
Biochemical and Biophysical Research Communications 445 (2014) 785–790
Contents lists available at ScienceDirect

Biochemical and Biophysical Research Communications

journal homepage: www.elsevier .com/locate /ybbrc
Development of an antigen microarray for high throughput monoclonal
antibody selection
http://dx.doi.org/10.1016/j.bbrc.2013.12.033
0006-291X/� 2013 The Authors. Published by Elsevier Inc.

⇑ Corresponding author.
E-mail addresses: ns8@sanger.ac.uk (N. Staudt), nms@sanger.ac.uk

(N. Müller-Sienerth), gw2@sanger.ac.uk (G.J. Wright).

Open access under CC BY-NC-ND license.
Nicole Staudt, Nicole Müller-Sienerth, Gavin J. Wright ⇑
Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, United Kingdom

a r t i c l e i n f o a b s t r a c t
Article history:
Available online 25 January 2014

Keywords:
Protein microarray
Hybridoma
Monoclonal antibodies
High throughput
Monoclonal antibodies are valuable laboratory reagents and are increasingly being exploited as therapeu-
tics to treat a range of diseases. Selecting new monoclonal antibodies that are validated to work in par-
ticular applications, despite the availability of several different techniques, can be resource intensive with
uncertain outcomes. To address this, we have developed an approach that enables early screening of
hybridoma supernatants generated from an animal immunised with up to five different antigens
followed by cloning of the antibody into a single expression plasmid. While this approach relieved the
cellular cloning bottleneck and had the desirable ability to screen antibody function prior to cloning,
the small volume of hybridoma supernatant available for screening limited the number of antigens for
pooled immunisation. Here, we report the development of an antigen microarray that significantly
reduces the volume of supernatant required for functional screening. This approach permits a significant
increase in the number of antigens for parallel monoclonal antibody selection from a single animal.
Finally, we show the successful use of a convenient small-scale transfection method to rapidly identify
plasmids that encode functional cloned antibodies, addressing another bottleneck in this approach. In
summary, we show that a hybrid approach of combining established hybridoma antibody technology
with refined screening and antibody cloning methods can be used to select monoclonal antibodies of
desired functional properties against many different antigens from a single immunised host.

� 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

The high binding affinity and specificity of monoclonal antibod-
ies for their targets have made them invaluable tools for biomedi-
cal research and an increasingly important class of drugs that have
been exploited to treat a range of diseases [1,2]. To select new
monoclonal antibodies to a defined antigen, host animals are
immunized and the resulting antibody-secreting B-lymphocytes
are fused to a myeloma cell line to create a hybridoma. Hybrido-
mas that secrete monoclonal antibodies of the required properties
are selected so that they can be cultured indefinitely to provide
large amounts of antibody as necessary [2,3]. While well-
established, selecting monoclonal antibodies using this approach
has several limitations that have made selecting monoclonal
antibodies to multiple different antigens in parallel difficult. The
limitations for scaling this approach include the use of laboratory
animals, with standard protocols typically recommending immun-
ising several animals per target antigen. Furthermore, because of
the additional chromosomes, hybridomas are genetically only
metastable, often necessitating the repeated cellular cloning of
the hybridoma cell line which can be lengthy and labour intensive.
Finally, it takes up to 2 weeks after the cellular fusion procedure
before single hybridomas have divided to form a colony that is
large enough to secrete sufficient amounts of antibody to permit
robust screening.

Because of the usefulness of monoclonal antibodies, a wide
range of different techniques for selecting them have been
developed that bypass some or all of these limitations. Approaches
using libraries of antibody-based binding reagents and in vitro
selection methods such as phage display [4] and similar methods
[5] have been particularly successful and obviate the need for
animals. The requirement to create and culture hybridomas
can also be circumvented by sorting individual antigen-specific
B-lymphocytes and amplifying the regions encoding the rear-
ranged antibody light and heavy chain regions by single cell
RT-PCR; once cloned, antibodies can be expressed recombinantly
by transfecting mammalian cell lines [6]. Variations include B-cell
panning [7], lithographic methods of single cell incubation [8] or
spotting of single cells onto an antigen coated chip [9], each of
which have their own advantages for certain applications.
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While these alternative methods have specific advantages, ani-
mal immunisation and the generation of hybridomas have two
important features. Firstly, the affinities of antibodies raised
in vivo are often higher than those from in vitro selection methods
due to the process of somatic hypermutation; and secondly,
hybridoma colonies typically secrete sufficient amounts of anti-
body to permit some functional screening so that subsequent clon-
ing efforts are focussed only on antibodies that have the required
immunological or biochemical properties. With these points in
mind, we developed a convenient method of selecting monoclonal
antibodies against multiple antigens immunised as a pool into a
single animal [10]. This hybrid approach ensured high-affinity
antibodies were elicited, and that some hybridoma supernatant
was available for screening to identify antibodies with desired
functional properties prior to cloning. Selected antibodies were
cloned by amplification of the rearranged antibody light and heavy
chains by RT-PCR from the hybridomas, and ligated into a single
expression plasmid that could be used to express the antibodies
recombinantly [10]. Using this approach, we were able to immu-
nise and screen up to five different antigens per mouse, a number
that was restricted by the small volume (�200 ll) of available anti-
body-containing supernatant per hybridoma and our use of a stan-
dard ELISA in our antibody selection screen. Because, in principle,
antibodies to more antigens could be obtained from a single
mouse, we sought to reduce the amount of hybridoma supernatant
required for initial antibody screening and address an additional
bottleneck in this method: the identification of functional anti-
body-encoding plasmids.

We now describe the development and use of a protein micro-
array that permits the screening of up to 100 different antigens
with small volumes of undiluted hybridoma tissue culture super-
natant which significantly increases the number of antibodies that
can be cloned from a single mouse in parallel. In addition, we de-
scribe a refinement using the small scale transfection of HEK293
cells which facilitates the identification of functional antibody
expression plasmids. Together, these refinements reduce the num-
ber of animals required for generating monoclonal antibodies and
vastly increase the potential throughput of this method of mono-
clonal antibody generation.
2. Materials and methods

2.1. Recombinant protein production and purification

The extracellular domains of zebrafish proteins used in this
study were expressed as monobiotinylated proteins using mam-
malian cells. Expression plasmids were made from published re-
sources [11–13] by subcloning the NotI/AscI enzyme flanked
ectodomains [14] into a plasmid containing a C-terminal rat Cd4
domains 3 and 4, an enzymatically biotinylatable peptide se-
quence, and a 6 His-tag [11,15]. The ectodomains of zebrafish pro-
teins and recombinant antibodies were expressed by transient
transfection of either HEK293E [16] or F (Invitrogen) cells. To
monobiotinylate proteins during expression, cells were co-trans-
fected with a plasmid encoding a secreted Escherichia coli BirA en-
zyme [11,15]. Supernatants were harvested after 6 days, filtered,
and purified using Ni2+-NTA Sepharose (Invitrogen) [17]. Proteins
were assessed by SDS–PAGE and protein biotinylation confirmed
by ELISA [15]. Recombinant antibodies were purified using protein
G columns (GE Healthcare) [10].
2.2. Immunizations and hybridoma generation

Six-week-old Balb/c mice were immunised intraperitoneally
with pools of up to twenty antigens (5 lg each) mixed with Gold’s
Adjuvant (Sigma) three times at 4 week intervals. Mice were given
a final immunisation without adjuvant 3 days before the spleen
was removed. Splenocytes (108) were fused to SP2/0 myeloma cells
(107) in 50% PEG 1500 (Roche, Hertfordshire, UK) using standard
procedures [10]. The hybridoma mixture was plated over twelve
96-well plates and supernatants were harvested after 10–14 days
for screening.

2.3. Printing of protein microarrays

Purified biotinylated proteins were spotted at the base of strep-
tavidin-coated 96-well microtitre plates (NUNC Immobilizer, Ther-
mo Scientific, Denmark) using a Microgrid II arrayer (BioRobotics)
by direct contact printing using 0.2 or 0.4 mm solid printing pins.
Printed plates were left unwashed and plates were stored at 4 �C
unless described otherwise. For screening, hybridoma superna-
tants were added directly to the wells and a specific blocking step
was found not to be required. A biotinylated anti-rat Cd4 antibody
was used as a positive control and orientation marker.

2.4. Screening of protein microarrays

Hybridoma supernatants were added to the antigen arrays and
incubated overnight at 4 �C. After washing with PBT (PBS + 0.1%
Tween), arrays were incubated for 2 hours with a goat anti-mouse
Alexa 488 secondary antibody (Invitrogen), washed in PBT, fol-
lowed by a rabbit anti-goat Alexa 488 antibody (Invitrogen). This
second amplification step, although not absolutely required, in-
creased signals to permit direct visual screening using an epifluo-
rescence microscope. In some cases, antibodies were detected
with an anti-mouse Alexa 568 secondary antibody (e.g. Fig. 1C)
or an anti-mouse alkaline phosphatase secondary followed by
NBT/BCIP (Roche) as a precipitating colourimetric substrate (e.g.
Fig. 1B). Antigen arrays were analysed on a Leica MZ 16 FA micro-
scope, images captured using an Axiocam HRC (Zeiss) and adjusted
for brightness and contrast with Adobe Photoshop CS4.

2.5. Identification of functional recombinant antibody plasmids by
transient transfection

The rearranged variable heavy and light chain antibody regions
were amplified from hybridoma cDNA by RT-PCR and recombined
into one PCR product using a fusion PCR-based strategy that, after
cloning into a suitable expression vector, enables the expression of
a recombinant antibody from a single expression vector, as de-
scribed [10]. In brief, the fused PCR products from each hybridoma
were ligated into an expression vector and the mixture used to
transform chemically competent bacteria. Plasmids were purified
from 96 bacterial colonies for each hybridoma. Suspension cultures
(1 ml) of HEK293 cells were transfected in 24-well plates with
2.5 lg plasmid DNA using Metafectin (Biontex Laboratories),
supernatants harvested after 3 days and tested by ELISA. The plas-
mids encoding the antibodies described in the study are openly
available from Addgene (http://www.addgene.org).
3. Results

3.1. The printing of protein arrays in 96-well plates permits the
parallel screening of a large number of antigens

To increase the number of monoclonal antibodies that could
be selected in parallel from a single mouse immunized with
multiple antigens, we aimed to print small protein microarrays
at the base of 96-well microtitre plates (Fig. 1A). We have devel-
oped an approach that enables the expression of enzymatically

http://www.addgene.org
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Fig. 1. Establishment of the optimal printing and storage conditions for biotinylated antigen arrays in streptavidin-coated 96-well plates. (A) Schematic representation of a 96
well plate with a 5 � 5 antigen array. (B–L) A purified biotinylated antibody (OX68-bio) was spotted in streptavidin-coated 96 well plates. (B and C) Detection with either a
non-fluorescent alkaline phosphatase-conjugated secondary antibody followed by a precipitating colourimetric NBT/BCIP substrate (B); and, with a fluorescent Alexa 568-
conjugated secondary antibody (C). (D) Different concentrations of OX68-bio, 1 = 0.5; 2 = 0.25; 3 = 0.1; 4 = 0.05 lg/ll were arranged vertically, and in quadruplicate
horizontally. (E) Different amounts of Tween 20 added prior to printing, 1 = 10%; 2 = 1%; 3 = 0.1%; 4 = None. (F) Different amounts of glycerol added prior to printing, 1 = 10%;
2 = 1%; 3 = 0.1%; 4 = 1% Tween 20. (G) Incubation of different concentrations of spotted antibody (as in (D)) for 2 h at room temperature with a 4% formalin solution. Storage of
a printed plate for 2 days at room temperature (H), and at �20 �C (I), prior to antigen detection. Examples of: a 25-spot array using 0.4 mm pins, 0.66 mm pitch (J); a 53-spot
array using 0.2 mm pins, 0.45 mm pitch (K), and a 101-spot array using 0.2 mm pins, 0.32 mm pitch. In panels D–L printed antibody was detected with an Alexa-488
conjugated secondary antibody.
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monobiotinylated proteins so that they can be captured on strepta-
vidin-coated microtitre plates [11,15]. Therefore, to determine the
optimal arraying parameters, and to investigate the effectiveness
of different mouse antibody detection methods, we spotted a puri-
fied biotinylated mouse antibody as a control, and used different
secondary antibodies on the resulting arrays (Fig. 1B–L). We found
that both non-fluorescent (Fig. 1B) and fluorescent detection
methods using either Alexa-568 (Fig. 1C) or Alexa-488 (Fig. 1D)
conjugated secondary antibodies gave good signal to noise ratios.
A dilution series of the biotinylated mouse antibody ranging from
50 to 500 ng/ll demonstrated that a printing concentration of
250 ng/ll produced good spot morphology, and was therefore used
for future experiments (Fig. 1D). We also tested the influence of
the non-ionic detergent, Tween-20, which has been previously
reported to improve spot morphology [18]; we found that spot
diameter increased with increasing Tween-20 concentration
(Fig. 1E). Purified proteins can be stored unfrozen at �20 �C in
50% glycerol, and while desirable for long term antigen storage,
we found that the addition of even small amounts (0.1%) of glyc-
erol inhibited the efficient immobilisation of the biotinylated anti-
body to the streptavidin-coated surface (Fig. 1F). Because we are
ultimately interested in selecting antibodies that can recognise
antigen in fixed wholemount tissue, antibodies will be eventually
screened for their ability to recognise fixed epitopes on the array.
Therefore, we tested the impact of formalin fixation on the arrayed
protein and found that this did not impair detection significantly
(Fig. 3G); indeed, we noticed an overall stronger signal, possibly
due to the cross-linking of proteins during fixation thereby increas-
ing the amount of protein retained on the plate during washing
steps. We also investigated the optimal storage conditions for the
printed arrays. We found that robust signals were still apparent
after 2 days, regardless of whether the arrays were stored either
dry or in PBS (data not shown), or stored at room temperature
(Fig. 1H) or at �20 �C (Fig. 1I). While we have not systematically
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tested longer-term storage, we can at least say that the arrays re-
tain good signal to noise ratios when stored dry for up to 2 weeks
at room temperature. Finally, we should add a concluding caution-
ary note that these printing and storage parameters were deter-
mined using a single monoclonal antibody rather than a diverse
set of proteins, which could very well differ in their properties.

We also investigated the density of spots that could be arrayed
in each well using solid printing pins with a diameter of either 0.2
or 0.4 mm. The larger pins were able to print a 5 � 5 array into
each well (Fig. 1J) while the smaller pins enabled the printing of
a 53-spot array (Fig. 1K), which could be increased to 101 spots
by decreasing the distance between spots (Fig. 1L). Taken together,
these experiments have established the parameters required for
printing and storing antigen arrays that are suitable for monoclo-
nal antibody screening against many antigens in parallel.

3.2. Antigen microarray screening enables the early and rapid
detection of specific monoclonal antibodies

Previous work in the laboratory has identified a network of 188
extracellular protein interactions between 92 zebrafish cell surface
and secreted proteins [11–13,19]. Elucidating the function of these
interactions in early vertebrate development will be aided by
selecting highly specific monoclonal antibodies that work on fixed
wholemount tissue. Due to the paucity of high quality zebrafish
antibody reagents, this has necessitated the development of meth-
ods to select antibodies to many different targets in parallel. We
therefore wished to determine whether the protein antigen array
could be used for the simultaneous screening of hybridoma super-
natants from a single mouse immunised with many different zeb-
rafish antigens. Hydridomas were generated from splenocytes
taken from a mouse immunised with 20 different proteins and pla-
ted at a low density (on average, less than 1 hybridoma per well)
over twelve 96-well plates. Arrays containing all 20 purified biotin-
ylated proteins were printed (Fig. 2A), and the undiluted hybrid-
oma supernatants were transferred to these plates to assess
binding specificity; this approach therefore allows the convenient
simultaneous screening of over 23,000 (20 � 12 � 96) antibody
binding tests. Hybridomas secreting specific antibodies were easily
identified as discrete positively-stained spots distinct from the
12

12

12

12

10

11

7

8

9 6

5

4 1

2

3

13

11

8

9

10

6

5

4

1

2

12

7

14

15

16

17

18

19

20

21

21

21

A B

E F

3

19 = Fgfr1

4 = Robo1

Fig. 2. Antigen microarrays enable early screening of antibody specificity. (A) Twenty d
purified and arrayed as shown, together with three control spots (No. 21). (B) An example
reactive antibody that bound two paralogous antigens arrayed in position 10 (Pcam) and
arrayed proteins. (E) A smaller array with 11 different antigens and four control spots
(Brevican), and (H), antigen 8 (Ncam2).
controls on the array (Fig. 2B). An important feature of screening
hybridoma supernatants against many antigens in parallel is that
antibodies that are cross-reactive with multiple antigens can be
identified at an early stage. Within our library of zebrafish cell sur-
face receptor proteins, there are several examples of paralogous
proteins that share a high amount of protein sequence identity
[12,20]. Within the pool of 20 immunised proteins were two mem-
bers of the same paralogous protein family: Pcam and Ncam, which
share 66% amino acid identity [21]. During our antibody specificity
screen, we were able to identify antibodies that were cross-reac-
tive and could bind both Pcam and Ncam (Fig. 2C); these cross-
reactive antibodies could therefore be excluded. Similarly, antibod-
ies recognising the purification tags common to all arrayed pro-
teins were easily and rapidly detected and also excluded
(Fig. 2D). A smaller array of 11 antigens is shown as an example
where specific antibodies against zebrafish Robo1, Brevican and
Ncam2 were identified (Fig. 2E–H). Taken together, these data
show that our array facilitates the early screening of antibody
specificity against many antigens in parallel and is useful for iden-
tifying and excluding cross-reactive antibodies.

3.3. Transfecting plasmid pools of cloned antibodies rapidly identified
those encoding functional antibodies

Once a well containing a hybridoma secreting an antibody of
interest is identified, time-consuming cellular cloning is normally
required to ensure a stable and clonal cell line. We have previously
developed an approach to circumvent this by amplifying and clon-
ing both the rearranged antibody heavy and light chain variable re-
gions into a single plasmid so that the antibody can be expressed
recombinantly [10]. Initially, we used sequence-based approaches
to identify plasmids containing functional antibodies, but our
experience from cloning more than a hundred hybridomas identi-
fied some limitations. Firstly, the need for two PCR steps to clone
the antibodies increased the probability of PCR-based errors in
the amplified sequence that would require complete sequencing
of more than 1.5 kbp of plasmid to identify. Secondly, despite a
low plating density, we sometimes observed more than one
hybridoma colony growing per well, causing normally unpaired
heavy and light chains to be amplified and paired by PCR, leading
DC

G H

10 = Pcam; 18 = Ncam Anti-tag

7 = Brevican 8 = Ncam2

ifferent recombinant biotinylated zebrafish cell surface and secreted proteins were
of a positive, specific staining signal on antigen 19 (Fgfr1). (C) An example of a cross-
18 (Ncam). (D) An antibody recognising the recombinant protein tags common to all
that was used to identify antibodies against: (F), antigen 4 (Robo1); (G), antigen 7
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Fig. 3. Small scale transfection of pooled plasmids facilitates the detection of those plasmids encoding functional recombinant antibodies. Plasmid DNA was purified from 96
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to a non-functional antibody. Finally, in some hybridomas, a large
proportion of the amplified light chains originated from the aber-
rant SP2/0 myeloma light chain [10]. Together, these factors some-
times necessitated careful examination of a large number of
bacterial clones to identify a specific functional recombinant anti-
body, slowing the cloning process considerably.

Because the antibodies are cloned into a single expression plas-
mid, we reasoned that pools and then individual plasmids could be
transfected into cells to easily identify which plasmids contained a
functional antibody. To test this approach, we purified plasmids
from 96 bacterial clones that had been transformed with the
amplified antibody regions from each positive hybridoma. Twelve
pools of eight plasmids (Fig. 3A) were transfected into small-scale
suspension cultures of HEK293 cells and supernatants tested for
the presence of functional antibody by ELISA; plasmids within po-
sitive pools were individually transfected to identify those encod-
ing a functional antibody. An example screen is shown in Fig. 3B;
here, at least one plasmid encoding a functional antibody is present
within the eight plasmids pooled from columns 1, 3, 4, 8 and 9. A
further round of transfections using individual plasmids from the
two columns with the highest signal by ELISA identified those con-
taining the functional antibody (Fig. 3C). The use of this expression
approach has considerably simplified the step of identifying which
plasmids contain functional antibodies.
4. Discussion

Despite the importance of monoclonal antibodies in basic bio-
medical research, selecting new antibodies can be a very time- and
labour-intensive process with uncertain chances of success. To
streamline this process and reduce the number of animals used,
we have developed a pooled immunisation strategy followed by re-
combinant cloning of the antibodies into a single expression plasmid
[10]. Here, we have addressed two limitations that prevented fur-
ther scaling of this approach. By developing an antigen array, we
have reduced the volume of hybridoma supernatant required for
screening so that the number of antigens per mouse can be increased
from a maximum of five to over one hundred, an increase in scale
that could not be achieved by miniaturising the screening ELISAs
in either 384 or 1536-well plates. In addition, we have developed
an expression-based approach using pooled plasmids to simplify
the identification of those plasmids encoding functional antibodies.

In addition to increasing the throughput of the approach,
screening hybridoma supernatants by antigen microarray had the
advantage of identifying cross-reacting antibodies at an early stage
during the screening process to exclude them. Target specificity
can be a problem for monoclonal antibodies and lead to misleading
results, or dangerous consequences if used therapeutically. The
increasing availability of large recombinant protein libraries has
highlighted this problem even for commercially-available antibod-
ies [22,23].
There are many different methods developed to select affinity
reagents which do not require the use of animals and/or bypass
the need to generate hybridomas. While these methods streamline
some aspects of monoclonal antibody selection, in vivo immunisa-
tion typically results in high affinity antibodies due to the pro-
cesses of somatic hypermutation, and generating hybridomas
results in enough antibody to permit functional screening prior
to selecting them for cloning. Reducing the amount of supernatant
required for specificity screening by microarray leaves enough
hybridoma supernatant for further functional testing such as
screening for the ability of the antibody to work in applications
such as Western blotting, immunoprecipitation, immunohisto-
chemistry, or other properties such as activating signalling path-
ways or blocking the binding of other proteins. Similar antigen-
array methods have been used for antibody production procedures,
but have been used either at a later stage after ‘‘shotgun’’ immuni-
sation approaches for target deconvolution [24], or directly spot-
ting the hybridoma supernatants making screening for cross-
reactive antibodies more challenging [25]. A further advantage of
cloning the antibodies recombinantly is that the amplified anti-
body light and heavy chains can be subcloned into a variety of
expression plasmids that encode different antibody functionalities
such as switching the isotype and adding recombinant protein tags
for detection or purification of the antibodies.

In summary, by combining pooled animal immunisation,
hybridoma generation, antigen microarrays and a convenient
method to identify plasmids encoding functional recombinant
antibodies, we have addressed two major bottlenecks that pre-
vented increasing the scale of a method for the parallel selection
of high-quality monoclonal antibodies.
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