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Abstract
The modern concept of DNA-based barcoding for cataloguing biodiversity was proposed in 2003 by first adopting an approxi-
mately 600 bp fragment of the mitochondrial COI gene to compare via nucleotide alignments with known sequences from 
specimens previously identified by taxonomists. Other standardized regions meeting barcoding criteria then are also evolv-
ing as DNA barcodes for fast, reliable and inexpensive assessment of species composition across all forms of life, including 
animals, plants, fungi, bacteria and other microorganisms. Consequently, global DNA barcoding campaigns have resulted 
in the formation of many online workbenches and databases, such as BOLD system, as barcode references, and facilitated 
the development of mini-barcodes and metabarcoding strategies as important extensions of barcode techniques. Here we 
intend to give an overview of the characteristics and features of these barcode markers and major reference libraries existing 
for barcoding the planet’s life, as well as to address the limitations and opportunities of DNA barcodes to an increasingly 
broader community of science and society.
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Introduction

In comparison to the universal bar code consisting of a series 
of vertical bars that are printed on commercial products, a 
DNA barcode, in a broad sense, refers to any DNA sequence 
adopted to identify species at any taxonomic level. To be 
more specific, a DNA barcode is one or more short gene 
sequences (generally 200–900 base pairs) taken from a 
standardized portion of the genome to aid species identifica-
tion and discovery by employing sequence divergence based 
on nucleotide alignment (Emerson et al. 2011; Hebert et al. 
2003a, 2004). Thus, the fundamental function of this genetic 
tool seeks to compare barcode sequences to reference data-
bases to efficiently and effectively assign any biological sam-
ple to its species regardless of the visual classification of the 
sample (Fig. 1).

In fact, the history of genetic sequences applied in tax-
onomy research can be traced back to 1969 when Bicknell 
and Douglas found that the arrangement of species in yeast 
dependent on ribosomal RNA homologies in most cases 
agreed with the established taxonomic groupings via tra-
ditional measures (Bicknell and Douglas 1970). Before 
that, 250 years have been spent to catalogue about 1.2 mil-
lion species by traditional taxonomic approaches through 
manual characterizations incorporating morphological fea-
tures, which apparently is challenging and unrealistic when 
it is forecasted that around 7.52 million terrestrial species 
and 2.01 million species in the ocean still await descrip-
tion (Leray and Knowlton 2016; Scheffers et al. 2012). The 
advent of techniques for gene isolation, cloning and Sanger 
sequencing in the second half of last century allows the term 
“DNA barcode” to be first used in 1993 when length infor-
mation of tandemly repeated DNA sequences from hyper-
variable alleles was barcoded to discriminate isolates of 
Plasmodium falciparum (Arnot et al. 1993). Nevertheless, 
the novel concept of DNA barcode relying upon nucleotide 
divergence was not formally proposed and established for 
species diagnosis until 2003 by Hebert PD et al. (Hebert 
et  al. 2003b). Since then, international initiatives have 
been launched across hundreds of countries to evaluate the 
world’s bio-diversities using this new taxonomic tool, and 
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more than 321 K species, covering animals, plants, fungi 
and others, have been barcoded so far (Jeanson et al. 2011; 
Ratnasingham and Hebert 2007, 2013).

In light of the rapid progress and vast application of DNA 
barcodes, the purpose of this paper is to review these genetic 
markers in a variety of living organisms and provide a snap-
shot glimpse of mini-barcodes and DNA metabarcoding, 
which are essential extensions of the regular barcodes. All 
these barcodes, however, are heavily relying on the presence 
of high-quality barcode sequence reference databases that 
are based on good taxonomy and barcode coverage (Rat-
nasingham and Hebert 2007). At the end, we will also sum-
marize some of the most exciting prospects for using this 
modern taxonomic tool.

How to get a barcode

The initial motivation to have DNA barcode is to group an 
individual with its conspecifics using simple molecular tools 
instead of morphology-based procedures, which are tedi-
ous tasks requiring experienced taxonomists (Giangrande 
2003). Although it has been repeatedly called into question, 
the core idea behind current barcodes rests on the fact that 

certain pieces of DNA, when aligned, can be found to vary 
only to a limited degree within species while this variation 
is much less than between species, which is referred to as 
the barcoding gap (Fig. 1) (Hill 2016; Liu et al. 2011; Meyer 
and Paulay 2005). Therefore, whether samples of target spe-
cies can be differentiated largely depends on the choice of 
the short DNA segment. Gene regions that evolve slowly 
often do not differ among closely related organisms, whereas 
DNA sequences that evolve rapidly, on the other hand, may 
overwrite the traces of ancient affinities, but introduce more 
sequence diversity and increase the chance to distinguish 
between species (Cho et al. 2004; Steinke et al. 2016). In 
addition, the DNA section chosen must be standardized and 
accessible in various taxonomic groups with conservative 
primer binding sites so that the barcode marker techni-
cally can be robustly amplified and sequenced from a small 
amount of specimen through polymerase chain reaction 
(PCR).

Although enormous efforts have been made to find a sin-
gle segment of DNA meeting all criteria outlined above, 
such a region has not been identified, and researchers start 
to realize that a single universal DNA barcode for all forms 
of life is unlikely to exist. This is largely because barcod-
ing regions are not evolving neutrally since the time of 

(a)

(b)

Fig. 1  Basic workflow for getting barcode markers using Sanger sequencing. a Workflow for generating reference databases. b Workflow for 
taxonomic assignment of unknown samples by comparing barcode sequences with reference databases



Conservation Genetics Resources 

1 3

speciation, and more often are influenced by weak positive 
or negative selection, making them suitable in some species 
but not others. Under such circumstances, multi-locus bar-
codes aiming for different living taxa have been developed 
and examined with respect to both their ease of amplification 
and their capacity to resolve species as a part of the barcode 
validation process (Table 1).

Barcodes in animals

Notwithstanding differences in evolutionary history between 
nuclear and mitochondrial DNA mean that a mitochon-
drial barcode is unlikely to be representative of nuclear 
divergence, in animals, regions from mitochondrial DNA 
(mtDNA) are preferred over nuclear genome for barcoding 
(Hill 2016, 2020). This is because mtDNA in most eukary-
otes is known to be inherited uniparentally from the mater-
nal parent, possessing circular DNA packaged into nucle-
oids without the protection of histone proteins. Despite 
rare recombination, mitochondrial genome, compared with 
nuclear DNAs, lacks sufficient DNA repair mechanisms, 
leading to a tenfold higher rate of nucleotide substitution in 
the presence of reactive oxygen species generated during the 
respiratory chain (Adamowicz et al. 2017). The rapid pace of 
sequence change in mtDNA consequently allows accumula-
tion of differences between closely related species that have 
only been separated for brief periods of time.

A standard fragment of ~ 648 base pairs (bp) at the 5’ 
end of the mitochondrial gene coding the cytochrome c oxi-
dase subunit 1 (COI), a component of an enzyme complex 
essential for oxidative phosphorylation, is the first and so 
far the most broadly adopted molecular marker for barcod-
ing animals (Hebert et al. 2003b; Kress et al. 2005; Steinke 
et al. 2016). By making use of universal primers for PCR 
amplification, COI barcode has been claimed to achieve high 
rates of success in identification of species in test assem-
blages of different animal groups, mainly insects, birds and 
fishes (Pratheepa et al. 2014; Prum et al. 2015; Ward 2012). 
These PCR primers, initially described for diverse meta-
zoan invertebrates, are fundamental to the barcode field and 
prevalent even today, generating informative sequences for 
phylogenetic analyses at the species and higher taxonomic 
levels (Folmer et al. 1994). Yet some studies challenged the 
degree of universality for COI and its primers for a number 
of reasons. For instance, the high variability of nucleotide 
sequences at the COI priming sites hinders its application 
to a broader spectrum of animal species (Hawlitschek et al. 
2016; Shearer et al. 2002; Zangl et al. 2020). To address this 
issue, cocktails of degenerate primer sets were proposed for 
barcoding species like reptiles and amphibians (Che et al. 
2012; Lyra et al. 2017; Vences et al. 2005). Moreover, COI 
barcoding region were also found to provide insufficient 
species resolution when it comes to organisms such as sea 

snails and corals because of limited nucleotide diversity 
(McFadden et al. 2011; Young et al. 2017). Such a shal-
low COI variation was also uncovered within many species 
of parasitoid wasps as the smallest interspecific divergence 
of only 1 bp was recorded between wasps that are known 
to parasitize different families of caterpillars (Smith et al. 
2008). This exemplifies the integration of DNA barcoding 
with morphological, behavioral and ecological descriptions 
to improve the accuracy of species identification. In contrast, 
large intraspecific distance ranging from 0% to as much as 
17.3% was noticed for COI genes in pseudoscorpions, which 
distorts the pattern of intra- and interspecific variation and 
spoils the existence of a barcode gap. This observation may 
result from undocumented species diversity, but also from 
anomalies in the COI evolution of these arachnids, indicat-
ing variable molecular change between species within dif-
ferent taxa (Muster et al. 2021).

Alternative barcode candidates for animals include seg-
ments from mitochondrial cytochrome b (cytb), 12S ribo-
somal RNA (rRNA) and 16S ribosomal RNA, and so on 
(Table 1) (Fernandes et al. 2020; Milan et al. 2020; Sun 
et al. 2019; Wong et al. 2004; Xia et al. 2012). Choices of 
these genetic markers are substantially due to practical rea-
sons that a huge number of DNA sequences spanning these 
regions already exist in public databases before the barcod-
ing methods became popular. Nevertheless, as a more com-
prehensive COI reference database is becoming feasible, it is 
argued that these alternatives may no longer perform equally 
well, even cases that 16S is superior to COI in barcoding 
Arthropoda and amphibians, for example, are still reported 
at current stage (Sikes et al. 2017; Vences et al. 2012; Xia 
et al. 2012; Zangl et al. 2020).

Barcodes in plants

As revealed in the previous section, animal mtDNAs are 
characterized by their rapid evolution in primary sequence, 
but there is a wide consensus that they are essentially invari-
ant in gene order, especially among all vertebrates (Khan 
et al. 2007). However, this is not case for plants as their 
mtDNAs are postulated to have undergone extensive internal 
rearrangements, resulting in a high rate of length mutations 
rather than nucleotide substitution (Chevigny et al. 2020). 
Therefore, it is suggested that the point mutation rate in plant 
mtDNA is around 100 times slower than in animal mtDNA 
(Chevigny et al. 2020). Searching for suitable mitochondrial 
barcodes to delineate plant species thus has proved to be 
tricky and botanists thereby have focused on DNA sequences 
outside the mitochondrial genome.

So far, the nuclear-encoded ribosomal internal transcribed 
spacer (ITS) region and the chloroplast intergenic spacer 
trnH-psbA have emerged as candidates for barcoding plants, 
followed by others including coding sequences from plastid 
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Table 1  Molecular markers routinely used for DNA barcoding studies

Organism Region Marker Gene description References

Animals Mitochondrion 12S 12S ribosomal RNA (Kocher et al. 1989; Olmstead 1996)
16S 16S ribosomal RNA (Palumbi 1991)
atp6 ATP synthase F0 subunit 6 (Haag et al. 2009; Trigo et al. 2008)
COI Cytochrome c oxidase subunit I (Hebert et al. 2003a, 2003b)
cytb Cytochrome b (Hardman 2004; Kocher et al. 1989; Max-

field et al. 2012; Tchaicka et al. 2007)
D-loop Mitochondrial displacement loop region (Hoelzel et al. 1991)
ND1 NADH dehydrogenase subunit 1 (Thacker 2003)
ND2 NADH dehydrogenase subunit 2 (Thacker 2003)

Nucleus 28S 28S ribosomal RNA (Saux et al. 2004)
ITS Internal transcribed spacer (Smith et al. 2008)
Rag1 Recombination activating 1 (López et al. 2004)
Rag2 Recombination activating 2 (Hardman 2004)
WG Wingless (Fagan-Jeffries et al. 2018)

Plants Nucleus ITS Internal transcribed spacer (Chen et al. 2005; Michelangeli et al. 2004)
ITS2 The 2nd internal transcribed spacer (Moorhouse-Gann et al. 2018)

Plastid atpF-atpH Non-coding atpF-atpH intergenic spacer 
region

(Marcelo et al. 2010; Reginato and Michel-
angeli 2016)

matK Maturase K (Fazekas et al. 2008; Parveen et al. 2012)
psbK-psbI Non-coding psbK-psbI intergenic spacer 

region
(Marcelo et al. 2010)

rbcL Ribulose-1,5-bisphosphate carboxylase/
oxygenase large subunit

(Fazekas et al. 2008; Parveen et al. 2012)

rpoB RNA polymerase beta subunit (Fazekas et al. 2008; Parveen et al. 2012)
rpoC1 RNA polymerase beta’ subunit (Parveen et al. 2012)
rps16 Ribosomal protein S16 (Oxelman et al. 1997)
trnC-rpoB Non-coding trnC-rpoB intergenic spacer 

region
(Ohsako and Ohnishi 2000)

trnH-psbA Non-coding trnH-psbA intergenic spacer 
region

(Tate and Simpson 2003)

trnL (UAA) tRNA trnL intron (Chen et al. 2005; Taberlet et al. 2007)
trnL (UAA)-trnF (GAA) tRNA trnL-trnF intergenic spacer region (Sang et al. 1997)
trnK (UUU) tRNA trnK intron (Ohsako and Ohnishi 2000)
ycf1 Translocon at the inner envelope membrane 

of chloroplasts 214
(Dong et al. 2014)

ycf5 Cytochrome c biogenesis protein CcsA (Kress and Erickson 2007)
Fungi Mitochondrion atp6 ATP synthase F0 subunit 6 (Vialle et al. 2009)

COI Cytochrome c oxidase subunit I (Pino-Bodas et al. 2013; Vialle et al. 2009)
CO3 Cytochrome c oxidase III (Vialle et al. 2009)
nad6 NADH dehydrogenase subunit 6 (Vialle et al. 2009)

Nucleus LSU large ribosomal subunit gene D1/D2 
domains

(Eberhardt 2012; Robert et al. 2011)

ACT Actin (Carbone and Kohn 1999)
TUB β-tubulin (Glass and Donaldson 1995)
CAL Calmodulin (Carbone and Kohn 1999)
EF1-α Translation elongation factor 1-alpha (Pino-Bodas et al. 2013)
H3 Histone H3 (Crous et al. 2006)
ITS internal transcribed spacer (Vialle et al. 2009)
rpb2 DNA-directed RNA polymerase II subunit (Pino-Bodas et al. 2013)

Bacteria Nucleoid 16S 16S ribosomal RNA (Lane 1991; Sundquist et al. 2007)
chaperonin-60 60 kDa chaperonin (Brousseau et al. 2001)
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genes rbcL and matK, two loci now the most commonly used 
for plants (Kress and Erickson 2007; Loera-Sánchez et al. 
2020; Yao et al. 2010). Unfortunately, no single marker from 
them has been found to fully satisfy all of the desired char-
acteristics required for DNA barcodes. For instance, rbcL 
fragment is easy to amplify, sequence and align, but only 
yields modest discriminatory power whereas the matK bar-
code, perhaps the closest plant analogue to COI in animal, 
is difficult to amplify due to the lack of competent primers 
of universality (Braukmann et al. 2017; de Vere et al. 2015; 
Fang et al. 2019; Li et al. 2015). Even so, it is worth men-
tioning that the ITS2 primers designed for the second inter-
nal transcribed spacer of nuclear ribosomal DNA, which 
have been used successfully for a number of applications 
with short amplicons of 187–387 bp and addressed many of 
the issues, though not all, levied against the other primers 
(Table 1) (Moorhouse-Gann et al. 2018).

Since a standard plant barcode has been complicated 
by the trade-off that arises between the high variability of 
sequences and high conservation of primers, it is then rec-
ommended to simultaneously utilize more than one marker 
as a compromise that best matches the barcoding criteria 
(Lahaye et al. 2008). As a consequence, combinations of 
multiple barcode markers were shown to improve the abil-
ity to classify plants maximally by 60% when compared to 
a single barcode, which has persuaded researchers out of 
botany to take the same measures when barcoding other 
organisms (Group 2009; Li et al. 2021; Nitta et al. 2020; 
Zhang et al. 2013).

Barcodes in microorganisms

The microorganisms discussed in this section will mainly 
refer to fungi, bacteria and viruses, which are all around us, 
having an enormous biological and economic impact, but 
often invisible to our naked eyes. Species discrimination is 
often frustrated as microorganisms only occasionally exhibit 
the morphological characters needed for identification in 
natural ecosystems. Until now, our knowledge of microbial 
biodiversity has been severely restricted by relying on micro-
organisms that can be cultured while vast majority (> 99%) 
cannot (Mendes et al. 2013). Luckily, PCR-based DNA bar-
coding techniques offer such a great opportunity to char-
acterize microbial communities without prior cultivation.

In line with animal COI, the fungal counterpart is also 
officially recognized as an eligible barcode marker, yet it is 
usually excluded from consideration by mycologists due to 
the presence of mobile introns in the priming and sequenc-
ing regions (Seifert et al. 2007; Xu 2016; Yahr et al. 2016). 
Other reasons for exclusion include low nucleotide variation 
and a complete lack of mitochondria in some fungal linages 
(Wickes and Wiederhold 2018). Instead, the ITS region and 
the D1/D2 region of the large subunit (LSU) rDNA, both 
belonging to the nuclear ribosomal RNA genes, are the most 
widely used in all fungi from diverse environments (Dulla 
et al. 2016; Schoch et al. 2012; Scorzetti et al. 2002). These 
two loci can be easily amplified using relatively universal 
primers, and have the largest amount of reference sequence 
data for fungi (Blackwell 2011; Suhr and Hallen-Adams 
2015). In general, ITS is better at distinguishing closely 
related species than LSU, but ITS is more difficult to align 
because of length differences (Takashima et al. 2019). Other 
fragments, like nuclear β-tubulin, translation elongation fac-
tor 1-α and calmodulin, sometimes are also applied together 
for selected fungal genera (Table 1), consistent with the bar-
coding mixtures in plants (Panelli et al. 2013; Pino-Bodas 
et al. 2013; Quaedvlieg et al. 2012; Robba et al. 2006).

On the other hand, 16S rRNA gene was first advised by 
microbiologists as a phylogenetic tool to describe the evo-
lutionary relationships among bacteria, archaea and eukary-
otes in 1977, since when over 41 million 16S sequences, 
much more than the 3 million COI sequences, have been 
deposited in GenBank (Woese and Fox 1977). However, 
the idea to use 16S as the primary barcode nowadays only 
catches on in bacteria for a number of causes. First of all, 
this gene is frequently accessible in almost all bacterial spe-
cies, either harmless or pathogenic. Secondly length of the 
gene is approximately 1500 bp, which is informative enough 
for analyses (Clarridge 2004). Finally, function of this gene 
has not changed, containing conserved sequences for univer-
sal PCR primers. Conversely, utility of 16S is constrained 
in a broader taxonomic investigation by the prevalence of 
insertions and deletions that deeply complicate sequence 
alignments (Church et al. 2020; Yarza et al. 2014). Other 
options for barcoding bacteria include chaperonin-60 and 
RNA polymerase β subunit (rpoB) gene, which can act as 
important supplementary markers to 16S in appropriate 
cases (Pavan et al. 2012; Vancuren et al. 2020).

Table 1  (continued)

Organism Region Marker Gene description References

rpoB RNA polymerase beta subunit (Adékambi et al. 2009)
ITS Internal transcribed spacer (Benga et al. 2020; Soltan Dallal et al. 2019)

Archaea Nucleoid 16S 16S ribosomal RNA (Bates et al. 2011)
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To date, detection and interpretation of virus, for example 
the SARS-CoV-2 responsible for the ongoing COVID-19 
pandemic, is heavily dependent upon quantitative RT-PCR 
designed according to genomic sequences, which normally 
are assembled by overlapping 400 bp fragments from a serial 
amplicon generated in multiplexed PCR based on the latest 
ARTIC SARS-CoV-2 sequencing protocol (Asselah et al. 
2021; Giri et al. 2021; Tyson et al. 2020; Weissleder et al. 
2020). Nonetheless, viral genomes are still the most reliable 
source to estimate the rate of viral evolution and monitor 
circulating lineages. The difficulty with barcoding SARS-
CoV-2 comes with the designation of target sites that are 
diagnostic of particular variants and, ideally, able to detect 
novel variants. Any attempt to capture the molecular identity 
of virus with standard barcoding unfortunately has turned 
out to be fruitless owing to the continuous introduction of 
new virus variants with random mutation and recombination 
(Bano et al. 2022). Thus, development of DNA barcode to 
understand viral diversity is still an open question in the 
field, unless multiple markers deployed to cover the whole 
viral genome are considered as an extension of the combina-
tion barcoding concept in plants.

Sequence reference libraries

No matter it is conventional taxonomic approach or DNA 
barcoding method, the accuracy of species assignment and 
consequent taxonomic coverage are certainly relying on the 
availability of a well-curated and comprehensive reference 
system for judgement. A DNA barcode database is particu-
larly vital for the latter because it fulfils the dual role of 
a library for data depository and a tool for monitoring the 
results and conclusions (Hawlitschek et al. 2016; Ratnasing-
ham and Hebert 2007). Hence demand for high quality refer-
ence libraries has increased dramatically since the launching 
and extended utilization of barcoding technologies.

The Barcode of Life Data System (BOLD) is a bioinfor-
matics platform serving for the acquisition, storage, analysis 
and publication of DNA barcode records (Liu et al. 2013). 
Core features of BOLD include open access to the entire 
biodiversity community, as well as the persistent linkage 
between a qualified barcode sequence and its source speci-
men with authoritative taxonomic identification. As such, 
BOLD workbench also implements a special analytical tool 
called Barcode Index Number (BIN) system, a molecular 
registry for codifying operational taxonomic units (OTUs) 
(Hausmann et al. 2013; Ratnasingham and Hebert 2013). 
The BIN system in principle uses well compiled algorithms 
and clusters similar sequences encountered in different 
studies into groups corresponding to presumptive species, 
but not necessarily actual species. Each BIN has an indi-
vidual webpage displaying a unique alphanumeric identifier, 

nearest neighbor, all member sequences, haplotype network, 
specimen images, sampling map and attribution details. At 
this moment, the Public Data Portal of BOLD is hosting 
more than 715 K BINs and 9 million barcodes, which must 
derive from 12 million verified specimen records within the 
data library, highlighting a key role of morphology-based 
diagnostics in barcoding (Ratnasingham and Hebert 2007). 
All information is free for download as reference so that 
large amounts of data would be screened concurrently, 
allowing an integrated comparison of specimens identified 
by both molecular and morphological characters.

As soon as results are ready for public release, a copy of 
all sequences and crucial specimen data from BOLD would 
migrate to major genomics repositories worldwide, such as 
Genbank database at the National Center for Biotechnology 
Information (NCBI). Besides the 16S and COI sequences 
mentioned earlier, a fair portion of records in GenBank actu-
ally are generated by non-barcoding studies, lack connection 
to a voucher specimen, and thereby may not abide to the 
formal barcode data standards (Sayers et al. 2020). Com-
pared to BOLD, however, much more nucleotide sequences, 
including erroneous sequences uploaded by people with 
poor taxonomic knowledge, are currently present in Gen-
Bank, constituting a useful resource that should be closely 
monitored but never overlooked. Furthermore, the Basic 
Local Alignment Search Tool (BLAST) is attached to NCBI 
so that any query sequence practically can be aligned against 
all Genbank libraries in one go through a user-friendly web 
interface (Altschul et al. 1997). In contrast, selected data 
have to be downloaded from BOLD before blast search using 
local softwares or online programs. Since similarity-based 
alignment is a central step for classifying DNA sequences, 
this is why Genbank is still the best-known one-stop solution 
for a quick species diagnosis.

Development of DNA barcoding

As a matter of fact, DNA barcoding, similar to any other 
analytical method in science, brings some controversies and 
concerns too, especially in the field of taxonomy, as it does 
not always work as effectively as first claimed (Goldstein and 
DeSalle 2011; Knapp et al. 2004; Miller 2007). However, in 
recent years, remarkable progress towards optimizing this 
technology has been made to improve the efficiency and 
lower the cost.

Challenges to DNA barcoding

The most serious challenges in practice probably come from 
the initial DNA preparation and extraction, a step which 
is very difficult to standardize because of the complexity 
and diversity of the biological samples encountered, each 
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representing different problems. It is lucky that many suspect 
samples, such as microorganisms that do not require prior 
cultivation (Sect. 2.3), can be directly boiled in reaction 
buffer as DNA template for PCR, while more often speci-
men might have been subjected to varied treatments, for 
instance, pH modification, high pressure, grinding or dry-
ing, which would damage DNA integrity and cause DNA 
degradation (Fode-Vaughan et al. 2001). Although multiple 
extraction methods, either in-house developed protocols or 
commercially available kits, are open for DNA purifica-
tion on a case-by-case basis, it is still impossible to find a 
universal method that could be applied in all contexts and 
meanwhile guarantee the quality of DNA so that impurities 
potentially interfering downstream steps are eliminated. It 
should also be noticed that most DNA preparation courses 
conducted now are aiming to isolate genomic DNA, which 
could be problematic if the barcodes are targeting regions 
out of nucleus.

Additionally, the heteroplasmic conditions in mtDNA and 
the presence of nuclear pseudogenes of mitochondrial origin 
(numts) raise concerns as well, particularly when barcod-
ing mitochondrial markers (D'Errico et al. 2004; Stefano 
et al. 2017). It is known that each eukaryotic cell contains 
approximately 500 to 6000 copies of mtDNA, which are 
tissue-specific (Friedman and Nunnari 2014). This leads to 
a phenomenon called heteroplasmy, where both wild-type 
and mutant mtDNA molecules co-exist within the same cell. 
The occurrence of heteroplasmic variants absolutely brings 
in ambiguous sequence reads, eventually influencing the 
accuracy of taxonomic description (Sobenin et al. 2014). 
To make matters worse, numts can be easily co-amplified 
with these mtDNA variants by using conserved PCR prim-
ers if an extraction method preferring nuclear DNA is car-
ried out before (Guo et al. 2021). Due to the differences in 
genetic code between mitochondrial and nuclear genomes, 
numts are detected as non-functional copies of mtDNA 
with various sizes integrated into the nuclear chromosome 
naturally through unknown mechanisms. Once inserted 
into nucleus, numts decelerate their evolutionary rate and 
become molecular fossils of mtDNA, which to some extent 
could be indispensable for recovering ancient relationships 
(Mishmar et al. 2004). Nevertheless, as more eukaryotic 
genomes are sequenced and scanned, more numts are being 
discovered, which may cause misidentifications of species as 
numts, compared to mitochondrial barcodes, are undergoing 
a completely different inheritance pattern.

Advancements of DNA barcoding

To overcome the degradation of samples with poor DNA 
preservation, shorter barcode regions, so-called mini-bar-
codes, have been developed in place of full-length bar-
codes over the past ten years. As an extension of DNA 

barcoding, mini-barcodes can be amplified with higher 
efficiency than regular barcodes owing to their reduced 
size (typically ≤ 200–300  bp), but until now they are 
merely considered as short versions of the full barcode 
markers with no real standard or reference database for 
mini-barcodes adopted. In addition to the deficiencies 
associated with normal barcoding, the rate of taxonomic 
discrimination is remarkably curtailed as critical infor-
mation may be missed in mini-barcodes due to the length 
constraint (Hajibabaei and McKenna 2012; Shokralla et al. 
2015). As a result, mini-barcodes cannot achieve universal 
application for most species unless identification at the 
genus or family level is warranted (Gao et al. 2019).

However, when complex samples containing DNA of 
different origins have to be assessed, Sanger sequencing-
based barcoding protocols, either mini-barcodes or nor-
mal barcodes, will be costly and laborious, and surely 
produce chimeric reads with little relevance to the taxa 
within the sample. Then, the advent of high-throughput 
sequencing (HTS) technologies facilitates the emergence 
of DNA metabarcoding and revolutionizes our ability to 
barcode life. DNA metabarcoding mainly refers to the use 
of barcode-based (or amplicon-based) HTS for genotyp-
ing multiple species in mixtures that may take the form 
of propagules, or an individual organism engaging para-
sites, mutualists, diet items, and symbionts (Kress et al. 
2015). By taking advantage of the multiplex nature of 
next-generation sequencing (NGS) and the third-genera-
tion sequencing platform, metabarcoding not only enables 
assignment of multiple species using DNA barcodes in 
a mixed sample and makes the data output magnitudes 
more reliable, but also allows simultaneous processing of 
DNA barcodes for thousands of diverse specimens in a 
single sequencing run (Coissac et al. 2012; Piper et al. 
2019). Starting with minimal amounts of materials, theo-
retically current NGS technology with a maximum read 
length of 300 bp is highly suitable for mini-barcodes, 
while complete barcode can be recovered through assem-
bly of short overlapping reads, or alternatively by third 
generation sequencing, which provides read lengths supe-
rior to any previous sequencing technology (Behjati and 
Tarpey 2013). A recent work with the real-time MinION 
sequencer, a portable third generation sequencer, has just 
achieved great barcode sequencing throughput at a cost 
of less than 10 cents, showing a promising future in this 
direction (Srivathsan et al. 2021). Moreover, sequences for 
independent gene loci can be garnered in parallel on HTS 
platforms in order to improve the phylogenetic resolution 
of generated data, a strategy first recommended in plants 
as reviewed in Sect. 2.2, though individual barcode from 
these multi-locus combinations in this context cannot be 
linked together without the assistance of an extensive ref-
erence library (Taberlet et al. 2012).
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Consistent with the rise of DNA metabarcoding, the past 
few years also represent a surge in bioinformatics advance-
ment for taxonomic analysis. Since there are already many 
excellent reports on computational pipelines to process 
large quantities of sequence reads, here we will only briefly 
overview the fundamentals of key steps relevant to meta-
barcoding. Delimiting species basically is simple to imple-
ment if reference databases pre-exist and contain informa-
tion from conspecifics. In this situation, query sequences 
from metabarcoding studies are directly matched to identi-
fied sequences of known species in references, commonly 
via similarity-based and tree-based algorithms that are fre-
quently criticized though (DeSalle and Goldstein, 2019). 
Conversely, if reliable reference datasets are absent, query 
sequences would not be linked to a taxonomic name but 
would be binned together to form OTUs either according to 
their similarity (traditionally 97%), or based on their “true” 
biological sequences inferred using statistical models, which 
are also termed exact sequence variants (ESVs) or ampli-
con sequence variants (ASVs) in this context (García-López 
et al. 2021). These biological entities next can be compared 
with OTUs or ASVs in different studies, such as the BIN 
framework introduced by BOLD, to estimate the biodi-
versity of target samples. Yet biological interpretation of 
metabarcoding data can be seriously affected by the differ-
ences between the two methods: OTUs minimize the effects 
of slight variations in sequences that may or may not be 
of interest, but a small change, as in the case of parasitoid 
wasps, could be capturing actual differences between spe-
cies; on the contrary, ASVs are defined as all “unique reads” 
within a metabarcoded dataset, often leading to a wrong 
differentiation between the SNPs of the same species, and 
in the same way making sequencing or PCR errors more 
prominent when compared to OTUs (Molik et al. 2020). By 
using simulations, it has been advised that approaches utiliz-
ing ASVs outperform OTUs only when the sequencing depth 
is sufficient to cover a biological complexity with low poly-
morphisms. Otherwise conclusions drawn from OTU analy-
ses are more consistent (Joos et al. 2020). Therefore, which 
method would be chosen for the bioinformatic processing of 
metabarcoding should be dependent on the analysis desired, 
although OTUs currently seem to be less preferred with the 
continuous improvement of sequencing technologies.

When coming back to HTS technologies, it has been 
argued that the current barcoding practice could soon 
become obsolete and irrelevant as genomic data are created 
by untargeted shortgun sequencing with increasing ease 
(Taylor and Harris 2012). In one regard, the high-throughput 
nature of these techniques not only allows a genomic sur-
veillance to avoid numts, but also enables a full coverage of 
mitochondrial heteroplasmy to distinguish functional alleles 
based upon length, translation and other criteria. From 
another perspective, it is impossible in essence to produce 

a precise representation of organismal divergence using a 
genetic estimate taken from just parts of the genome. Taken 
together, it is most likely to happen that enthusiasm for DNA 
barcode to the end will transition to a larger endeavor of 
archiving accessible genomic data. Before that, however, 
more sophisticated bioinformatic modellings with user-
friendly interfaces, as well as huge genome storages as ref-
erences with information dedicated to taxonomic relatedness 
must be developed. At present, the question lies in whether 
the barcoding enterprise tends to take measures and evolve 
its methodologies to embrace novel techniques that are inev-
itably on the way? In fact, many botanists have conducted 
genome skimming for entire plastid genomes and nuclear 
ribosomal regions to cover all of the different standard 
plant barcoding regions as an extended barcode, while oth-
ers assemble the whole organelle genomes as a resource for 
validating and designing short, informative barcode markers 
with diagnostic nucleotides (Coissac et al. 2016; Kreuzer 
et al. 2019). These attempts represent a stepping stone on the 
continuum between routine barcode movements and com-
plete genome sequences. Along this path, we believe DNA 
barcoding will be capable of further exploring its potential 
and opportunities, and perhaps one day will encompass other 
“omics” approaches such as proteomics and metabolomics.

Practical utilities of DNA barcoding

Undoubtedly, DNA barcoding is a chief component of the 
modern diagnostic toolbox with increasing applications in 
taxonomy, systems biology and ecological studies. Prior to 
barcoding, conventional approaches for classification of spe-
cies mainly rely upon the characterization of distinguishable 
morphology while many organisms exhibit morphologically 
distinct stages controlled by gender or life cycles (Hall and 
Martín-Vega 2019). Furthermore, suspect specimens may be 
damaged or incomplete with only part of tissue feasible for 
identification. All these pitfalls would render morphological 
determination unclear or unlikely, but can be easily avoided 
with molecular barcoding. Besides traditional way by sam-
pling separate individuals, barcode technology, especially 
metabarcoding, can be adopted for assessment to dietary 
items using gut contents and scats of animals, or utilized 
for analyzing environmental samples, namely samples from 
soil, water and even air that possibly contain DNA materials 
from life, for biomonitoring and disease screening (Chaves 
et al. 2012; Haag et al. 2009; Staats et al. 2016). Together 
with mini-barcodes, it could further mitigate problems with 
fragmented DNA present in the environment, gut contents 
or other sources of exogenous DNA (Prerna Vohra 2013). 
Another potentially valuable utility of combining meta-
barcoding with mini-barcodes is to analyze invertebrate-
derived DNA (iDNA), where vertebrate genetic material is 
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extracted from diverse invertebrates, including terrestrial 
leeches, mosquitoes, midges, blow flies and ticks (Schnell 
et al. 2015). iDNA has recently been proposed as a powerful 
non-invasive tool to detect vertebrate species and to survey 
their population as long as the information regarding the 
biology, habitats, behaviors and diets of relevant inverte-
brates is secured.

The usefulness of DNA barcoding is not restricted to 
scientific research of biodiversity, but also concerns con-
servation, public health and biosafety (Fig. 2). It is not 
surprising that barcoding is highly desirable for customs 
and national authorities in the conservation area of rare 
wildlife. International conventions such as the Convention 
on International Trade in Endangered Species of Fauna 
and Flora (CITES) have categorized more than 35,000 spe-
cies as threatened by extinction (Wyatt 2020). And DNA 
barcodes have been demonstrated to be helpful to monitor 
illegal collection and trade of protected species and their 
products when morphological characters were equivo-
cal (Chapagain et  al. 2021). Additionally, the risks of 

pandemic spillover are higher than ever with increasingly 
intimate associations between humans and wildlife (or 
their meat), some of which might serve as hosts or vectors 
for medically important pathogens. For example, there are 
about 3500 species of mosquitoes, but only a handful of 
species spread malaria, dengue fever and other diseases in 
tropical areas (James 2007; Lee et al. 2018). DNA barcod-
ing actually has been reported to successfully determine 
mosquitoes involved in disease transmission and public 
health. In the same way, genetic authentications using bar-
codes are also becoming more and more common in food 
adulteration and manufacture of drugs of natural origin 
(e.g. herbal products or mixtures in traditional Chinese 
medicine), misidentification of which sometimes could be 
poisonous and life-threatening (Kreuzer et al. 2019; Wu 
et al. 2019). Aside from herbal medicine, metabarcoding 
of pollen and fungal spores can also be incorporated into 
forensic palynology and security intelligence to link per-
sons or objects with particular places and times, given pol-
len and fungal spores’ ubiquity in the environment, their 

Fig. 2  Practical utilities of DNA barcoding technology
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potential for geographic and temporal inference, and their 
long-term durability (Bell et al. 2016).

Conclusions

By employing sequence divergence in several short and 
standardized gene fragments, DNA barcode and its library 
have become an invaluable addition to our suite of tools 
to understand life and nature. Although posing many con-
troversies, DNA barcoding no doubt holds great promise 
for potentially widespread scientific and practical benefits. 
With the exploration of mini-barcodes and metabarcoding in 
DNA-based species delineation, it is believed that barcode 
techniques will be further integrated into a wider context of 
scientific, political, economic and social areas.

Then, as the barcoded reference species expands across 
the tree of life, ultimately one must ask whether it is pos-
sible to barcode all life on Earth. In theory, the barcoding 
process is able to yield 100% accuracy of species delimita-
tion as long as robust thresholds defining species boundaries 
are established, which is truly tough to settle for all of life 
(Matute and Sepúlveda 2019). Also, it would be naïve to 
portray a species or infer a phylogeny without any corrobo-
rating evidence other than certain pieces of DNA sequences. 
In the absence of other evidence, DNA barcoding creates 
hypotheses regarding new species rather than outright dis-
covering them (Taylor and Harris 2012). More importantly, 
it should be noted that barcoding must supplement morpho-
logical data for species description, which usually fails to 
break into the mainstream of barcoding studies despite the 
fact that morphological identification laid the foundation of 
all barcode databases. To sum up, what we know today is 
that no single classification approach can be applied uni-
versally for all species. DNA barcodes in conjunction with 
traditional taxonomic tools for sure are more rapid and more 
reliable than any method alone for disclosing cryptic and 
overlooked biodiversity.
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