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A B S T R A C T

Background: Mechanical ventilation (MV) is the key to the successful treatment of acute respiratory failure
(ARF) in the intensive care unit (ICU). The study aims to formalize the concept of individualized MV strategy
with finite mixture modeling (FMM) and dynamic treatment regime (DTR).
Methods: ARF patients requiring MV for over 48 h from 2008 to 2019 were included. FMM was conducted to
identify classes of ARF. Static and dynamic mechanical power (MP_static and MP_dynamic) and relevant clin-
ical variables were calculated/collected from hours 0 to 48 at an interval of 8 h. DMP was calculated as the
difference between actual and optimal MP.
Findings: A total of 8768 patients were included for analysis with a mortality rate of 27%. FFM identified three
classes of ARF, namely, the class 1 (baseline), class 2 (critical) and class 3 (refractory respiratory failure). The
effect size of MP_static on mortality is the smallest in class 1 (HR for every 5 Joules/min increase: 1.29; 95%
CI: 1.15 to 1.45; p < 0.001) and the largest in class 3 (HR for every 5 Joules/min increase: 1.83; 95% CI: 1.52 to
2.20; p < 0.001).
Interpretation: MP has differing therapeutic effects for subtypes of ARF. Optimal MP estimated by DTR model
may help to improve survival outcome.
Funding: The study was funded by Health Science and Technology Plan of Zhejiang Province (2021KY745),
Key Research & Development project of Zhejiang Province (2021C03071) and Yilu "Gexin" - Fluid Therapy
Research Fund Project (YLGX-ZZ-2,020,005).
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
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hun Road, Hangzhou 310016,

.
ould be considered as co-first

Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
1. Introduction

Acute respiratory failure (ARF) is a medical emergency requiring
immediate intervention [1-4]. Mild ARF could be treated with oxygen
therapy but the severe form typically requires invasive mechanical
ventilation (MV) to maintain gas exchange. While MV is able to cor-
rect respiratory failure by providing gas exchange, it may also cause
lung injury [5-7]. Thus, protective mechanical ventilation conducted
by limiting tidal volume, plateau pressure and driving pressure
has been recommended to minimize potential lung injury during MV
[8-11]. More recently, some studies show that the mechanical power
(MP), which is calculated by combing several mechanical parameters
of plateau pressure, respiratory rate and positive end expiratory pres-
sure (PEEP), can provide better prediction of lung injury [12-15].
Thus, it is reasonable to develop an individualized ventilation strat-
egy based on MP.

However, one of the most important challenges in the manage-
ment of critically ill patients is the population heterogeneity [16-19].
The idea of protective ventilation is theoretically sound but may be
difficult to implement in clinical practice. It is recommended to venti-
late patients with acute respiratory distress syndrome (ARDS) by lim-
iting tidal volume < 6 ml/kg and plateau pressure < 30 cmH2O
[10,20]. However, such a single value may not be uniformly beneficial
for all ARF patients due to the heterogeneity. For example, some
patients may develop severe carbon dioxide retention at a low tidal
volume, while others may be intolerant to a high PEEP due to circula-
tory failure. Therefore, the ventilation strategy must be individual-
ized to optimize clinical outcomes, by considering not only the
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Research in context

Evidence before this study

Acute respiratory failure (ARF) is a medical emergency requir-
ing immediate intervention. Mechanical power (MP), which is
calculated by combining several mechanical parameters of pla-
teau pressure, respiratory rate and positive end expiratory
pressure (PEEP), can provide better prediction of lung injury. It
is feasible to ventilate patients with ARF by restricting MP.
However, one of the most important challenges in the manage-
ment of critically ill patients is the population heterogeneity. A
single ventilation strategy may not be uniformly beneficial for
all ARF patients due to the heterogeneity.

Added value of this study

The present study aimed to identify phenotypes of ARF and
then estimate a sequence of optimal MP-based ventilation
strategy based on dynamic treatment regime (DTR) model. The
optimal MP was validated by regressing mortality outcome on
the difference between actual and optimal MP (DMP). The
study provided additional evidence that ventilation based on
MP was feasible and may be beneficial for ARF patients.

Implications of all the available evidence

MP has differing therapeutic effects for subtypes of ARF. Opti-
mal MP estimated by DTR model may help to improve survival
outcome. Further prospective trials are needed to test whether
ventilation strategy guided by DTR model is able to improve
mortality outcome.
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current physiological conditions but also previous responses to a
treatment. Such a treatment strategy can be formalized by dynamic
treatment regimen (DTR) modeling [21-23]. The idea of DTR is to esti-
mate a sequence of treatment rules to maximize clinical benefits. The
present study aimed to identify phenotypes of ARF and then estimate
a sequence of optimal MP-based ventilation strategy based on DTR
model. The optimal MP was validated by regressing mortality out-
come on the difference between actual and optimal MP (DMP).

2. Methods

2.1. Study design and setting

The study was conducted using the Medical Information Mart for
Intensive Care (MIMIC)-IV database [24], which integrated deidentified,
comprehensive clinical data of patients admitted to the Beth Israel Dea-
coness Medical Center in Boston, Massachusetts from 2008 to 2019 (Z.Z.
had access to the data). The data covered over 50,000 distinct adult
patients who had detailed ICU data. We included ARF patients who
required mechanical ventilation in the ICU. ARF was defined as hypoxia
with an arterial partial pressure of oxygen (PaO₂) of <8 kPa
(<60 mmHg) on room air and/or arterial partial pressure of carbon
dioxide (PaCO₂) of >6.5 kPa (>50 mmHg) on room air at sea level. [25]
Exclusion criteria included: 1) patients younger than 18 years old; 2)
patients who treated with extracorporeal membrane oxygenation
(ECMO) and 3) patients ventilated for less than 48 h. The first ICU admis-
sion was used for patients who hadmultiple ICU admissions.

The study utilized third-party and de-identified database for anal-
ysis. The utilized database which is released under the Health Insur-
ance Portability and Accountability Act (HIPAA) safe harbor
provision. The re-identification risk was certified as meeting safe har-
bor standards by Privacert (Cambridge, MA) (HIPAA Certification no.
1031,219�2). Beth Israel Deaconess Medical Center approved the
database, and ethics approval was exempt from our institution for
the current analysis. Informed consent was waived due to retrospec-
tive nature of the study.

2.2. Variables

Variables included for analysis were based on both availability in
the database and relevance to the research question. Demographics
and clinical variables included age, sex, height, diagnosis (ARDS,
Heart failure, COPD, Sepsis), systolic blood pressure and heart rate.
Mechanical ventilation parameters were tidal volume (TV), respira-
tory rate, FiO2, plateau pressure, PEEP, peak pressure. Laboratory var-
iables included PaO2, PaCO2, base excess (BE), HCO3, pH, lactate,
hematocrit, creatinine, and total bilirubin. The time-varying variables
were collected at an interval of 8 h for a total of 48 h after initiation
of MV. Thus, there were 7 time points from time 0 to 48 h. This inter-
val was used because the static lung mechanics were measured at an
interval of 8 h for the majority of patients in average. If there were
multiple measurements in an 8-hour interval, these measurements
were averaged over the 8-hour time window. These variables were
chosen because they were commonly used for assessing disease
severity as was used in the sequential organ failure assessment
(SOFA) score. MP was calculated as follows [14,26]:

MP_dynamic ¼ 0:098 � RR� TV � Ppeak � 0:5� Ppeak � PEEP
� �� �� �

MP_static ¼ 0:098 � RR� TV � Ppeak � 0:5� Pplateau � PEEP
� �� �� �

where TV is the tidal volume and Ppeak is the peak inspiratory pres-
sure and Pplateau is the end-inspiratory plateau pressure. Missing val-
ues were imputed by the Last observation carried forward (LOCF)
method for longitudinal data [27], sensitivity analysis by using hot
deck method was performed to ensure stability of the results (results
not shown) [28].

2.3. Classes of ARF

The classes of ARF were investigated using finite mixture model-
ing (also known as latent profile analysis) (Fig. 1). The best number of
classes was determined by the combination of model fit statistics and
clinical relevance. Bootstrap likelihood ratio test was performed to
compare whether k-class model was better than (k-1)-class model
[29,30]. Lower values of AIC and SABIC, higher values of entropy
were considered as better model fit. The minimum percentage of
patients in a class should be greater than 10%. To ensure the stability
of the class membership, the minimum probability of assigning to
one class should be over 0.85. The best number of classes was also
confirmed by k-means clustering analysis [31]. Statistics such as Har-
tigan index, Ball index, Scott index, scatter distance (SD) index,
TraceW and TrCovWwere reported [31].

Characteristics of classes were compared using Chi-square test or
Fisher’s exact test for categorical data, and Kruskal-Wallis rank sum
test or analysis of variance (ANOVA) for numeric data. [32] Interac-
tions between class membership and MP (Class�MP) were explored
in multivariable Cox regression models with time-varying covariates
[33]. Other covariates selected by expertise and clinical significance
included age, HR, RR, SBP, creatinine, total bilirubin (TB), PaO2/FiO2

ratio (PF), PaCO2 and hematocrit. We reported the hazard ratio for
survival outcome for both MP_dynamic and MP_static at every 5 Jou-
les/min increase.

2.4. Dynamic treatment regimen modeling

We used DTR to estimate optimal MP over the first 48 h of MV at
an interval of 8 h, so that the final clinical outcome can be optimized



Fig. 1. Flowchart of subject enrollment and statistical analysis. After application of exclusion criteria, a total of 8768 patients were used for analysis. We firstly determined the num-
ber of classes for the ARF population by using k-means clustering and finite mixture modeling (FFM). Visualization of FFM-derived classes was performed in the top three principal
component space. Clinical characteristics of the classes of ARF were compared with standard statistical methods. The effect of mechanical power (MP) on survival outcome was
explored in Cox regression model with time-varying covariates, including an interaction term between class membership and MP. Dynamic treatment regimen (DTR) model was
used to estimate a sequential decision rule for prescribing MP dose (optimal MP) at hour 0 to 48 at a step of 8 h. ΔMP was calculated as the difference between actual and optimal
MP. Multivariable regression model was used to explore the effect of MP on mortality with a quadratic functional form. Abbreviations: MIMIC: Medical Information Mart for Inten-
sive Care; MV: mechanical ventilation; ECMO: extracorporeal membrane oxygenation; PCA: principal component analysis; MP: mechanical power; DTR: dynamic treatment regi-
men; HR: heart rate; BP: blood pressure; RR: respiratory rate.

Y. Hong et al. / EClinicalMedicine 36 (2021) 100898 3
[34]. Because MP_static was more strongly associated with the
survival outcome than MP_dynamic (e.g. the hazard ratio of
MP_static was consistently higher than that of MP_dynamic, see
result for more details), we focused on optimizing MP_static in
this section. The mortality outcome EðY jx; aÞ was modelled in
terms of treatment free model f ðxb; bÞ and a blip function gðxc; a;
cÞ: EðY jx; aÞ ¼ f ðxb; bÞ þ gðxc; a; cÞ, where xb and xc were subsets
of observed covariates vector x, which included age, RR, SBP, HR,
Class, PaO2, PaCO2, PF, BE, pH, Lactate, Creatinine, hematocrit and
TB. The blip function was parameterized in terms of c and charac-
terizes the treatment effect. The dose distribution of MP was
assumed to be Gamma distribution and was transformed by loga-
rithm in the link function. Variables in the blip function that inter-
acted with linear MP included age, RR, SBP, HR, Class, PaO2, PaCO2,
PF, BE, pH, Lactate, Creatinine, hematocrit and TB. Variables inter-
acting with the quadratic term (MP2) were class and PF. The goal of
parameter estimation is to optimize the final outcome Y in a
sequential manner, which was performed by dynamic weighted
ordinary least squares [35]. The results of the DTR model would
return individualized optimal dosing strategy for MP across hours 0
to 48. Then, the actual MP was compared to the optimal MP to com-
pute DMP ¼ MPactual �MPoptimal. Risk factors for DMP > 5 Joules/min
were explored by using logistic regression models, covariates were
included in the model by clinical relevance and statistical signifi-
cance at p = 0.2. The DTR model was validated by comparing mortal-
ity outcome difference between patients with different values of
DMP. A logistic regression model with quadratic functional form for
ΔMP was employed to explore whether the minimum risk of mor-
tality was at DMP � 0.
All analyses were performed using R (version 4.0.3). Two-tailed p
< 0.05 was considered as statistical significance. The R code for the
analysis can be found in the Supplementary file 1.

2.5. Role of the funding source

The funding source had no role in the design, conduction and
interpretation of the study.

3. Results

3.1. Participants

We initially identified 69,619 ICU admissions from the MIMIC-IV
database. A total of 8768 ARF patients who received MV for over 48 h
were included for our analysis (Fig. 1). The median age of the study
population was 64 years (IQR: 53 to 75 years, Table 1). There was
more male (5025/8768, 63%) than female patients. There were 117
ARDS patients (1%), 2379 sepsis (27%), 741 COPD (8%) and 2448 heart
failure (28%). The MP_static was slightly higher than the MP_dynamic
(14.8 [11.6 � 19.5] vs. 12.9 [10.2 � 16.9] Joules/min). The mortality of
the overall population was 27% (2365/8768).

3.2. Classification of ARF

The values of AIC and SABIC declined all the way down form 2-
class to 10-class model, but the smallest class contained less than 5%
patients from 4-class to 10-class models (Fig. 2B). The Entropy statis-
tic suggested 3-class model as the best one. Thus, the 3-class model



Table 1
Comparisons of Baseline characteristics across classes at the start of MV (hour 0).

Variables Total (n = 8768) Class 1 (n = 4372) Class 2 (n = 3637) Class 3 (n = 759) p

Age (years), Median (IQR) 64 (53, 75) 65 (53, 76) 63 (52, 73) 66 (56, 76) < 0.001
Gender, male (%) 5025 (57) 2519 (58) 2106 (58) 400 (53) 0.026
Height (cm), Median (IQR) 170 (163, 175) 170 (163, 175) 170 (163, 178) 170 (163, 173) < 0.001
ARDS, n (%) 117 (1) 43 (1) 66 (2) 8 (1) 0.004
Sepsis, n (%) 2379 (27) 774 (18) 1448 (40) 157 (21) < 0.001
COPD, n (%) 741 (8) 302 (7) 295 (8) 144 (19) < 0.001
HF, n (%) 2448 (28) 1069 (24) 1053 (29) 326 (43) < 0.001
Ppeak (cmH2O), Median (IQR) 23.00 (20.00, 28.00) 22.00 (19.00, 26.50) 24.00 (20.50, 28.00) 26.67 (22.00, 31.50) < 0.001
PEEP (cmH2O), Median (IQR) 5.03 (5.00, 8.00) 5.00 (5.00, 6.50) 5.30 (5.00, 8.46) 5.50 (5.00, 8.45) < 0.001
TV (ml), Median (IQR) 468.46 (415.67, 520.00) 474.92 (421.77, 522.21) 469.75 (420.13, 522.00) 428.50 (371.07, 492.79) < 0.001
Pplat (cmH2O), Median (IQR) 19.00 (16.00, 22.50) 18.00 (15.00, 21.00) 19.40 (16.50, 23.00) 21.00 (18.67, 24.50) < 0.001
RR (/min), Median (IQR) 19.24 (16.67, 22.45) 18.27 (16.07, 21.20) 20.19 (17.50, 23.57) 19.82 (17.32, 22.51) < 0.001
HR (/min), Median (IQR) 88.00 (75.70, 101.67) 84.00 (72.75, 97.17) 92.58 (79.80, 107.08) 87.50 (76.26, 100.00) < 0.001
SBP (mmHg), Median (IQR) 113.50 (103.88, 126.20) 118.00 (107.26, 131.45) 108.75 (100.67, 118.78) 114.09 (104.77, 125.62) < 0.001
PaO2 (mmHg), Median (IQR) 94.00 (70.00, 114.00) 94.00 (77.00, 118.08) 90.50 (67.33, 111.67) 72.33 (53.00, 93.00) < 0.001
PaCO2 (mmHg), Median (IQR) 41.25 (36.00, 48.00) 41.00 (36.00, 45.00) 41.00 (35.50, 47.00) 64.00 (54.00, 76.00) < 0.001
FiO2, Median (IQR) 57.50 (46.67, 73.33) 52.50 (45.00, 70.00) 63.00 (50.00, 78.75) 54.00 (45.00, 70.00) < 0.001
BE (mEq/L), Median (IQR) �1.00 (�4.67, 1.00) 0.33 (�0.50, 2.00) �5.50 (�8.50, �3.38) 7.50 (4.00, 11.00) < 0.001
HCO3 (mmol/L), Median (IQR) 22.50 (19.50, 26.00) 24.00 (22.00, 26.00) 19.00 (16.50, 21.00) 32.50 (30.00, 36.00) < 0.001
pH, Median (IQR) 7.36 (7.29, 7.41) 7.41 (7.37, 7.44) 7.29 (7.23, 7.33) 7.36 (7.29, 7.43) < 0.001
Lactate (mmol/L), Median (IQR) 1.70 (1.25, 2.86) 1.40 (1.10, 1.98) 2.77 (1.67, 4.50) 1.30 (0.90, 1.60) < 0.001
Creatinine (mg/dl), Median (IQR) 1.05 (0.70, 1.70) 0.90 (0.70, 1.25) 1.45 (1.00, 2.50) 0.90 (0.60, 1.30) < 0.001
Hct (%), Median (IQR) 31.10 (26.90, 36.00) 31.30 (27.20, 36.00) 30.70 (26.45, 35.97) 31.45 (27.10, 36.17) 0.009
TB, Median (IQR) 0.70 (0.50, 1.10) 0.70 (0.50, 0.90) 0.70 (0.50, 1.60) 0.70 (0.30, 0.70) < 0.001
dynamic MP (Joules/min), Median (IQR) 12.94 (10.19, 16.94) 12.00 (9.57, 15.38) 14.11 (10.93, 18.69) 13.63 (10.86, 17.27) < 0.001
static MP (Joules/min), Median (IQR) 14.80 (11.58, 19.50) 13.84 (10.96, 17.85) 16.13 (12.42, 21.25) 15.84 (12.53, 20.11) < 0.001
Compliance (ml/cmH2O), Median (IQR) 37.91 (29.71, 48.15) 39.68 (31.56, 50.18) 37.41 (29.46, 46.90) 30.38 (23.91, 39.26) < 0.001
PF (mmHg), Median (IQR) 152.13 (105.41, 210.00) 173.00 (120.00, 234.92) 136.00 (96.35, 188.00) 125.00 (88.00, 175.00) < 0.001
Normalized TV (ml/kg), Median (IQR) 7.40 (6.61, 8.36) 7.50 (6.69, 8.41) 7.36 (6.59, 8.36) 7.03 (6.06, 8.02) < 0.001
static DP (cmH2O), Median (IQR) 12.50 (10.00, 15.00) 12.00 (9.69, 14.60) 12.67 (10.00, 15.33) 14.00 (11.50, 17.00) < 0.001
dynamic DP (cmH2O), Median (IQR) 16.75 (14.00, 20.50) 16.00 (13.33, 19.84) 17.00 (14.00, 20.60) 19.50 (16.00, 24.00) < 0.001
Hospital LOS, Median (IQR) 320.00 (200.00, 504.00) 312.00 (200.00, 496.00) 336.00 (200.00, 536.00) 272.00 (168.00, 432.00) < 0.001
Mortality, n (%) 2365 (27) 964 (22) 1215 (33) 186 (25) < 0.001

Abbreviations: IQR: interquartile range; ARDS: acute respiratory distress syndrome; COPD: chronic obstructive pulmonary disease; HF: heart failure; Ppeak: peak inspi-
ratory pressure; PEEP: positive end expiratory pressure; TV: tidal volume; Pplat: plateau pressure; RR: respiratory rate; HR: heart rate; SBP: systolic blood pressure; BE:
base excess; Hct: hematocrit; TB: total bilirubin; MP: mechanical power; PF: arterial partial pressure of oxygen (PaO2) divided by the inspired oxygen concentration
(FiO2); DP: driving pressure; LOS: length of stay;.
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was considered as the best model. The 3-class model was further con-
firmed by k-means clustering analysis (Fig. 2A). Patients who transi-
tioned from Class 2 to 1 were more likely to survive on hospital
discharge (Fig. 2C). The three classes could be well separated in the
first three principal components (explaining 18%, 13.8% and 8.9% var-
iances of the total variance, Fig. 2D). Characteristics of the three clas-
ses are visualized in Fig. 2E. Class 1 is the largest class over all study
days with all variables in average value (the Baseline Class). Class 2
is characterized by metabolic acidosis (lowest pH: 7.29; IQR: 7.23 to
7.33) and poor tissue perfusion (Lactate: 2.77; IQR: 1.67 to
4.50 mmol/L) and can be called the Critical Class. Class 3 is character-
ized by high PaCO2 and low PF even at MV and can be called the
Refractory Respiratory Failure Class (Fig. 2E).

3.3. Differing therapeutic effects of MP in classes of ARF

In multivariable Cox regression models with time-varying covari-
ates, we included interaction terms between class membership and
MP. There was significant interaction between class membership and
MP. The effect size of MP_static on mortality is the smallest in class 1
(HR for every 5 Joules/min increase: 1.29; 95% CI: 1.15 to 1.45; p <

0.001) and the largest in class 3 (HR for every 5 Joules/min increase:
1.83; 95% CI: 1.52 to 2.20; p < 0.001). The results were confirmed for
MP_dynamic (Fig. 3A and B). Class 2 showed the lowest survival
probability over time, whereas class 1 showed the highest survival
probability over 30 days.

We further explored differing effects of MP on survival across
severity of lung injury quantified by lung compliance and P/F ratio.
Cox proportional regression models were fitted, which showed sig-
nificant interactions between MP_dynamic and compliance or P/F
ratio (Fig. 4). With P/F ratio < 100 mmHg as reference, the coeffi-
cients for the interaction terms of P/F (100�200 mmHg)*MP (HR:
0.98 [0.96, 0.99]; p < 0.001), P/F (200�300 mmHg)*MP (HR: 0.96
[0.95, 0.98]; p < 0.001), P/F (> 300 mmHg)*MP (HR: 0.94 [0.92, 0.96];
p < 0.001) were statistically significant. With compliance < 15 ml/
cmH2O as reference, the coefficients for the interaction terms of com-
pliance (15 - 30 ml/cmH2O)*MP (HR: 0.98 [0.95, 1.00]; p = 0.057),
compliance (> 30 ml/cmH2O)*MP (HR: 0.96 [0.94, 0.98]; p = 0.001)
were statistically significant.

3.4. Optimal treatment strategy estimated by DTR

The DTR model was employed to estimate the target for optimiz-
ing MP_static. The actual and optimal MP were compared and ΔMP
was calculated as the difference between actual and optimal MP.
ΔMP was categorized into 5 categories as “very low”, “low”, “opti-
mal”, “high” and “very high” at cutoff values of �10, �5, 5, 10 Joules/-
min. The distribution of ΔMP categories across classes and diseases
are shown in Fig. 4A and B. Interestingly, ARDS patients were more
likely to be ventilated with greater-than-optimal MP (greater propor-
tion of high and very high ΔMP) than COPD or heart failure patients
(Fig. 5A). Similarly, class 3 patients were more likely to be ventilated
with MP greater than optimal MP (Fig. 5B). The optimal MP_static
was significantly different for the three classes: class 1 (14.6§
9.1 ml/cmH2O), 2 (17.2§ 8.9 ml/cmH2O) and 3 (13.0§ 8.2 ml/
cmH2O). By using optimal ΔMP as the reference, both low (OR: 1.08;
95% CI: 1.02 to 1.15; p = 0.01) or high ΔMP (OR: 1.07; 95% CI: 1.00 to
1.14; p = 0.043) was associated with increased risk of hospital death
(Fig. 5C). The results were confirmed in the logistic regression model
with quadratic functional form of MP (Fig. 5D).



Fig. 2. Classes of ARF. A) Determination of optimal number of clusters by k-means clustering. The SD index seeks to find the minimum value for the best number of clusters. Other
indices seek to find an elbow point. B) Statistics of LPA to find the best fit model. The values of AIC and SABIC declined all the way down form 2-class to 10-class model, but the
smallest class contained less than 5% patients from 4-class to 10-class models. The Entropy statistic suggested 3-class model as the best one. Thus, the 3-class model was considered
as the best model. C) state transition of ARF stratified by vital status at hospital discharge (dead versus alive). Patients who transitioned from Class 2 to 1 were more likely to survive
on hospital discharge. Class 3 remained constant over ventilation days. D) Visualization of class membership in PCA space. The three classes could be well separated in the first three
principal components (explaining 18%, 13.8% and 8.9% variances of the total variance). E) Clinical characteristics of the three classes. Values in the vertical axis were normalized for
the ease of presentation in the same scale. **** p < 0.001 for comparisons among the three classes by ANOVA. Abbreviations: ARF: acute respiratory failure; HR: heart rate; SBP: sys-
tolic blood pressure; RR: respiratory rate; BE: base excess; Lac: lactate; Creat: creatinine; TB: total bilirubin; PF: PaO2/FiO2 ratio; PCA: principal component analysis; AIC: Akaike
Information Criterion; SABIC: sample size adjusted Bayesian information criteria; BLRT: bootstrap likelihood ratio test; prob_min: minimum probability in a class; prob_max: maxi-
mum probability in a class; n_min: minimum proportion in a class; n_max: maximum proportion in a class.
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Risk factors for DMP > 5 Joules/min was explored in a generalized
linear regression model. After adjustment for potential confounding
factors, class 2 was associated with lower risk of hyperventilation
(OR: 0.56; 95% CI: 0.53 to 0.60; p < 0.001) and class 3 (OR: 1.24; 95%
CI: 1.14 to 1.35; p < 0.001) was associated with increased risk of
being ventilated with greater-than-optimal MP.

4. Discussion

This study formalized individualized MP-based ventilation strat-
egy for ARF patients in two aspects. Firstly, three classes of ARF were
robustly identified by FFM and k-means clustering, which showed
distinct clinical characteristics and clinical outcomes. While class 1
accounts for the largest number of patients (Baseline Class), class 2 is
characterized by systemic tissue hypoperfusion and multiple organ
dysfunction (Critical Class) and class 3 is characterized by refractory
respiratory failure despite the use of MV. Furthermore, the effect
sizes of MP_static on survival outcome varied across the three classes.
Secondly, sequential individualized MP was estimated for each indi-
vidual patient using DTR modeling. To show that the optimal MP can
have additional overall survival benefits, we compared mortality out-
comes by different categories of ΔMP (i.e. ΔMP = 0 indicates a patient
actually receives optimal MP, ΔMP < 0 indicates hypoventilation and
ΔMP > 0 indicates over ventilation). The results showed that both
ventilation with ΔMP > 5 Joules/min and hypoventilation were asso-
ciated with increased risk of mortality as compared to the optimal
MP. While ventilation with large MP may cause lung injury, ventila-
tion with lower than optimal MP can cause inadequate ventilation
resulting in carbon dioxide retention and inadequate oxygen supply.
The latter two pathological conditions are well known risk factors for
mortality.

This study carries several clinical implications. First, the study for-
malized the concept of individualized ventilation strategy by using
unsupervised machine learning algorithm and DTR. The classification
of ARF is interpretable in that each derived class corresponds to a
clinical phenotype of ARF. The classification system cannot be fully



Fig. 3. Interaction between MP and class membership in a Cox regression model with time-varying covariates. A) Hazard ratio of covariates for survival outcome. Hazard ratio
for MP_dynamic was reported for every 5-Joules/min increase. B) probability of survival for a sequential value of MP_dynamic, stratified by the class membership, the cutoffs were
chosen for every 5-Joules/min increase starting from 10 Joules/min. C) Hazard ratio of covariates for survival outcome. Hazard ratio for MP_static was reported for every 5-Joules/
min increase. B) probability of survival for a sequential value of MP_static, stratified by the class membership. Abbreviations: HR: heart rate; SBP: systolic blood pressure; RR: respi-
ratory rate; BE: base excess; Lac: lactate; Creat: creatinine; TB: total bilirubin; PF: PaO2/FiO2 ratio; Hct: hematocrit.
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explained by conventional reasons of ARF such as COPD, ARDS, heart
failure or sepsis. Although greater MP was found to have hazardous
impact on mortality outcome across the three classes, class 3 showed
the largest effect size. The results for MP_static and MP_dynamic
were consistent. The hallmark feature of class 3 is refractory respira-
tory failure despite the use of MV, with relatively normal functions in
other organs/systems including the circulatory system (high SBP and
low lactate), renal (low creatinine) and liver function (low TB). In this
situation, lower MP will help to reduce potential lung injury. This
result is also supported by our previous work showing that high MP
is most hazardous in patients with severe ARDS, while the effect is
minimal for mild ARDS patients [36]. A recent study also showed that
the association of MP and mortality was stronger in patients with
worse baseline hypoxemia [26].

Second, the optimal MP values estimated by DTR model is another
way to show the association between MP and mortality outcome. The



Fig. 4. Interaction between MP_dynamic and respiratory variables. A) Interaction between MP_dynamic and compliance. Compliance was categorized at cutoffs of 15 and 30 ml/
cmH2O. B) Interaction between MP_dynamic and P/F ratio. P/F ratio was categorized at cutoffs of 100, 200 and 300 mmHg. Abbreviations: MP_dynamic: dynamic mechanical
power; P/F: PaO2/FiO2 ratio.
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benefit of using DTR model to formalize the sequential decision rule
is that it fully accounts for the state transition during disease course
[34], which has been successfully applied in other medical areas such
as mental health [37], oncology and trauma [38,39]. As shown in our
data, the dynamic transitions between ARF classes were prevalent
over ventilation days, such a dynamic state transition requires the
ventilation strategy to be tailored. However, current clinical practice
rarely considers the fact of dynamic transitions [40]. While most clin-
ical practice guidelines recommended to ventilate ARDS by limiting
tidal volume < 6 ml/kg and plateau pressure < 30 cmH2O [41-43]. it
is largely unknown how to adjust ventilator parameters when the
patient’s condition changed during disease course. We further proved
that a ventilation strategy with MP deviated away from the optimal
MP (ΔMP) was associated with higher mortality risk, supporting the
use of DTR to improve mortality outcome for ARF patients. However,
the DTR-based ventilation strategy needs to be tested in controlled
trials.

Third, risk factors for ventilation with ΔMP > 5 Joules/min were
explored which can help to tailor MP based on these risk factors. For
example, our study identified class 3 as a risk factor for ventilation
with ΔMP> 5 Joules/min, indicating that MP can be further decreased
for this subgroup of patients. COPD patients are more likely to be ven-
tilated with less-than-optimal MP, for whom higher MP can be used
to ensure adequate oxygen supply and carbon dioxide removal.



Fig. 5. DTR model to estimate optimal MP_static. The actual and optimal MP were compared and ΔMP was calculated as the difference between actual and optimal MP. ΔMP was
categorized into 5 categories as “very low”, “low”, “optimal”, “high” and “very high” at cutoff values of �10, �5, 5, 10 Joules/min (the cutoffs were chosen at the quantile points
rounded to an integer). A) distribution of different categories of ΔMP across disease types. B) Distribution of different categories of ΔMP across class membership over the first 48 h
after MV start. C) Impact of categorized ΔMP on mortality. The optimal ΔMPwas used as reference. D) Impact of ΔMP on mortality in a model with quadratic functional form of ΔMP.
E) Risk factors for hyperventilation (defined as ΔMP > 5 Joules/min) estimated by a generalized linear model. Abbreviations: CI: confidence interval; HR: heart rate; SBP: systolic
blood pressure; RR: respiratory rate; BE: base excess; Lac: lactate; TB: total bilirubin; PF: PaO2/FiO2 ratio; MP: mechanical power.
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Interestingly, the study found that P/F ratio was a strong predictor of
ventilation with ΔMP > 5 Joules/min (OR for every 10-mmHg
increase: 0.75; 95% 0.70 to 0.82), indicating that patients who had
worse hypoxia were more likely to have MP-induced lung injury.
Although protective ventilation with limited tidal volume and pla-
teau pressure is beneficial for both injured and healthy lungs, the rel-
ative risk is much greater in injured lungs [9,44,45]. This is consistent
with findings from other independent studies [26,36]. These eviden-
ces collectively support the validity of the optimal ventilation strat-
egy estimated by the DTR model.

There are several limitations in the study. First, the optimal MP
estimated by the DTR model is a target for optimizing ventilation. In
real clinical practice, it may not be feasible to lower MP due to the
requirements of gas exchange for patients with severe lung injury
even we know higher MP is associated with increased mortality risk.
Using the DTR model appears to be another way to show that high
MP leads to poor outcomes. It remains to be validated whether
adjusting MP to the model-selected level improves outcomes. Sec-
ond, body mass index is a good anthropometry, but we were not
including it for the adjustment of ventilator parameters. The body
weight is varying in critically ill patients because of the inability to
maintain fluid intake/output balance, thus many guidelines recom-
mend using height to estimate ideal body weight for ventilator set-
ting. Thus, we included the fixed variable height into the models in
our study.

In conclusion, a sequential decision rule estimated by DTR model
for MP adjustment is feasible for patients with ARF. Further prospec-
tive trials are needed to test whether ventilation strategy guided by
DTR model is able to improve mortality outcome.
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