminal-subtype, cluster 2 was
close to basal subtype, and cluster 4 demonstrated a high frequency of upregulated immune
checkpoint related genes [4]. Moreover, UTUC is found to be predominantly luminal-like
tumors, and, more precisely, luminal-papillary and T-cell depleted as compared to bladder
UC [11,14].

Recently, we reported the UTUC methylation profiles and identified 2 epigenetic
subtypes, namely EpiC-low and EpiC-high. While the earlier one was hypomethylated,
immune depleted, and enriched for FGFR3 mutations, the latter was hypermethylated,
immune infiltrated, and associated with SWI/SNF genes somatic mutations [12] (Figure 1).
Moreover, we identified for the first time a high rate of mutations in the ZFP36 fam-
ily in almost one-quarter of UTUC. Further mechanistic studies showed that ZFP36L1
loss of function experiments in urothelial cell lines led to increased cell migration and
epithelial-mesenchymal transition [12]. More recently, Fujii et al. conducted a comprehen-
sive molecular study of 198 UTUC patients through whole-exome sequencing (WES), single
nucleotide polymorphism (SNP) array, RNA sequencing, and methylation analysis [37].
They reported 5 molecular subtypes (hypermutated (5.5%), TP53/MDM2 (37.7%), RAS
(15.1%), FGFR3 (35.2%) and triple-negative (6.5%)) that correlates with clinicopathological
features [37]. Indeed, patients classified in TP53/MDM2 and triple-negative subgroups
had the worse disease-specific survival. Moreover, similar to previous studies, they found
a majority of luminal-like tumors (71.5%) [37]. They also confirmed a different mutational
profile between tumors arising in ureters versus renal pelvis, suggesting a distinct carcino-
genesis mechanism depending on location in the urothelium [37]. They also sequenced
urinary sediment-derived DNA and found 82.2% (95% CI, 71.5−90.2%) of sensitivity and
100% (95% CI, 81.5−100%) of specificity of this approach for UTUC diagnosis [37].
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Figure 1. Proposal of molecular subtypes classification of upper-tract urothelial carcinomas adapted from Su et al. [12].
Broadly, upper-tract urothelial carcinomas can be divided into two subtypes, namely EpiC-high and EpiC-low. Epic-low
subtype is hypomethylated, immune-desert, and characterized by FGFR3 somatic mutations with potential efficacy of
the combination of FGFR3 immunotherapy and immune checkpoint inhibitors (ICI). Conversely, EpiC-high subtype is
hypermethylated, immune-inflamed, and enriched with somatic mutations of SWI/SNF genes with potential benefit for ICI.
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3. The Immune Microenvironment of UTUC

The immune landscape of tumors is an important determinant of the host’s antitu-
moral response and clinical outcomes [38]. According to the results of molecular profiling
studies, it is well established that sporadic UTUC displays a high rate of FGFR3 mutations
(40–80%) [4,5,11,13,22]. Moreover, it has also been shown that upper tract tumors with
FGFR3-alterations express lower CD8 T-cell gene signatures [11,39]. In addition, FGFR3
upregulation has been shown to be important in shaping the observed T-cell depleted
phenotype [11]. Indeed, genes related to IFNG pathway, such as BTS2 and IRF9, were
found downregulated in T-cell depleted cluster and the use of FGFR3 inhibitors correlated
with upregulation of these genes [11]. However, how FGFR3 signaling mediates IFNG
related genes and a T-cell depleted microenvironment has to be determined. Recently, Rose
et al. found that upregulated FGFR3 signaling significantly correlates with upregulated
PPARG gene signatures [40]. They suggested it as a potential mechanism given that the
upregulation of PPARG signaling appears to suppress pro-inflammatory cytokine signaling
and correlates with a non-T cell-inflamed phenotype [40].

Therefore, sporadic UTUC with FGFR3 mutations might be considered immune cold
tumors. Consistent with previous studies, we recently observed similar findings. In
addition, we found that FGFR3 mutated UTUC were hypomethylated compared to FGFR3
wild-type tumors, suggesting crosstalk between genetic and epigenetic phenotypes of
these tumors [12]. Notably, FGFR3 wild-type tumors harbored a high rate of SWI/SNF
genetic tumor alterations and were associated with a higher level of tumor infiltrated
lymphocytes (TILs) [12]. Further studies are needed to fully understand these observations
at the mechanistic level allowing us to elucidate better how the genetic alterations of the
cancer cells might shape the immune contexture. Importantly, UTUC developed in a Lynch
syndrome context because of an MMR loss of function could be considered immune hot
tumors [21].

Finally, correlations were observed between PD-L1 positivity on tumoral cells and
the worse outcomes in UTUC patients, although PD-L1 expression rate varied between
20−25% depending on the study and the cutoff used [41,42].

4. Current Systemic Management of UTUC
4.1. Localized Disease

The gold standard treatment for high-risk disease, defined by at least one of the
following criteria: hydronephrosis, tumor size ≥ 2 cm, high-grade cytology, high-grade
on biopsy, multifocal disease, previous radical cystectomy for bladder cancer, and variant
histology [1], the standard is radical nephro-ureterectomy (RNU) with bladder cuff excision
associated with lymph node dissection, according to the European Association of Urology
(EAU) guidelines [1]. Kidney-sparing surgery could be proposed for patients with low-risk
disease or even in patients with high-risk tumors located in the distal ureter to reduce
morbidity. This strategy could allow optimal adjuvant chemotherapy administration by
preserving kidney function [1]. For locally advanced UTUC, adjuvant chemotherapy with
platinum-gemcitabine combination chemotherapy is recommended.

Indeed, the POUT trial, a multi-center randomized controlled trial including 261 pa-
tients, has reported a significant improvement in disease-free survival (DFS) (hazard
ratio (HR): 0.45, 95% CI 0.30–0.68; p = 0.0001) at a median follow-up of 30.3 months
(IQR 18.0–47.5) with adjuvant platinum-gemcitabine combination chemotherapy begin-
ning within 90 days following nephroureterectomy [43]. The recently updated results of this
trial, with a median follow-up of 48.1 months (IQR: 36.0–60.1), confirmed the chemotherapy
benefit in DFS (HR: 0.50, 95% CI: 0.34–0.75; p = 0.001) [44]. There was no detrimental long-
term toxicity observed. Furthermore, no statistically significant improvement in OS was
observed [44]. Unfortunately, the optimal administration of cisplatin was not feasible for
some patients due to the surgical impact on renal function [45,46]. Therefore, neoadjuvant
chemotherapy was proposed, with interesting results in terms of pathological downstaging
and survival [47]. Moreover, there is a benefit in terms of pathological response, disease
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recurrence, and mortality rate compared to RNU alone, even if no randomized controlled
trials have been published yet [48]. The use of ICIs in the peri-operative setting is not yet a
standard of care in UTUC management [1]. Recently published data about the use of ICI in
this setting are discussed below.

4.2. Metastatic Disease

The management of the metastatic disease should be multimodal, with the use of
local therapy in the case of oligometastatic disease, even in the absence of a randomized
controlled trial [1,49]. RNU could also be performed in the oligometastatic situation,
although providing only a small benefit [50–53], or in the palliative setting to manage
symptomatic disease [1,54].

In the metastatic setting, systemic chemotherapy is extrapolated from data collected
in metastatic bladder UC, since few data are available for advanced UTUC [1]. Indeed,
cisplatin-based regimens, such as MVAC (methotrexate, vinblastine, doxorubicin, and
cisplatin), or GC (gemcitabine and cisplatin) remained standard of care in first-line. Fur-
thermore, a recent retrospective study found that the location of the primary tumor (upper
vs. lower tract) did not change the progression-free survival (PFS) and overall survival (OS)
in patients treated with platinum-based chemotherapy for metastatic UC [52]. Immune
checkpoint inhibitors are also part of the therapeutic armamentarium.

Recently, avelumab as first-line maintenance therapy for platinum-based chemother-
apy responder or stable disease became the standard of care [55]. The JAVELIN-100 trial is
a randomized controlled phase 3 trial comparing avelumab versus placebo as maintenance
therapy after platinum-based chemotherapy in first-line for patients with metastatic UC. A
total of 700 patients were randomized, 30.3% (n = 106/350) versus 23.1% (n = 81/350) of
UTUC patients were, respectively, in the avelumab and placebo arm. Median overall sur-
vival was significantly longer in the avelumab arm, 21.4 (18.9–26.1) versus 14.3 (12.9–17.9)
hazard ratio for death 0.69 (0.56–0.86) p = 0.001 [55]. Based on subgroup analysis, the
second-line systemic standard of care includes ICI, such as pembrolizumab. Indeed, in
the phase 3 trial KEYNOTE-045, 542 UC patients were randomly assigned between pem-
brolizumab or chemotherapy chosen by the investigator. There was 14.1% (n = 38/270)
UTUC patients in the pembrolizumab arm versus 13.6% (n = 37/272) in the chemotherapy
arm. In the total population, median overall survival was 10.3 months (95% CI, 8.0 to
11.8) versus 7.4 months (95% CI, 6.1 to 8.3) in the chemotherapy group (HR, 0.73; 95%
CI, 0.59 to 0.91; p = 0.002) [56,57]. Nevertheless, based on subgroup analysis, a systemic
chemotherapy regimen with a single agent such as paclitaxel, docetaxel, or vinflunine
could still be proposed [58].

5. Immune Checkpoint Inhibition in UTUC

Given their relative rarity, there are no studies specifically focusing on UTUC. There-
fore, data related to ICI efficacy are extracted from a larger cohort of patients with UC that
included a small subgroup of UTUC.

5.1. Immune Checkpoint Inhibitors in the Perioperative Setting

In the adjuvant setting, ICI-based therapy has been widely tested since the role of
adjuvant treatment in high-risk muscle-invasive urothelial carcinoma after radical surgery
was not clear.

Since the first promising results of adjuvant pembrolizumab in the management
of UC [59,60], several studies have now included UTUC patients in ICI-based adjuvant
treatment (Table 1).



Cancers 2021, 13, 4341 6 of 12

Table 1. Adjuvant and neoadjuvant systemic treatment for UTUC patients.

Trial Drug Study Design Line Overall pts n,
UTUC pts n. (%)

Outcomes
(Primary Endpoint)

IMvigor 010 [61] Atezolizumab Phase 3 RCT Adjuvant 809; 54 (6.7%)
Median disease-free

survival, 19.4 months (95%
CI 15.9–24.8)

Checkmate 274
[62] Nivolumab Phase 3 RCT Adjuvant 709; 149 (21%)

Median disease-free
survival 20.8 months (95%

confidence interval [CI],
16.5 to 27.6)

NCT02690558 [63]
Cisplatin,

gemcitabine,
pembrolizumab

Phase 2 Neoadjuvant 39; na pCR:36%

POUT [43]
Cisplatin or

carboplatin +
gemcitabine

Phase 3 RCT Adjuvant 261
Disease-free survival

(hazard ratio 0.45, 95% CI
0.30–0.68; p = 0.0001)

Abbreviations: RCT: randomized controlled trial, pts: patients; na: non available; pCR: pathologic complete response.

The IMvigor 010 study enrolled 809 high-risk UC patients to be randomized between
adjuvant atezolizumab versus placebo. There were only 7% of UTUC patients in the
atezolizumab arm as compared to 6% in the placebo arm (Table 1). There was no statistical
difference in terms of median disease-free survival, 19.4 months (95% CI 15.9–24.8) with
atezolizumab and 16.6 months (11.2–24.8) with observation (stratified hazard ratio 0.89
[95% CI 0.74–1.08]; p = 0.24) [61]. More recently, the data of the Checkmate 274 trial were
reported. It was a phase 3 trial, including 709 patients randomized between adjuvant
nivolumab versus placebo. A total of 21% of enrolled patients were patients with UTUC
(Table 1). However, based on the results of the POUT trial, the inclusion of UTUC patients
was prematurely interrupted. In the intention-to-treat population, median disease-free
survival was 20.8 months (95% CI, 16.5 to 27.6) with nivolumab and 10.8 months (95% CI,
8.3 to 13.9) with placebo; (HR, 0.70; 98.22% CI, 0.55 to 0.90; p < 0.001). For the UTUC
subgroup, the HR for disease recurrence or death were 1.23 (CI 95% 0.67–2.23) and 1.56
(CI 95% 0.7–3.48) for UTUC arising in renal pelvis and ureter, respectively. The percentage
of patients was 74.5% and 55.7%, respectively (hazard ratio, 0.55; 98.72% CI, 0.35 to 0.85;
p < 0.001), for those expressing PD-L1 more than 1% [62]. Moreover, several neoadjuvant
trials combining chemotherapy with ICI are actively recruiting, but available data are
currently limited [63–65].

5.2. Immune Checkpoint Inhibitors in the Metastatic Setting

In the metastatic setting, ICI are widely used in the management of UC (Table 2).
Indeed, avelumab as maintenance therapy after platinum-based chemotherapy is cur-
rently the standard of care according to the results of the JAVELIN-100 trial [55]. For
cisplatin-ineligible UC patients, based on phase 2 trials IMvigor 210 and KEYNOTE 052
provided interesting results for the use of ICI in this frail population (Table 2) [66,67]. The
overall response rate for UTUC patients was 39% with atezolizumab [66] and 22% with
pembrolizumab in monotherapy in this setting [67].



Cancers 2021, 13, 4341 7 of 12

Table 2. Studies assessing ICI in patients with locally advanced or metastatic UC (only trials reporting data of UTUC
patients were selected).

Trial Drug/Control Arm Study
Design Line Overall pts n, UTUC

pts n. (%)
Outcomes

(Primary Endpoint)

JAVELIN-100
[55] Avelumab/BSC Phase 3 RCT 1L 700, 187 (27%)

median OS: 21.4 months vs. 14.3 months;
hazard ratio for death, 0.69; 95% confidence

interval [CI], 0.56 to 0.86; p = 0.001

KEYNOTE 052
[67] Pembrolizumab Phase 2 1L 370, 69 (19%) ORR: 24%, 95% CI 20–29)

IMvigor 130 [68]

Atezolizumab +
platinum-based
chemotherapy

(A)/Atezolizumab
(B)/Platinum-based

chemotherapy

Phase 3 RCT 1L 1213, 312 (26%)

median PFS: 8.2 months (95% CI 6.5–8.3) in
group A and 6.3 months (6.2–7.0) in group C

(stratified hazard ratio [HR] 0.82, 95% CI
0.70–0.96; one-sided p = 0.007). median OS:
16.0 months (13.9–18.9) in group A and 13.4

months (12.0–15.2) in group C (0.83,
0.69–1.00; one-sided p = 0.027). Median

overall survival was 15.7 months (13.1–17.8)
for group B and 13.1 months (11.7–15.1) for

group C (1.02, 0.83–1.24)

KEYNOTE 361
[69]

Cisplatin or
Carboplatin +
Gemcitabine +

Pembrolizumab/ Pem-
brolizumab/Cisplatin

or Carboplatin +
Gemcitabine

Phase 3 RCT 1L 1010, 211 (21%)

median OS: 17·0 months (14.5–19.5) in the
pembrolizumab plus chemotherapy group

versus 14.3 months (12.3–16.7) in the
chemotherapy group (0.86, 0.72–1.02;

p = 0.0407) median PFS: 8.3 months (95% CI
7.5–8.5) in the pembrolizumab plus

chemotherapy group versus 7.1 months
(6.4–7.9) in the chemotherapy group (hazard
ratio [HR] 0.78, 95% CI 0.65–0.93; p = 0.0033)

KEYNOTE-045
[56]

Pembrolizumab/Paclitaxel
or Docetaxel or

Vinflunine
Phase 3 RCT 2L 748, 75 (10%)

median OS: 10.3 months (95% CI 8.0 to 11.8)
vs. 7.4 months (95% CI, 6.1 to 8.3) (hazard
ratio for death, 0.73; 95% CI, 0.59 to 0.91;

p = 0.002) median PFS: 2.1 months (95% CI,
2.0 to 2.2) vs. 3.3 months (95% CI, 2.3 to 3.5)

(HR 0.98; 95% CI, 0.81 to 1.19; p = 0.42)

IMvigor 211 [70]
Atezolizumab/Paclitaxel

or Docetaxel or
Vinflunine

Phase 3 RCT 2L 931, 236 (25%) median OS: 11.1 (95% CI 8.6–15.5) vs. 10.6
months (95% CI 8.4–12.2) p = 0.41

IMvigor 210 [66] Atezolizumab Phase 2 2L 119, 33 (28%) ORR: 23% (95% CI 16–31)

Abbreviations: BSC: best supportive care; RCT: randomized controlled trial; OS: overall survival; PFS: progression free survival; ORR:
objective response rate.

The IMvigor 130 trial, a randomized phase 3 trial, showed significant PFS improve-
ment of the addition of atezolizumab to platinum-based chemotherapy [68] (Table 2).
Specific outcomes of UTUC patients were not assessed. However, unfortunately, ate-
zolizumab in monotherapy failed to improve overall survival compared to chemotherapy
in pretreated metastatic UC [70]. In the same manner, the addition of pembrolizumab
to first-line platinum-based chemotherapy was not associated with a survival benefit
compared to chemotherapy alone (Table 2) [69].

In the second or later line, atezolizumab, durvalumab, avelumab, nivolumab, and
pembrolizumab have been demonstrated safe and efficient in platinum pretreated UC
population. However, UTUC patients’ data remained scarce (Table 2).

6. Perspectives in UTUC Management

According to the recent advances in the molecular characterization of UTUC, there is
a rationale to develop new treatment combinations. Indeed, given the high prevalence of
FGFR3 mutations and their association with a T-cell depleted phenotype in UTUC, there is
a rationale for combining ICI with FGFR3 inhibitors (Figure 1). Erdafitinib, a pan-FGFR
inhibitor, is now approved based on the results of the phase 2 trial in metastatic bladder
cancer, with a 40% of response rate in patients with FGFR actionable alterations [71]. More-
over, Ding et al. reported the case of a 67 years old metastatic, chemo-refractory UTUC’s
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patient having a dramatic response to pembrolizumab in association with erdafitinib [72].
However, reliable response biomarkers are still needed to improve precision medicine in
urothelial carcinoma. The ongoing trials assessing immune checkpoint inhibitors-based
combinations therapies in UTUC metastatic setting are reported in Table 3. They often
include backbone ICI in combination with chemotherapy, antibody-drug conjugates, and
tyrosine kinase inhibitors.

Table 3. Ongoing trials assessing immune checkpoint inhibitors-based combinations therapies in the metastatic setting.

Trial
Identification Drugs Comparative

Arm Administration Study Design Line Primary
Endpoint

NCT03513952 Atezolizumab/CYT107 Atezolizumab IV Phase 2 ≥2 ORR

NCT03237780 Atezolizumab/eribulin Eribulin IV Phase 2 >2 ORR

NCT02496208 Cabozantinib/Nivolumab ± Ipilimumab NA PO/IV Phase 1 >1 RP2D/safety

NCT04940299 Tocilizumab/Ipilimumab/Nivolumab NA IV Phase 2 1 Safety/DLT

NCT03606174
Sitravatinib/Nivolumab and

Sitravatinib/Pembrolizumab/Enfortumab
vedotin

NA PO/IV and
PO/IV/IV Phase 2 1,

≥2 ORR

NCT04602078 Atezolizumab/Gemcitabine/Cisplatin NA IV Phase 2 1 ORR

7. Conclusions

ICI inhibitors are now widely used in daily practice to treat urothelial carcinoma
patients. Based on the recent advancement in the comprehension of the molecular biology
of UTUC and the differences between bladder UC and UTUC, further studies focused
on UTUC patients are needed to personalize the therapeutic approach and find new
treatment combinations.
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