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Abstract: Artificial intelligence (AI) has permeated various sectors, including the pharmaceutical
industry and research, where it has been utilized to efficiently identify new chemical entities with
desirable properties. The application of AI algorithms to drug discovery presents both remarkable
opportunities and challenges. This review article focuses on the transformative role of AI in medicinal
chemistry. We delve into the applications of machine learning and deep learning techniques in drug
screening and design, discussing their potential to expedite the early drug discovery process. In
particular, we provide a comprehensive overview of the use of AI algorithms in predicting protein
structures, drug–target interactions, and molecular properties such as drug toxicity. While AI has
accelerated the drug discovery process, data quality issues and technological constraints remain
challenges. Nonetheless, new relationships and methods have been unveiled, demonstrating AI’s
expanding potential in predicting and understanding drug interactions and properties. For its full
potential to be realized, interdisciplinary collaboration is essential. This review underscores AI’s
growing influence on the future trajectory of medicinal chemistry and stresses the importance of
ongoing synergies between computational and domain experts.
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1. Introduction

Artificial intelligence (AI), a field within computer science, focuses on developing
methods that empower computers to perform tasks typically associated with human
intelligence, such as thinking and learning. AI is having a revolutionary impact on various
facets of our lives and spanning across numerous industry sectors, with the pharmaceutical
sector experiencing no exception to this transformation [1]. Also, in the medical field, deep
learning techniques classify lung cancer with high accuracy, and AI addresses challenges in
processing continuous streams of big data from medical IoT devices [2,3]. The emergence
of AI has ushered in a new era in drug discovery research, delivering a paradigm shift
from traditional trial-and-error-based or hypothesis-driven methods toward more rational
and data-driven approaches [1]. The value of AI is immense as it serves as a technology
that can significantly reduce the extensive time and financial investments required for the
discovery of a new drug.

When used properly, AI technologies can help analyze vast amounts of data, such as
genomic, proteomic, and chemical information, to identify potential drug molecules and
predict drug efficacy or toxicity [4]. By analyzing complex datasets and identifying hidden
patterns, machine learning (ML) or deep learning (DL) algorithms can find novel targets
associated with multi-omics data and help search for novel chemical entities with biological
activities. They have not only expedited the identification of potential drug candidates
but have also proven invaluable in the process of drug repurposing [5]. AI can predict
potential new uses for existing drugs, a breakthrough that has the potential to accelerate the
drug development process and reduce associated costs [5]. This capability is particularly
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significant in addressing urgent medical needs, as repurposing existing drugs can bypass
lengthy and costly phases of preclinical testing and safety evaluation. Moreover, AI has
emerged as a key tool for personalized medicine by aiding the development of drugs that
are tailored to individual patients’ genetic profiles. In the future, the demand for AI in drug
discovery is expected to grow as the technology becomes more advanced and many more
data become available [1].

In the realm of medicinal chemistry, AI has shown promising results in the discovery
of new chemical scaffolds with therapeutic potential. It has the capacity to scrutinize
vast chemical spaces and extract meaningful patterns, thereby significantly reducing the
time required for identifying potential drug candidates [4,6]. ML/DL algorithms can be
trained to predict the biological activities, pharmacokinetic properties, and also toxicity
profiles of molecules [7]. In addition, the current DL methods can generate novel molecular
structures that match desired therapeutic profiles [8,9]. Building on the past decade’s
remarkable advances, AI is now being harnessed to automate the process of drug design.
Molecular docking, the method that predicts the interaction between a small molecule
and a protein, has traditionally been a computationally intensive task. Today, AI is being
utilized to predict the likelihood of molecular binding, its strength, and the most energet-
ically favorable position, thereby automating this critical process. In addition, it can be
utilized to optimize the chemical structures of drug candidates for enhanced efficacy and
reduced toxicity.

While the promise of AI in medicinal chemistry is profound, the integration of AI
into drug discovery pipelines presents ongoing challenges [4,10]. Issues related to the
quality and availability of data, interpretability of AI models, and regulatory considera-
tions persist [4]. However, as we navigate the ongoing digital transformation, it becomes
increasingly evident that AI-based approaches hold immense potential to revolutionize
drug discovery and reshape the field of medicinal chemistry. By leveraging AI’s capabilities
and addressing the associated challenges, we can harness the power of this technology
to accelerate the discovery of safe and effective molecules, ultimately revolutionizing the
drug discovery process.

In this article, we provide a comprehensive review of the state-of-the-art technologies
that employ AI in medicinal chemistry. We explore the current advancements and future
prospects in this rapidly evolving field, shedding light on the transformative role of AI
and its potential impact on drug discovery. The main purpose of this article is not only
to outline the breakthroughs AI has facilitated but also to critically evaluate where it falls
short or poses new challenges. By considering both the promises and pitfalls of AI in this
domain, we aim to offer a balanced perspective that will guide future endeavors. Through a
holistic understanding of the state of AI in drug discovery, we aspire to foster a foundation
for its more robust and insightful application in the efficient and innovative drug discovery.

2. AI/ML Algorithms and Bio Big Data Utilized in Drug Discovery Research

Bio big data encompass a wide range of data types, such as genomic, proteomic,
and transcriptomic data, collected from various sources such as high-throughput experi-
ments and clinical studies, providing invaluable insights for drug discovery [6]. AI/ML
algorithms, which are computational methods that allow computers to learn from data
and recognize patterns, help researchers navigate these vast amounts of bio big data and
identify potential drug candidates more effectively and accurately, revolutionizing the drug
discovery process [4,11]. In order to optimally exploit AI and ML strategies within the
context of drug discovery, it is essential to grasp the fundamental principles that underpin
a range of machine learning methodologies. These methodologies, including supervised,
unsupervised, and reinforcement learning, are employed to address a diverse array of
research challenges within this domain.
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2.1. Overview of ML Algorithms

AI is a broad field that encompasses various computational techniques, enabling
machines to mimic human-like intelligence capabilities, such as learning, reasoning, and
problem-solving. ML is a subset of AI specifically focusing on the development of algo-
rithms that learn, adapt, and perform tasks through data processing and analysis [12]. By
identifying patterns, making predictions, and refining algorithms based on input data, ML
allows machines to improve their prediction performance and decision-making capabilities
autonomously over time. ML algorithms can be broadly categorized into three types:
supervised learning, unsupervised learning, and reinforcement learning.

2.1.1. Supervised Learning

Supervised learning is a type of machine learning where algorithms are trained using
labeled data, meaning each input data sample is paired with the appropriate or correct
output [12]. The algorithm uses these input–output pairs to learn a model that can make
accurate predictions for new, unseen data. Supervised learning algorithms, such as support
vector machine (SVM), support vector regression (SVR), naïve Bayes, tree-based, and
random forest (RF), can identify potential drug candidates by analyzing large datasets and
identifying patterns and relationships that humans may not easily detect (Figure 1) [13,14].
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(1) Support Vector Machine (SVM)

The support vector machine (SVM) is a powerful tool, rooted in the principle of
structural risk minimization, and is capable of classifying data, identifying outliers, and
performing regression analysis. The core of the SVM methodology is the identification
of an optimal decision boundary (i.e., hyperplane) that best separates data points across
different classes [15]. This hyperplane is constructed by maximizing the margin, which
represents the distance between the decision boundary and the closest training samples,
also referred to as support vectors. In drug discovery, SVM is primarily employed to predict
the biological activity of compounds or to classify molecular properties. One of the key
strengths of SVM in such tasks is its ability to handle high-dimensional data and detect
complex patterns, particularly within large and noisy datasets [16–18]. This makes SVM
one of the top performers in predicting chemical and biological properties. However, it
is crucial to note that SVM’s performance can be sensitive to the selection of the kernel
function and its parameters [19]. Additionally, when dealing with imbalanced datasets,
where one class significantly outnumbers the other, SVM may require additional processing
steps to balance the data before application [19].

SVMs have established themselves as a significant tool in drug discovery due to their
superior ability to analyze complex cheminformatics data. Their use extends to various
tasks: they help in virtual screening processes [20,21], predicting drug–target interac-
tions [22,23], and identifying new drug targets [24,25]. They are instrumental in predicting
drug similarity in the quantitative structure–activity relationship (QSAR) domain, where
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the assumption is that structurally similar compounds will exhibit similar drug activi-
ties [23,26]. Furthermore, SVMs are employed to forecast activity cliffs, pairs of structurally
similar compounds with a significant activity difference towards a specific target, thereby
contributing to our understanding of critical drug–target interactions and aiding in new
drug development [16–18].

(2) Naïve Bayes

The naïve Bayes algorithm is a probabilistic machine learning model rooted in Bayes’
theorem, a principle in probability theory that describes how to update the probabilities
of hypotheses when given evidence [12,14]. Specifically, Bayes’ theorem is a mathemati-
cal principle that provides a way to update the probabilities of our previous hypotheses
based on new evidence [14]. In other words, when new information is given, it helps us
decide how to apply it to a hypothesis. The naïve Bayes algorithm takes this principle and
applies it with a “naïve” assumption of conditional independence between features [27].
Essentially, it considers each data attribute as independent, thus, simplifying multivariate
problems into separate univariate issues. This strong assumption simplifies computations
and enables the handling of high-dimensional data with ease. In practice, naïve Bayes
has been widely adopted in various fields, such as document analysis, spam detection,
and cheminformatics, particularly in drug discovery and drug–target interaction predic-
tion [14]. It is noted for its robustness and versatility. However, despite its simplicity and
speed, naïve Bayes has its limitations. It assumes that the attributes in the dataset are
entirely independent, which might not accurately reflect the actual dependencies present
in the data. Moreover, while naïve Bayes performs reasonably well as a classifier, it is
known to be a less reliable probability estimator, so its output probabilities should be
interpreted cautiously.

In drug design, the naïve Bayes algorithm has been widely applied, helping pre-
dict the biological activities of compounds, assisting in the early selection of promising
candidates, and estimating results before laboratory experiments [7,28]. It can predict
protein–protein [29] and drug–drug interactions [30], which is vital for understanding
cellular pathways and managing polypharmacy, where patients take multiple drugs. This
algorithm can also anticipate drug–target interactions, facilitating drug repurposing and
side effect prediction [31–34]. Lastly, it can classify compounds into specific categories
quickly, although it operates on the assumption of feature independence, which may not
always hold [27,35].

(3) Random Forest (RF)

Tree-based ML algorithms use decision trees (DTs) to predict target values based on
observed features. DTs are flowchart-like structures where each internal node represents a
feature, branches represent decision rules, and leaf nodes indicate outcomes, allowing for
classification and regression tasks. However, single decision trees are prone to overfitting
and struggle to generalize to new data. To overcome this limitation, ensemble methods,
such as random forest (RF), prove to be particularly beneficial [12,13] The RF algorithm
creates an ensemble of DTs, each built on a different sample of the data [14]. Each split
in these DTs is determined from a different subset of features, leading to decorrelation
between the trees. This strategy combats the overfitting problem often encountered with
single DTs. By aggregating results from numerous, ideally uncorrelated, DTs, RF leverages
the power of ensemble learning, enhancing its predictive power and stability. RF provides
benefits in early drug discovery, including enhanced feature selection and predictive ability
in QSAR analysis, making it useful for handling large, high-dimensional datasets in virtual
screening [36]. However, to manage overfitting risks, careful data partitioning, model
complexity control, and cross-validation are necessary. Analyzing feature importance can
improve interpretability [12].

Building on these strengths, RF has been integrated into various stages of drug de-
velopment, such as predicting chemical and drug properties, protein-related predictions,
conducting virtual screening and docking studies, drug response prediction, polypharma-
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cology research, and drug side effects prediction. Specifically, RF has proven helpful in
QSAR modeling to correlate a drug’s chemical structure with its biological activity, esti-
mating key parameters such as drug solubility and solvent density [36]. In protein-related
predictions, RF assists in determining protein pKa values and protein–protein affinity, as
well as identifying protein function and type, which is vital in target-based drug design [37].
Additionally, RF models facilitate efficient virtual screening of compound libraries to pre-
dict potential binding with target proteins, making them indispensable in integrated virtual
screening and docking studies, including peptide docking studies [38].

2.1.2. Unsupervised Learning

Unsupervised learning is a method that trains a machine in the absence of any correct
answers. It traverses unlabeled data, striving to decipher latent patterns or structures
devoid of pre-defined output [5]. In this case, the learning process often involves grouping
vast amounts of data based on similar characteristics, a process known as clustering. Even
though the correct answer for the input value is not known, unsupervised learning can
be used to uncover hidden patterns or features within the data, making it a powerful
strategy for clustering and dimensionality reduction. Unsupervised learning algorithms,
encompassing hidden Markov models (HMMs), growing self-organizing maps (GSOMs),
k-means clustering, principal component analysis (PCA), autoencoders, and t-SNE, exhibit
the capacity to cluster similar molecules, unearth novel molecular scaffolds, or reveal
previously unknown correlations between biological entities (Figure 2).
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(1) Hidden Markov Models (HMMs)

Hidden Markov models (HMMs) are probabilistic models developed to work with
sequential data. These models rely on a set of unobserved, hidden states and the probability
of observable outputs that each state generates [39]. In a specific state, an outcome or
observation can be produced according to an associated probability distribution, making
HMMs an instrumental tool for various applications. HMMs excel at processing sequential
data, modeling temporal dependencies, and managing missing and noisy data, making
them robust against overfitting due to their probabilistic nature [40]. However, since HMMs
rely on the Markov assumption, asserting that future states depend only on the current
state, it might not always be a realistic presumption for many real-world scenarios.

HMMs have proven to be an invaluable tool in drug discovery, primarily due to their
prowess in analyzing sequential biological data. They find extensive applications in various
pivotal tasks. HMMs are critical in protein homology detection, efficiently identifying and
classifying protein families within sequences [41,42]. This ability is vital in discovering new
proteins that serve as potential targets for novel drugs. Further, HMMs play a significant role
in protein sequence analysis, a critical process in understanding the function of a protein and
selecting it as a target in the early stages of drug development [43,44]. Through augmenting
sequence analysis, HMMs reveal more accurate and profound insights, thereby enhancing
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the outcomes. Lastly, HMMs are instrumental in predicting protein structures and 3D
modeling. Accurately predicting and modeling complex protein structures is a crucial part
of drug discovery, as it assists in predicting the efficacy and binding characteristics of a
potential drug [45].

(2) K-means Clustering

K-means clustering is a powerful tool, grounded in the partitioning principle, adept
at classifying data into distinct ‘k’ clusters. A centroid, the mean of all data points within
that cluster, characterizes each cluster. This algorithm aims to assign each data point
to the nearest cluster, creating homogeneous groups of similar data points [1]. In drug
discovery, k-means clustering is primarily used to define proper molecular descriptors,
compute the similarities between compound samples, and group compound features based
on computed similarities. A key strength of k-means in drug development is its ability
to handle high-dimensional data and discern complex patterns, particularly within large
and noisy datasets. This capability makes k-means one of the foremost performers in
predicting chemical and biological properties. However, it is essential to note that k-means
performance can be sensitive to the initial selection of centroids and the predetermined
number of clusters. Furthermore, when dealing with imbalanced datasets, k-means may
require additional pre-processing steps to balance the data before application. Despite
these challenges, the simplicity, scalability, and flexibility of the k-means algorithm make it
a vital tool in drug discovery.

Building upon the basic principles, k-means clustering finds extensive use in drug
discovery, primarily due to its ability to handle multidimensional data. It helps define
molecular descriptors, numerical entities that represent a compound’s physicochemical
properties, thereby aiding in predicting its behavior [46,47]. The technique is also proficient
in calculating similarities between compound samples, revealing relationships among
compounds, and selecting potential drug candidates [48,49]. In addition, k-means clus-
tering is used for clustering compound properties and selecting protein structures based
on similarities [46,48,50]. Such grouping helps analyze a drug’s effect, and by identifying
similar protein conformations, it enhances the performance of ensemble docking [51,52].

(3) T-Distributed Stochastic Neighbor Embedding (t-SNE)

T-distributed stochastic neighbor embedding (t-SNE) is a technique that simplifies
high-dimensional data into a more digestible, low-dimensional form while preserving
the relative similarities of data points [1]. In short, t-SNE evaluates the similarity of data
points in a high-dimensional space, giving higher probabilities to those more similar [53,54]. It
maps these points to a lower-dimensional space, aiming to keep these similarities intact [1,53].
The ultimate goal is to create an easier-to-understand visualization while respecting the
original data structure. A key advantage of t-SNE is its unique ability to maintain local
and global high-dimensional data structures, unveiling patterns other reduction techniques
such as PCA might overlook [54]. While t-SNE is effective for visualizing data, it does
have limitations. It requires calculating pairwise similarities for all data points, which
can be computationally demanding for large datasets [55]. Also, it often struggles to
identify relevant clusters at varying scales and is sensitive to hyperparameters, necessitating
careful tuning.

As a result, t-SNE plays a central role in drug design, particularly in compound
clustering, drug target exploration, molecular representation, and drug design. t-SNE
enables a comprehensive understanding and analysis of complex biological data and
compound similarity by visualizing high-dimensional data in low-dimensional space.
In particular, t-SNE assists in predicting the behavior of compounds through molecular
descriptors, which are unique physicochemical characteristics, ultimately playing a crucial
role in selecting potential drug candidates [56]. Moreover, t-SNE is employed to visualize
biological data, aiding in the understanding of the relationship between drugs and their
targets [57,58]. This can help discover new drug targets or identify new uses for existing
drugs. Lastly, in visualizing complex biological data such as protein structures and gene
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expression profiles in lower dimensions, t-SNE enhances the technical aspects of molecular
representation and drug design [59]. Due to its versatility and efficiency, t-SNE is expected
to continue to play an essential role in shaping drug development strategies.

2.1.3. Reinforcement Learning

Reinforcement learning, a unique branch of machine learning, fine-tunes decision-
making strategies through rewards or penalties for each action. Akin to learning via trial
and error, a reward is given when the desired result is achieved, and the machine is trained
to maximize this reward. If supervised learning and unsupervised learning proceed in
a given static environment with the provided data, reinforcement learning, on the other
hand, includes the process of collecting data in a dynamic environment. Reinforcement
learning algorithms such as Q-learning and Monte Carlo tree search (MCTS) started to
be used to revolutionize processes such as molecular docking, de novo drug design, and
drug property optimization. These algorithms navigate molecular configurations, assist in
constructing novel drug molecules, and balance objectives such as efficacy and side effects
to produce promising drug candidates. It can aid the discovery of effective drug molecules
and novel therapeutic strategies in a more creative, innovative way.

For example, Q-learning, a specific application of reinforcement learning, optimizes
decisions through an intricate balance of ‘exploration’ and ‘exploitation,’ thus, enabling the
model to continue learning while maximizing rewards [60]. Despite potential challenges
such as computational intensity and the risk of suboptimal results if not properly balanced,
Q-learning proves its worth by aiding in the discovery and optimization of molecular
structures and compound characteristics [61]. It particularly excels in multi-property opti-
mization, relationship identification among compounds, and the exploration of molecular
space to identify promising candidates.

Further augmenting the capabilities of reinforcement learning in drug discovery is
MCTS, another critical tool that enhances decision-making by deftly balancing ‘exploration’
and ‘exploitation’ [62]. Despite its computationally intensive nature and the challenge
of striking the right balance, MCTS is indispensable due to its proficiency in navigating
vast and complex molecular landscapes. It not only assists in the discovery and design of
potential drug candidates but can also customize drugs to bind to specific targets [63–65].
MCTS particularly shines in retrosynthetic planning by offering a systematic approach to
deconstructing complex organic molecules, thereby streamlining the planning of synthetic
routes. By exploring a multitude of synthetic pathways, it helps chemists plan and execute
synthesis more efficiently [66]. Additionally, MCTS enhances data mining in drug discovery,
unearthing hidden patterns and structures in vast datasets.

2.2. Deep Learning Method

A pivotal advancement in the field of AI was the introduction of deep learning (DL), a
subset of ML algorithms, designed to mimic the information-processing mechanism of the
human brain. The human brain contains approximately 100 billion neurons, the cells that
make up the nervous system. These neurons are intricately connected in multiple layers
through a structure called synapses, transmitting signals by exchanging electrochemical
signals. This structure of the human nervous system inspired the creation of artificial
neurons, leading to the concept of ‘perceptrons’, which marked the beginning of artificial
neural networks (ANN). A multilayer perceptron (MLP) is a type of neural network that
possesses multiple layers, known as hidden layers, situated between the input and output
layers. When there are two or more hidden layers, the term ‘deep’ is used, highlighting the
use of consecutive layers.

In DL algorithms, predicted outcomes are generated through multiple layers using
the input data, and this prediction is then compared to the actual value to calculate the dif-
ference (Figure 3). To reduce this difference, the weights of the previous layers are adjusted
in a process called back-propagation. This process is repeatedly performed to continually
refine the model. Examples of popular deep learning algorithms include convolutional
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neural networks (CNNs), often used in image processing tasks; recurrent neural networks
(RNNs), particularly effective for sequence data such as time series or natural language; and
deep belief networks (DBNs), which utilize unsupervised learning with generative models.
Other examples are autoencoders for creating compact representations and generative
adversarial networks (GANs) for generating new data that resemble the input data. These
diverse algorithms reflect the breadth and depth of deep learning’s potential applications.
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(1) Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) utilize small filters in several layers to detect
patterns within data. Initially, CNNs extract simple features from the data and then combine
them to extract more complex features. CNNs can extract useful features from images of
molecular structures in drug discovery. CNNs have the primary advantage of effectively
learning complex features from visual data. However, they require large amounts of data
and significant computational resources, which can make model results difficult to interpret.
Leveraging their fundamental capabilities, CNNs have found expansive usage in drug
design, primarily for their proficiency in handling complex, multidimensional data.
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In the field of molecular structure analysis, a CNN aids in deriving purposeful features
or ‘descriptors’ that represent a compound’s physicochemical properties. For instance, Bind-
Scope employs deep convolutional neural networks to classify and visualize compounds
on a large scale, based on their activity or inactivity in structure-based drug discovery [67].
Likewise, the use of artificial intelligence (AI) and machine learning technologies, such
as a graph convolutional neural network (Graph-CNN), has facilitated the investigation
and implementation of diverse molecular representations in drug discovery screening
for identifying and predicting inhibitors of SARS-CoV-2 3CLpro [68]. These descriptors
allow for accurate prediction of a compound’s behavior, while CNN excels at assessing
similarities between different molecular structures, revealing intricate relationships among
compounds. For example, in the ligand-based virtual screening approach, the L3D-PLS
model employs CNN to extract crucial interaction features from grids surrounding aligned
ligands, outperforming traditional methods in the lead optimization of small datasets [69].
In another application, the CAT–CPI model combines CNN with transformers to improve
the prediction of compound-protein interactions, accelerating drug development [70]. Ad-
ditionally, the FRSite method uses a faster R-CNN-based approach to accurately predict
protein binding sites, introducing multi-source 3D data and RPN-3D networks to simulta-
neously predict the center and size of the binding site [71].

Moreover, CNNs are used to group molecular structures based on similarities, which
is crucial for comprehending a drug’s impact and improving the performance of ensem-
ble docking by identifying comparable molecular conformations. For instance, a recent
study developed a deep learning model for compound classification using a distributed
representation of compounds based on the SMILES notation [72]. Using this representation
in a convolutional neural network (CNN), the model could process various compound
types while obtaining low-dimensional representations of input features and outperform-
ing standard methods in discriminating compound structures, including identified and
unidentified motifs. This approach highlights CNNs’ adaptability and effectiveness in
medicinal chemistry and enables a more nuanced understanding of the characteristics of
compounds and potential drug interactions. Furthermore, in the context of large-scale
data mining in drug design, CNNs assist in revealing patterns, correlations, and structures
within enormous datasets.

(2) RecurrentNeural Networks (RNNs)

Recurrent neural networks (RNNs) are a type of neural network designed to process
continuous information. Over time, patterns are learned by these networks, which makes
them suitable for natural language processing and time-series data analysis. In the case
of drug development, RNNs can be beneficial in learning the amino acid sequence of a
protein and predicting its impact on a specific illness. The primary benefit of RNNs lies in
their ability to understand sequence information. However, as the sequence grows longer,
they often fail to retain the initial information, which is a significant drawback.

They aid in constructing innovative drug molecules through various methods, enhanc-
ing the field of medicinal chemistry. For instance, combining stack-augmented recurrent
neural networks with multi-objective reward-weighted sums in reinforcement learning
optimizes the efficient drug design process, proposing a novel way to generate molecules
with desired molecular characteristics [73]. By utilizing RNN models, the development
of new derivatives of metronidazole and the synthesis and validation of compounds that
inhibit bacterial strains such as E. coli, P. aeruginosa, B. subtilis, and S. aureus is explained [74].
The application of memory-augmented techniques using RNN-based architectures such as
neural Turing machine (NTM) and differentiable neural computer (DNC) in creating new
small molecules, analyzing their performance against simple RNNs, and assessing their
validity, novelty, and attribute bias in de novo drug design are also explored [63]. These
strategies translate chemical attributes into sequences such as simplified molecular-input
line-entry system (SMILES), thus, assisting in forecasting novel potential drug candidates.
Moreover, the effectiveness of neural networks, including RNNs, in forecasting drug–target
interactions has been recognized. For example, a new deep learning approach using graph



Pharmaceuticals 2023, 16, 1259 10 of 34

neural networks based on 3D structural information has been proposed to predict drug–
target interactions [75]. The scope of RNN usage further spans the synthesis and testing
of drug efficacy, offering a shift from traditional methods to a more data-centric approach,
yielding more precise predictions and superior drug candidates.

(3) Deep Belief Networks (DBNs)

A deep belief network (DBN) is a type of deep neural network structure that employs
multiple restricted Boltzmann machines (RBMs) to stack layers of neurons. DBNs are uti-
lized in drug development as a powerful tool to comprehend complex molecular properties.
These learned properties are instrumental in the synthesis of potential drug candidates.
DBNs exhibit strength in their capability to learn in an unsupervised manner, which enables
them to discern intricate patterns within the input data. However, the down side associated
with DBNs is that the learning process is intricate and a demands substantial amount of
data and computational resources.

Drawing upon foundational concepts, DBNs demonstrate vast potential in drug
discovery, particularly due to their capability to model complex, non-linear relationships in
multi-dimensional data. They help to define molecular features and accurately predict the
biological activity of novel compounds, thereby aiding in the identification of potential new
drug candidates. For instance, AI-driven natural language processing and machine learning
algorithms have been applied to explore challenges and opportunities in natural product
(NPs) drug discovery, with specific AI approaches developed to identify biologically active
natural products and capture the molecular ‘patterns’ of these privileged structures [76].
Notably, DBNs augment data mining in drug discovery, aiding in deciphering patterns,
correlations, and structures within large datasets. For example, the application of a deep
belief network (DBN) with a dropout mechanism to overcome the overfitting problem
associated with small sample sizes has introduced a rapid and non-destructive drug
identification method using near-infrared spectroscopy [77].

(4) Autoencoders

An autocoder comprises an encoder that compresses input data and a decoder that re-
stores compressed data. In drug discovery, an autoencoder compresses complex molecular
properties. These properties are then used to synthesize new drug candidates. Autoen-
coders have the advantage of learning unsupervised and effectively compressing important
characteristics of input data. The disadvantages of autoencoders include their sensitivity to
noise in data that contains noise.

Autoencoders have emerged as a powerful tool in drug design, offering promising
applications in predicting drug–target binding affinity and generating novel compounds.
Specifically, in drug design and synthesis, techniques such as variational autoencoders can
be instrumental in engineering novel molecules by decoding latent spaces to generate valid,
novel molecular structures that could serve as potential drugs. For example, the problem
of generating invalid molecular structures in automated chemical design can be alleviated
by recasting it as a constrained Bayesian optimization problem within the latent space of
a variational autoencoder, thereby significantly enhancing the validity of the generated
molecules [78]. By utilizing their ability to capture and compress high-dimensional data,
autoencoders can effectively extract latent features from chemical structures and learn
representations that capture the underlying relationships between drugs and their targets.
This enables accurate prediction of binding affinities and facilitates the identification of po-
tential drug candidates. For instance, a deep-unsupervised-learning-based method called
AutoDTI++ has been proposed to enhance the performance of drug–target interaction (DTI)
predictions [79]. Furthermore, autoencoders excel in predicting drug–protein interactions
by learning the intricate patterns and dependencies between chemical compounds and
protein structures. By encoding the molecular features of drugs and proteins into a lower-
dimensional space, autoencoders can effectively capture complex interactions and predict
the likelihood of binding events. This capability enhances the performance of virtual screen-
ing methods and enables efficient exploration of the vast chemical space. Specifically, a deep
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learning framework that combines variational autoencoders and attention mechanisms,
using CNNs to extract local features, has been proposed to obtain crucial information about
drugs and proteins and improve drug–protein interaction (DPI) predictions [80].

(5) Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) comprise a generator and a discriminator,
two neural networks that learn from their interactions with each other. GANs can create
new data that closely resemble real-world data. In drug development, GANs can produce
new drug candidates that resemble real-world drugs. GANs have the advantage of being
generative models that can learn from unsupervised data, but the disadvantage is their
unstable learning process that makes it challenging to maintain a balance between the
generator and discriminator.

Drawing upon their foundational principles, generative adversarial networks (GANs)
have seen substantial application in drug discovery, primarily owing to their ability to
learn complex data distributions. They play a crucial role in de novo molecular design,
wherein deep generative models can effectively learn from existing data and generate novel
molecules, addressing the inefficiencies and time-consuming aspects of traditional methods.
In particular, recent developments in deep generative models for de novo molecular design
have been reviewed, categorizing these models into two types, examining their strengths
and weaknesses, and identifying current challenges [9]. Moreover, a new technique utilizing
a deep learning GAN called “DNMG” has been proposed to integrate the 3D information
of molecules and effectively predict and explore drug properties and binding affinities for
new drug design [81].

GANs are also pivotal in the generation and analysis of high-content images in drug
discovery assays. Specifically, a computer-based framework that employs three varia-
tions of GANs has been proposed for the automatic analysis of large-scale image data
generated from drug tests. Among them, the DCGAN, in particular, has been applied
to create realistic synthetic images that can be used to study the effects of drugs on cells
and bacteria [82]. By learning data distribution, GANs can create synthetic images, en-
hancing the automatic analysis of voluminous image data generated in drug screening
processes. Moreover, they prove instrumental in predicting drug–drug interactions (DDIs)
by learning the patterns within large-scale data, leading to an understanding of unforeseen
interactions. Specifically, a novel deep learning model known as DGANDDI utilizes two
GAN architectures to deeply explore complementary knowledge between drug attributes
and DDI network topology [83]. Another significant utilization of GANs is in predicting
drug–target interactions, where they can learn the potential interactions between drugs
and their respective protein targets, thereby directing the process of drug discovery. In
particular, a novel approach using GANs implements a semi-supervised learning method
that leverages both labeled and unlabeled data to predict the binding affinity between
drugs and targets [84].

2.3. Performance Metrics

Performance metrics are tools for evaluating a model’s efficacy, with different metrics
utilized for classification and regression tasks. Accuracy, precision, recall, and the F1 score
are commonly used to assess how accurately the model categorizes data. On the other
hand, for regression, the mean squared error (MSE), mean absolute error (MAE), and root
mean squared error (RMSE) measure the discrepancy between predicted and actual values.
These metrics play a crucial role in understanding and enhancing model performance.

(1) Metrics for Classification Models

Classification models are supervised learning algorithms that categorize given data
into one of the predefined classes. Key terminologies for evaluating the performance of the
model include true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). TP represents the number of positive cases correctly detected by the model, making
it an important metric for evaluating model performance. TN represents the number of
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negative cases correctly ignored by the model, which is especially crucial when wanting to
avoid incorrect positive predictions. FP is when the model incorrectly predicts a data point
that is actually negative as positive. Such predictions can give users incorrect information
or unnecessary alerts. FN is when the model incorrectly predicts a data point that is
actually positive as negative. FNs are missed positive cases by the model, which can have
severe consequences. For instance, in a medical diagnostic model detecting diseases, an
FN could result in a patient with the disease not receiving a diagnosis. Such terminology
forms the basis for calculating performance metrics of classification models, which are
essential to accurately determine the strengths, weaknesses, and areas of improvement of
the model. Based on these terms, several performance metrics are calculated. These metrics
reflect various aspects of classification model performance such as accuracy, sensitivity, and
specificity, and their importance can vary depending on the specific application area [85].

The accuracy (ACC) indicates the proportion of data correctly classified by the model
among its predictions. It is useful when the class distribution of the data is uniform. If
one class greatly outnumbers the other, it can be challenging to fully assess the model’s
performance based solely on accuracy.

ACC =
#correctly classi f ied samples

# All samples
=

TP + TN
TP + FP + TN + FN

The precision (PREC) denotes the ratio of data points that are actually positive among
those the model classified as positive. This metric becomes important when the cost of
incorrect positive predictions is high.

PREC =
#samples correctly classi f ied
# samples assigned to class

=
TC

TC + FP

The recall (REC) or sensitivity represents the ratio of data points the model predicted
as positive among the actual positive data points. It is critical when the cost of incorrect
negative predictions is high.

REC =
#true positive samples

# samples classi f ied positive
=

TP
TP + FN

The F1 score is the harmonic mean of precision and recall, indicating a balance between
the two metrics. It is especially useful when one class’s sample size is much smaller than
the other.

F1 = 2× precision× recall
precision + recall

=
2× TP

2× TP + FP + FN

The specificity (SPEC) illustrates the ratio of actual negative class data points correctly
predicted as negative by the model.

SPEC =
#true negative samples

#samples classi f ied negative
=

TN
TN + FP

All these metrics fall within the [0, 1] range, where 1 indicates perfect prediction based
on the metric, and 0 indicates an entirely incorrect prediction. Each performance metric
emphasizes different aspects of the model, so the importance of a particular metric can
increase depending on the specific application or problem. Therefore, it is crucial to consider
these metrics comprehensively when evaluating and optimizing model performance.

(2) Metrics for Regression Models

A regression model is an algorithm that models the relationship between one or more
independent variables and a continuous dependent variable. Such models are used to
predict a continuous output value for given input variables. Various metrics are employed
to assess the performance of a regression model by measuring the difference between the
predicted and actual values.
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The mean squared error (MSE) is the average of the squared differences between pre-
dicted and actual values. Due to its squaring of prediction errors, large errors can signifi-
cantly inflate this value.

MSE =
1
n

n

∑
i=1

(yi − ỹi)
2

The mean absolute error (MAE) is the average of the absolute differences between
predicted and actual values. It calculates the absolute error for each prediction and then
averages those values.

MAE =
1
n

n

∑
i=1
|xi − x|

The root mean squared error (RMSE) is the positive square root of MSE. RMSE provides
an interpretation of the prediction error size in the original unit. While it gives greater
weight to large errors, RMSE can be more interpretable as it represents the actual size of
the prediction error.

RMSE =

√
1
n

n

∑
i=1

(yi − ỹi)
2

The R-squared, also known as the coefficient of determination, is a metric that illustrates
the predictive power of a regression model. It indicates how well the model explains the
variability in the data.

R2 = 1− ∑(yi−ỹi)
2

∑(yi−y̌i)
2

ỹ = predicted value o f y

y̌ = mean value o f y

These metrics play a crucial role in evaluating the performance of a model, empha-
sizing different aspects. Therefore, when assessing and optimizing the performance of a
regression model, it is essential to consider these metrics comprehensively.

2.4. Databases in Drug Research

The effectiveness of ML or DL methods is predominantly contingent upon the avail-
ability of substantial, accurate, and reliable data. As technological advances continue to
make data generation faster and more affordable, the volume of chemical, biological, and
medical data has grown exponentially. There is a continuous effort to centralize these
datasets and make them publicly available for research around the globe. This crucial
information can be procured from many public databases, which serve as rich repositories
of information that are indispensable for drug discovery. These databases encapsulate a
wide array of knowledge about the efficacy of various drugs, potential side effects, the
nature of drug targets, and intricate chemical structures. However, it is essential to under-
stand that not all databases are equivalent in terms of the type and depth of information
they contain. Each database is unique, housing specific sets of data. Therefore, gaining a
robust understanding of the nature of the information these databases provide, and how to
utilize it effectively, is essential for researchers. Table 1 summarizes the publicly available
databases that contain various aspects of data utilized in drug discovery.

Table 1. Databases utilized in drug discovery research.

Database URL * Description Ref.

Compound and Drug Databases

PubChem https://pubchem.
ncbi.nlm.nih.gov/

Launched in 2004 as part of the Molecular Libraries Roadmap Initiatives by the US
National Institutes of Health (NIH), PubChem is a public database for information
regarding chemical substances and their biological activities.

[86]

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/


Pharmaceuticals 2023, 16, 1259 14 of 34

Table 1. Cont.

Database URL * Description Ref.

ChEMBL https://www.ebi.ac.uk/
chembl/

ChEMBL is a well-curated database of bioactive molecules with drug-like properties,
integrating chemical, bioactivity, and genomic data to aid in the transformation of genomic
information into effective new drugs.

[87]

ZINC https://zinc.docking.org/ ZINC is a free database of over 230 million commercially available compounds in 3D
formats, suitable for virtual screening, provided by the Irwin and Shoichet Lab at UCSF. [88]

ChemSpider http:
//www.chemspider.com

ChemSpider is a free-access website that serves as a chemical database and a
structure-centric community for chemists, aiming to aggregate and index accessible
information on chemical structures and related data from various online sources. It includes
analytical data, synthesis reactions, experimental properties, and more.

[89]

DrugBank http:
//www.drugbank.ca

DrugBank is a robust online database that provides wide-ranging biochemical and
pharmacological data about drugs, including their mechanisms of action and targets. [90]

DrugCentral http://drugcentral.org/
DrugCentral is a publicly accessible online compendium that consolidates information on
the structure, bioactivity, regulatory, and pharmacological actions, and indications of active
pharmaceutical ingredients approved by the FDA and other regulatory bodies.

[91]

Drugs@FDA
https:
//www.accessdata.fda.
gov/scripts/cder/daf/

Drugs@FDA is a comprehensive database that contains information about FDA-approved
prescription and over-the-counter drug products, including brand-name and generic drugs,
as well as many therapeutic biological products, with majority of data dating back to 1998
and some extending to 1939.

[92]

Metabolic and Biomolecular Pathway Databases

KEGG https://www.kegg.jp
KEGG is a database designed to provide insights into the high-level biological functions of
cells, organisms, and ecosystems using molecular-level data, particularly from large-scale
genome sequencing and other high-throughput experiments.

[93]

BioCyc https://biocyc.org/
BioCyc is a comprehensive collection of pathway/genome databases and a suite of
bioinformatics tools that offer insights into the genomes, metabolic pathways, and regulatory
networks of numerous sequenced organisms, helping to accelerate scientific research.

[94]

Reactome https://reactome.org

Reactome is an open-access, peer-reviewed pathway database that aims to offer user-friendly
bioinformatics resources for visualizing, interpreting, and analyzing pathway information.
These resources aid various fields, including basic research, genome examination, modeling,
systems biology, and education.

[95]

HMDB http://www.hmdb.ca
The Human Metabolome Database (HMDB) is an open-access online database that provides
comprehensive information regarding small molecule metabolites identified in the
human body.

[96]

Protein–Protein Interaction and Network Databases

IntAct http://www.ebi.ac.uk/
intact/

IntAct is a freely accessible database that houses molecular interaction data, obtained either
directly from data submissions or curated from scholarly publications. [97]

BioGRID https://thebiogrid.org
BioGRID is an online repository that meticulously compiles and hosts extensive data on
protein and genetic interactions, chemical associations, and post-translational modifications
from major model organisms.

[98]

STRING https://string-db.org/
STRING is a comprehensive repository that comprises both acknowledged and projected
protein associations. These interactions encompass both direct interactions, which involve
physical contact, and indirect ones, which imply functional relationships.

[99]

STITCH http://stitch.embl.de/
STITCH is a platform used to investigate established and anticipated connections between
proteins and chemicals, with connections supported by experimental data, databases, and
the academic literature.

[100]

Drug–Target Interaction Databases

BindingDB http://www.bindingdb.
org/bind/index.jsp

BindingDB is an open, web-based database dedicated primarily to measuring binding
affinities between proteins, viewed as drug targets, and small, drug-like molecules. [101]

TTD http:
//db.idrblab.net/ttd/

The Therapeutic Target Database (TTD) is a resource that offers details regarding established
and potential therapeutic protein and nucleic acid targets, the diseases they target, associated
pathway information, and the specific drugs designed to interact with these targets.

[102]

IUPHAR/BPS
Guide to

PHARMA-
COLOGY

https://www.
guidetopharmacology.
org/

The IUPHAR/BPS Guide to PHARMACOLOGY is an expert-curated database offering
comprehensive information on drug targets, prescription medicines, and experimental
drugs, enriched with links to other databases, aiming to be a centralized resource for
pharmacology and drug discovery.

[103]

DGIdb http://www.dgidb.org
The Drug–Gene Interaction Database is an online tool that amalgamates various datasets
detailing interactions between drugs and genes, and the druggability of genes. It presents a
user-friendly visual interface and a well-documented API for data queries.

[104]

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://zinc.docking.org/
http://www.chemspider.com
http://www.chemspider.com
http://www.drugbank.ca
http://www.drugbank.ca
http://drugcentral.org/
https://www.accessdata.fda.gov/scripts/cder/daf/
https://www.accessdata.fda.gov/scripts/cder/daf/
https://www.accessdata.fda.gov/scripts/cder/daf/
https://www.kegg.jp
 https://biocyc.org/
https://reactome.org
http://www.hmdb.ca
http://www.ebi.ac.uk/intact/
http://www.ebi.ac.uk/intact/
https://thebiogrid.org
https://string-db.org/
http://stitch.embl.de/
http://www.bindingdb.org/bind/index.jsp
http://www.bindingdb.org/bind/index.jsp
http://db.idrblab.net/ttd/
http://db.idrblab.net/ttd/
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
http://www.dgidb.org
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Table 1. Cont.

Database URL * Description Ref.

Toxicity and Side Effect Databases

CTD http://ctdbase.org/

CTD is a comprehensive, public database that collates data from various sources on the
impacts of environmental exposures on human health, including chemical genes, chemical
disease, and chemical–exposure interactions across all species, offering analytical tools for
hypothesis generation.

[105]

DrugMatrix/
ToxFX

https://ntp.niehs.nih.
gov/data/drugmatrix

DrugMatrix, accompanied by its reporting system ToxFX, serves as one of the largest
toxicogenomic reference databases, providing comprehensive profiles for over
600 compounds, aimed at enhancing the efficiency of toxicological assessments and
understanding of the potential toxicity of xenobiotics.

[106]

OECD
eChemPortal

https:
//www.echemportal.
org/echemportal/

eChemPortal is a free public global database that collects and provides direct links to
chemical characteristics data and safety information from various national, regional, and
international government programs.

[107]

SIDER http:
//sideeffects.embl.de/

SIDER is a database that provides information about marketed drugs and their documented
adverse reactions, including side effect frequency, drug classifications, and additional
resources such as drug–target relations.

[108]

Protein and Gene Databases

UniProt https:
//www.uniprot.org

UniProt offers the scientific community a thorough, superior, and freely accessible database
of protein sequences and functional data. [109]

InterPro https://www.ebi.ac.uk/
interpro/

InterPro facilitates the functional examination of proteins by grouping them into families
and forecasting the presence of domains and significant sites. [110]

GenBank http://www.ncbi.nlm.
nih.gov/genbank/

GenBank is the NIH’s genetic sequence database, a comprehensive, annotated collection of
all publicly accessible DNA sequences, participating in the International Nucleotide
Sequence Database Collaboration, with data updates every two months.

[111]

RCSB PDB http://rcsb.org/

RCSB PDB is a resource-driven by the Protein Data Bank archive, offering detailed
information about 3D structures of proteins, nucleic acids, and complex assemblies, aiding
students and researchers in exploring biomedicine, agriculture, protein synthesis, and
various health and disease conditions.

[112]

Ligand Expo http:
//ligand-expo.rcsb.org/

Ligand Expo is a resource offering chemical and structural information about small
molecules found within the Protein Data Bank entries, along with tools for searching,
identifying entries with specific molecules, downloading 3D molecule structures, and
creating new chemical definitions.

[113]

Databases offering diverse types of information

LINCS https://lincsproject.org/

The LINCS Consortium is a project that provides public data on cellular responses to various
genetic and environmental stressors, aiming to deepen our understanding of cellular
pathways and aid in the development of therapies to normalize disturbed pathways and
networks, with their website and data portal offering comprehensive information on assays,
cell types, perturbations, and related software for data analysis.

[114]

BRENDA http://www.brenda-
enzymes.org/

BRENDA is a comprehensive resource that consolidates extensive information about
enzymes and enzyme–ligand relationships derived from various sources and offers
adaptable search systems and assessment tools.

[115]

COCONUT https://coconut.
naturalproducts.net

Natural Products Online is a freely accessible, open-source platform dedicated to storing,
searching, and analysis of natural products (NPs). It currently features COCONUT, a
comprehensive and well-documented collection of open natural products, which is one of
the most significant resources available without any restrictions.

[116]

TDR targets https://tdrtargets.org
TDR Targets is a website that serves two purposes. Firstly, it provides information on targets,
drugs, and bioactive compounds. Secondly, it can be used to prioritize targets within
whole genomes.

[117]

* All URL addresses were accessed on 3 September 2023.

3. AI in Structural Biology

Structural biology, encompassing the study of the three-dimensional (3D) structures
of biological macromolecules, is essential for understanding the precise mechanisms under-
lying living organisms. Experimental techniques such as X-ray crystallography, nuclear
magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM) have
been employed to elucidate numerous structures. However, these experimental methods
often require extensive labor, time, and financial resources, posing limitations for specific
molecules or complexes. AI has advanced structural biology by providing computational

http://ctdbase.org/
https://ntp.niehs.nih.gov/data/drugmatrix
https://ntp.niehs.nih.gov/data/drugmatrix
https://www.echemportal.org/echemportal/
https://www.echemportal.org/echemportal/
https://www.echemportal.org/echemportal/
http://sideeffects.embl.de/
http://sideeffects.embl.de/
https://www.uniprot.org
https://www.uniprot.org
https://www.ebi.ac.uk/interpro/
https://www.ebi.ac.uk/interpro/
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ncbi.nlm.nih.gov/genbank/
http://rcsb.org/
http://ligand-expo.rcsb.org/
http://ligand-expo.rcsb.org/
https://lincsproject.org/
http://www.brenda-enzymes.org/
http://www.brenda-enzymes.org/
https://coconut.naturalproducts.net
https://coconut.naturalproducts.net
https://tdrtargets.org
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approaches to overcome these experimental limitations [118,119]. AI techniques, especially
DL methods, and data-driven modeling, have been applied by extracting meaningful pat-
terns and features from vast and complex biological sequence and structural data. AI offers
innovative tools for researchers, enabling protein structure prediction, protein design, and
more, and continues to evolve alongside advancements in hardware and algorithm.

3.1. Protein Folding and Its Prediction

Protein folding, a highly intricate process, plays a fundamental role in determining the
functional properties of biological macromolecules. Despite the limited number of around
20 amino acids, the varying structures and functions depending on their arrangements
are of significant research interest in life sciences. Therefore, structural studies on protein
folding are essential for understanding biological mechanisms and developing therapeutic
strategies for diseases. However, observing the actual structure of proteins requires sub-
stantial resources and time. Hence, researchers attempt to predict protein folding and 3D
structures using genetic information.

Despite the high demand for protein structure prediction, it remains challenging, and
achieving perfect prediction is still elusive. Even minor variations in protein sequences can
lead to drastic changes in overall structure and, in some cases, result in loss of function.
On the other hand, certain amino acids share similar chemical properties, which can lead
to minimal structural differences in some mutations. Additionally, despite the astronom-
ical range of conformational possibilities resulting from the rotations of amino acids in
flexible polypeptide chains, most small proteins fold spontaneously on a millisecond or
even microsecond timescale. In order to address these Levinthal’s paradoxes, scientists
have conducted extensive research in this area [120,121]. Researchers have attempted to
predict structures using computational thermodynamic hypotheses, but this method has
not yielded perfect results. For instance, predicting conformations of a protein within a
biological system is challenging because even slight inaccuracies in the computation of the
significant free energy difference between folded and unfolded states can lead to incorrect
predictions. Therefore, recent arguments suggest that instead of traditional thermodynamic
hypotheses, the non-equilibrium and active nature of proteins within the biological context
requires modeling using fluctuating free-energy landscapes [122].

To overcome these limitations, various advancements and refinements have been
made in the field of homology modeling techniques. Homology modeling, also known
as comparative modeling, predicts the structure of a target protein using experimentally
determined structures of homologous proteins as templates. Homology modeling con-
tributes to understanding protein structure and function, aiding hypothesis generation
and experimental design. This approach leverages the principle that proteins with similar
sequences adopt similar structures. Key steps include selecting a suitable template with
high sequence similarity, aligning the target sequence with the template, generating a
model, and model optimization followed by validation [123]. The model accuracy largely
depends on sequence similarity, and adopting strategies such as utilizing multiple tem-
plates, along with implementing processes such as energy minimization and loop modeling,
can significantly enhance this precision.

3.2. Biomolecular Structure Prediction by Computational Methods

As research methods and technologies have advanced, protein structure and sequenc-
ing data accumulation has been accelerating. The Protein Data Bank (PDB), established
in 1971, serves as the primary archive housing the largest collection of protein 3D struc-
tures [124]. As of 2022, the number of experimentally determined 3D protein structures
has exceeded 200,000, with the pace of data accumulation steadily increasing [125]. Addi-
tionally, the UniProt Knowledgebase (UniProtKB) [109] provides information on protein
sequences including functional annotations and currently holds over 220 million sequences
as of 2023. This database also encompasses protein structure visualization data, including
predicted structures by AI (i.e., AlphaFold, which is described in the following section).
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MODELLER [126], which started development in 1993, is a representative program
that can generate homology models using these accumulated databases. When researchers
provide the sequence of the desired protein and structures of similar sequences, the pro-
gram automatically creates models that satisfy spatial restraints using comparative protein
structure modeling [127]. The SWISS-MODEL server, another tool in the field, provides
an automated web service for generating homology models, with the ProMod3 modeling
engine at its core [128]. This program utilizes QMEANDisCo [129] for model quality es-
timation and has demonstrated excellence through the CAMEO project, showcasing its
effectiveness [130]. I-Tasser [131] has garnered significant attention due to an outstanding
performance. I-Tasser combines various methods, including threading, ab initio modeling,
and structure assembly, to generate models [132]. It utilizes a hierarchical approach, starting
with the identification of template structures through threading, followed by fragment
assembly simulations and refinement. The program has demonstrated competitive perfor-
mance in several international structure prediction competitions, such as critical assessment
of protein structure prediction (CASP) [133].

Collaborative efforts such as CASP are underway, providing a valuable platform for
evaluating AI-based biomolecule structure prediction research [134,135]. Various research
teams engage in structure prediction by categorizing protein sequences into cases amenable
to template-based modeling (TBM) or those requiring free modeling (FM) and then eval-
uating their predictions. In 2018, DeepMind’s AlphaFold participated in CASP13 and
introduced a novel approach by enhancing the traditional fragment assembly technique
using deep learning (DL) methods. AlphaFold utilizes a deep residual convolutional
neural network (CNN) to effectively capture intricate patterns within the protein data
(Figure 4). The neural network undergoes training to make predictions about protein
structures, and through gradient descent, it minimizes the potential energy to stabilize
and achieve accurate structure prediction [136]. AlphaFold2 emerged during CASP14,
introducing a novel neural network block called Evoformer [119,135]. Evoformer enhances
the accuracy of structure prediction by facilitating the exchange of information within the
multiple sequence alignment (MSA) and learning the relationships between sequences. It
captures intricate spatial relationships, thereby improving the prediction of protein struc-
tures. trRosetta is also an approach that incorporates CNN into the existing RosettaFold
framework [137]. By utilizing CNN, it directly predicts inter-residue distances and torsion
angles from protein sequences and MSAs. These predictions are then integrated with the
fragment assembly approach of RosettaFold to generate protein structure models.

3.3. Advancements in Protein Structural Research through AI

With the successful application of AI in predicting the structures of individual proteins,
there has been a growing interest in applying AI to a broader range of structural biology
research. One such area is the prediction of protein complex structures, which is expected
to make significant contributions to the study of host–pathogen interactions [118]. Deep-
Mind has released AlphaFold-Multimer to predict protein complex structures [138,139].
However, the coevolution within a protein and between proteins exhibits distinct patterns,
posing limitations to complex prediction using MSA-based methods. Moreover, there are
challenges in accurately predicting heterodimeric complexes compared to homodimeric
ones, and the accuracy tends to decrease as the number of chains increases. In response
to these issues, efforts have been made to address them by introducing ESMFold [140], a
language model-based approach, aimed at improving the prediction accuracy.

The epigenetic dimension of protein structure (EDPS) represents another important
objective that needs to be addressed [141]. Currently, neural network (NN)-based modeling
algorithms face significant limitations in epigenetic protein structure prediction. This is
particularly evident in membrane proteins [142], where template-based modeling (TBM)
demonstrates higher accuracy than NN-based modeling, owing to the incorporation of lipid
bilayer template data. This observation suggests that specific lipid species in the membrane
environment may influence protein structure formation [143,144]. Comparative studies
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on G-protein-coupled receptor (GPCR) structure prediction supports this notion [145], as
TBM exhibits relatively higher accuracy in loop regions, possibly due to the influence of the
surrounding environment. Consequently, further research is required to explore additional
methods that can improve the accuracy of EDPS prediction, especially for membrane
proteins, even in the absence of suitable templates.
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The integration of AI in protein structural research has shown notable advancements
and potential in this field. While some challenges persist, particularly in predicting complex
interactions and navigating the epigenetic aspects of protein structure, AI’s adaptability
and the ongoing refinement of its methodologies have shown promise in overcoming these
hurdles. Tools such as AlphaFold or ESMFold represent the innovative solutions developed
to address existing limitations. However, the journey towards the comprehensive and
accurate prediction of protein structures, including complex and epigenetically influenced
structures, is ongoing. As AI technologies continue to evolve, it is anticipated that they will
play an increasingly critical role in unfolding the mysteries of protein structures, thereby
revolutionizing our approach to structure-based drug discovery.

4. AI in Medicinal Chemistry or Cheminformatics

AI has also revolutionized medicinal chemistry and cheminformatics by providing
innovative tools and approaches for drug discovery, such as deep generative models for
molecular design, as well as the prediction of drug–target interactions or drug toxicity [47].
AI-driven approaches enable the exploration of vast chemical space, leading to the discovery
of novel compounds with therapeutic potential. They can also facilitate drug repurposing by
analyzing large-scale data to identify connections between drugs and diseases, expanding
the possibilities for addressing unmet medical needs. Regarding chemical structures, AI
methods generally use molecular fingerprints as input data. They are trained to find
patterns in these fingerprints that correlate with the properties of interest, such as biological
activity or physicochemical properties. This process is crucial in various cheminformatics
tasks such as virtual screening, QSAR modeling, and de novo drug design. Thus, the
relationship between molecular fingerprints and AI methods in cheminformatics is one of
symbiosis, with each enabling the other’s functionality.
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4.1. Molecular Fingerprints

Molecular fingerprints are binary or count-based representations that encode the
chemical structure into a format that computational models can readily process. They
can be seen as a bit string (usually several hundreds or thousands of bits long), where
each bit represents the presence or absence of a particular substructure or property within
the molecule [146]. Capturing different aspects of the molecular structure, such as the
presence of certain functional groups, topological features, or 3D properties, it can transform
these complex structures into simplified, standardized vectors [147]. The primary use of
the molecular fingerprint is for creating a simplified digital representation of complex
molecules, which allows efficient comparisons and searches in large molecular databases.
It can be also used as a particular form of molecular descriptor that is commonly applied to
a wide range of tasks, from virtual screening to prediction model building [148].

Molecular fingerprints can be categorized into the following classes [149–151]:
(1) substructure keys-based fingerprints that generate bit strings depending on the pres-
ence or absence of substructures in the compound, (2) topological fingerprints that fo-
cus on topological routes and represent all possible connectivity routes between atoms,
(3) circular fingerprints that are also related to atom paths similar to topological fingerprints
but represent the connectivity of atoms not in a linear way but in a radius way, illustrating
the atom’s environment [152], and (4) pharmacophore fingerprints that encode atoms by the
pharmacophoric functional groups and atom bonds by several distance ranges [153]. Some
fingerprints cannot be in these classes. SMIfp [154], which is calculated from SMILES, is
a good example of that exception. Figure 5 and Table 2 summarizes the representative
fingerprints commonly used in drug discovery research.
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Fingerprints can be used to calculate molecular similarity or distance and help identify
molecules with similar structures or properties, clustering molecules into groups, or predict
the properties or activities of new molecules based on their similarity to known ones. As a
tool in machine learning, molecular fingerprints can be used as input features for models
predicting the properties or activities of molecules. In this context, the model learns to
associate certain patterns in the fingerprint with the property or activity being predicted.
The major drawback of molecular fingerprints is that they generally ignore biological
context and do not contain 3D information. Various approaches have been proposed to
overcome these limitations. For example, atom pair 3D fingerprints are developed from
2D atom pair fingerprints to contain 3D information [155]. Protein–ligand interaction
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fingerprints (PLIF) encode information about protein–ligand interactions, such as hydrogen
bonds, ionic interactions, and surface contacts according to the residues [156].

Table 2. Various types of molecular fingerprints.

Category Molecular Fingerprint Description Ref.

Substructure
key-based

Molecular ACCess system
(MACCS) keys

� The most commonly used structural fingerprint, often referred to
as the MDL keys

� Each bit is associated with a SMILES arbitrary target specification
(SMARTS) pattern.

� Length: 166 key bits (open source)

[157]

PubChem fingerprint

� Substructure-based fingerprint specifically designed for the
PubChem DB (can be retrieved by PubChemPy in python)

� Each bit represents a particular substructural feature classified
into seven sections written in SMARTS and SMILES.

� Length: 881 bits

[158]

Topological

Daylight fingerprint
� Hashed topological fingerprint based on the connectivity of

atoms in the molecule
� Length: variable lengths up to 2048 bits

[150]

Atom pairs2D fingerprints
(APFP)

� An atom pair substructure is defined as a triplet of two
(non-hydrogen) atoms and their shortest path distance
in the molecular graph, i.e., (atom type 1, atom type 2,
geodesic distance)

� Based on topological routes
� Length: variable lengths

[159]

Circular

Extended-connectivity
fingerprints (ECFP)

� Circular fingerprint based on the Morgan algorithm
� Iterative (“extended”) assignment of unique identifiers to

atoms based on their local environment (i.e., the atoms they
are connected to)

� Length: variable lengths

[152]

Molprint2D

� Circular fingerprint where each atom is represented by its local
environment up to a defined number of bonds, similar to ECFP

� Count-based method (instead of binary type) containing
information on heavy atom types and hybridization states

� Lengths: variable length up to 250

[160]

Pharmacophoric Functional-class
fingerprints (FCFP)

� A variant of extended-connectivity fingerprint (ECFP)
� While ECFPs focus on atom connectivity to create fingerprints,

FCFPs incorporate information about the functional roles of
atoms in the molecule

� Length: variable lengths

[152]

SMILES-based SMIfp
� Based on the number of occurrences of symbols found in

the SMILES
� Length: variable lengths

[154]

4.2. Deep Generative Model for Molecular Design

A deep generative model is a type of neural network trained on existing data with a
high-dimensional probability distribution, which it then uses to create new samples from
that distribution [10]. In drug discovery research, deep generative models can be utilized
in the area of de novo molecular design, a computational methodology that generates
novel molecules with desired properties [8,161,162]. While QSAR models can be used to
predict the biological activities of unknown chemicals based on their structures, which are
derived from other chemicals with various known biological activities, de novo design is
employed to generate novel chemical structures with desired pharmacological properties,
using structure–bioactivity data as a basis [161]. They are trained on large databases
of known molecules to learn the underlying patterns and structures in the data. This
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learned knowledge is then leveraged to generate new, unseen molecules that are likely to
be physicochemically promising or biologically active.

Popular DL algorithms, such as recurrent neural networks (RNNs), variational au-
toencoders (VAEs), and generative adversarial networks (GANs), have been applied to
de novo molecular design. RNNs are commonly used for data sequence modeling and
generation and sequence-to-sequence mapping. In de novo design, they can also be used for
analyzing molecular sequence data, such as SMILES [162]. Once the RNNs are trained by
target sequences, they can generate new sequences that follow the conditional probability
distributions learned from the training set [162]. VAEs can represent high-dimensional
complex data by learning a low-dimensional latent space in an unsupervised manner [163].
When the VAE model is applied to de novo design, the encoder converts the molecule
to a latent vector representation, and the decoder generates a novel chemical space from
the latent vector representation [164]. GANs contain a generator and a discriminator. The
generator creates new data based on input data, and the discriminator identifies whether
the data are real or generated. During the training, these two components compete against
each other, and when the discriminator cannot distinguish between generated data and
real input data, the training ends [164]. In this process, GANs can generate novel molecules
by using patterns and structures in a pre-existing training dataset.

Deep generative models, despite facing certain challenges, have shown remarkable
potential for de novo design in early discovery stages. These models can be utilized to
generate novel and diverse chemical scaffolds with desirable predicted values. However,
to fully realize their potential, further research is needed to address key issues, such as
lack of interpretability. Nonetheless, the early successes of these models have opened up
exciting avenues for innovation and creativity that were previously unattainable.

4.3. Prediction of Drug–Target Interaction (DTI)

Drugs control our body’s physiological activities to exert therapeutic effects, which
are achieved through the interaction between the drug and its target protein, known as
drug–target interaction (DTI) [165]. A drug, which serves as a ligand, binds to the pocket
in a protein, often referred to as a binding site, inducing changes in physiological activity.
These pockets can vary in size and depth, and ligand binding can alter the protein structure,
impacting its function through molecular interactions such as ionic bonds, van der Waals
interactions, and hydrogen bonds [166–168]. They can prevent the protein from interacting
with endogenous molecules or cause changes in its activity [165]. This activity can be
affected not only by the ligand itself but also by water molecules, metal ion coordination,
and various other circumstances [166].

Traditionally, the drug discovery approach has been based on the “one molecule–one
target–one disease” paradigm, where the drug produces therapeutic effects by regulating its
target. In this approach, it is necessary to test whether a particular protein could be a specific
drug target for treatment [169]. However, a single target is not exclusively associated with
one disease, and the onset of complex diseases may involve multiple factors. Depending on
the circumstances, it may be necessary to intervene in multiple areas along the pathologic
mechanism for effective treatment [170]. From this perspective, the importance of DTI
research is increasingly recognized, especially regarding side effects, drug repositioning,
and drug resistance [171].

The power of AI is apparent in this target identification and virtual screening [172].
ML algorithms, especially during the virtual screening process, follow an approach that
differs from conventional structure-based virtual screening (SBVS) or ligand-based virtual
screening (LBVS) [35]. They generate statistical models to anticipate the conditions of
undiscovered ligands–proteins based on the recognized configurations of protein–ligand
compounds and physicochemical characteristics [166]. The research carried out on the
three aspects of ML-based DTIs, namely, prediction of existing ligand binding sites, binding
affinity, and binding poses, is ultimately aimed at bringing us closer to more efficient drug
discovery [170]. Table 3 summarizes a recent application of AI in DTI prediction.
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Table 3. AI-based methodologies to predict DTIs.

Approach Year Datasets Features Algorithms Performance Ref.

DTiGEMS+ 2020 The literature
[173] Similarity-based features

Graph embedding,
graph mining,
similarity network
fusion, MLP, RF,
Adaboost

AUPR of 0.88,
0.86, 0.96, and
0.97 for the NR,
GPCR, IC, and
E datasets

[174]

GanDTI 2021

DUD-E [175],
bindingDB
inhibition, the
literature
[176,177]

Molecule fingerprints with a
radius of two, protein data
encoded overlapping amino
acid sequences

GNN, attention
mechanism to
formulate
summarized
protein feature
vectors, MLP

AUC of 0.983,
Recall of 0.933
and Precision of
0.960

[178]

DTI prediction
using multiple
kernel-based
triple
collaborative
matrix
factorization

2022

DrugBank,
BRENDA,
SuperTarget
[179], KEGG
BRITE

Gaussian interaction profile,
network of drug-side effect
associations, MACCs drug
substructure fingerprint, and
chemical structure for drug
kernels, Gaussian interaction
profile for target, PPIs network
of target, functional information
of target and sequence
information of target for
target kernels

Multiple
kernel-based triple
collaborative
matrix factorization
(MKTC-MF)

AUPR of 0.933
on ion channel [180]

DeepFusion 2022
BIOSNAP [181],
DAVIS dataset
[182]

Global structural similarity
feature based on similarity
theory and convolutional neural
network for both drug and
protein, local chemical
sub-structure semantic feature
using transformer network for
both drug and protein

Deep-learning-
based multi-scale
feature fusion
method including
CNN and
transformer
network

Best ROC-AUC
of 0.911 [183]

AttentionSiteDTI 2022

Protein Data
Bank, DUD-E,
human dataset
from Liu et al.
[176],
BindingDB

Graph-based features of proteins
and drugs

Topology adaptive
graph CNN
(TAGCN), MLP,
self-attention
mechanism,
bidirectional long
short-term memory
(LSTM)

Best AUC of
0.991 in human
dataset

[184]

MINN-DTI 2022

DUD-E, human
dataset from
Liu et al. [176],
BindingDB

A 2D distance map for the target
and the 2D molecular graph for
the molecule

Dynamic CNN
(DyCNN),
inter-CMPNN,
MLP

Best AUC of
0.967 in human
dataset

[185]

MDTips 2023

Drug
repurposing
knowledge
graph (DRKG),
DrugBank,
UniProt

Knowledge graph,
drug-structure-based feature,
target
amino-acid-sequence-based
feature, drug perturbation
signatures, gene over-expression
signatures, gene
knockout/knockdown signature

Attentive FP and
transformer
encoders,
knowledge graph
embedding, ConvE,
GAT, GNN, CNN,
GCN

AUPR:
0.951 ± 0.003 [186]

4.4. Toxicity Prediction

The significant increase in chemical usage has intensified the need for reliable toxicity
prediction, leading to the establishment of the Tox21 program in 2008, a collaborative en-
deavor undertaken by the U.S. governments, such as the Environmental Protection Agency
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(EPA). Further strengthening this initiative, the U.S. Food and Drug Administration (FDA)
became a part of the consortium in 2010. This program employs high-throughput screening
(HTS), an in vitro assay, to scrutinize the biochemical activity of various substances. This
methodology has the advantage of not only reducing the time and cost associated with
toxicity testing but also mitigating ethical concerns [187,188]. The culmination of these
efforts resulted in the creation of the Tox21 10K library, which subsequently fostered the
inception of the Tox21 data challenge, an initiative designed to enhance the precision of
predictions about holistic human responses utilizing computational methodologies [189]. In
parallel, EPA’s Toxicity Forecaster (ToxCast) program, instituted in 2007, assesses materials
that could be harmful to human health and the environment via bioactivity profiling [190].
Distinguished from Tox21, ToxCast covers a broader chemical space and grapples with
less specific mechanisms of action. Implementing methods analogous to HTS, it endeavors
to categorize chemicals and advocate for the appropriate regulation of environmental
pollutants [191]. These initiatives persist as critical contributions to the progression of
toxicity prediction models.

These valuable Tox21 and ToxCast datasets have been monumental in driving ad-
vancements in the field of ADME/Tox prediction. Compounds that enter the human
body commonly undergo absorption, distribution, metabolism, and excretion (ADME),
with some leading to toxicity [192]. Efforts to decode these processes from a pharma-
cokinetic/pharmacodynamics (PK/PD) perspective have been put forth but given their
interactions with numerous human body structures such as membranes, proteins, and
the intra/extracellular environment, the ADME–Tox (ADMET) processes are viewed as
multifactorial and intricate. Factors such as the compound’s solubility, membrane per-
meability, consumed concentration, and partition coefficient play a significant role in the
absorption process [193,194]. AI algorithms can be trained on the Tox21/ToxCast datasets
to predict the potentially toxic effects of a new compound, which are critical aspects of the
drug discovery process [195]. Here, we describe recent applications in three representative
endpoints, i.e., hepatotoxicity, cardiotoxicity, and carcinogenicity.

(1) Prediction of Hepatotoxicity

Given the crucial role the liver plays in drug metabolism, assessing the potential for
drug-induced liver injury (DILI) is vital for safety reasons [196,197]. Hepatotoxicity, in
particular, is a significant issue in drug development, leading to a significant number of
drugs being withdrawn due to DILI or not being launched at all [198,199]. Safety concerns
mean that only about 31.8% of potential drug candidates progress from preclinical testing to
clinical trials [200]. Even among the drugs that are successfully launched, 58% of FDA drugs
approved in 2020 and 2021 show signs of hepatotoxicity [201]. Traditional methods of DILI
evaluation, such as in vitro and in vivo studies, are both costly and time-consuming [202].
In response to this, there has been a shift towards developing computational methods that
can predict DILI quickly and accurately using AI methods.

(2) Prediction of Cardiotoxicity

Cardiotoxicity is a paramount concern in the creation of innovative pharmaceuti-
cals [203]. In line with the International Conference of Harmonization’s guideline (S7B), it
is obligatory for all emergent drugs to undergo a pre-clinical examination of their potential
to inhibit hERG activities before they are considered for regulatory appraisals [31,204]. The
hERG channel, alternatively known as Ether-à-go-go (EAG) proteins, constitutes potas-
sium channels that are manifested in diverse brain areas, endocrine cells, muscles, and the
heart [205,206]. These channels play an indispensable role in cardiac function by facilitating
the heart’s electrical activity [205]. The blockade of these channels by small molecules can
precipitate QT interval prolongation, which may culminate in lethal cardiotoxicity [207,208].
Consequently, it is essential that drug candidates demonstrate minimal hERG inhibition to
circumvent such deleterious effects [209].
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(3) Prediction of Mutagenicity and Carcinogenicity

Mutagenicity and carcinogenicity are key considerations in the risk assessment of
chemicals and pharmaceuticals [210,211]. Mutagenicity refers to a substance’s ability to
cause genetic mutations, potentially leading to various disorders, including cancer, while
carcinogenicity is a compound’s potential to cause cancer [212–214]. Given the correlation
between these two and the global burden of cancer, it is vital to evaluate mutagenicity and
carcinogenicity [215–217]. Challenges in this task include mutagenicity, inconsistencies
in Ames test results, false positives and negatives, and reproducibility issues among
labs [218,219]. The 1995 ICH guidelines provided a structure for carcinogenicity studies,
yet these studies require two years, approximately $1.1 million, and about 500 rodents,
making it a laborious and costly process [220]. As such, in silico predictive methods
are gaining popularity, with several proposals suggesting the use of ML approaches to
increase efficiency [221]. Table 4 summarizes the additional case studies for predicting
various toxicity.

Table 4. AI-based methodologies to predict various toxicity.

Approach Year Datasets Features Algorithms Performance Ref.

ToxicBlend 2019 Tox21 data, ToxCast

Physical chemicals
descriptors,
PubChem molecular
fingerprints, SMILES
n-grams

Multi-task XGBoost,
multi-task NNs,
graph convolutional
model

AUC of 0.866 in
Tox21 by random
splits, AUC of 0.763
in ToxCast by
scaffold splits

[222]

CEM-DNN 2023 ClinTox [223],
Tox21, RTECS [224]

Morgan fingerprints,
SMILES embeddings
(SE)

Single-task DNN,
multi-task DNN

AUC-ROC:
0.991 ± 0.011,
balanced accuracy:
0.963 ± 0.028

[225]

admetSAR2.0 2019

DrugBank,
ChEMBL, CPDB
[226], Tox21,
CYP450 dataset
[227]

RDKit, Morgan, atom
pairs, torsions,
MACCS, SubFP
fingerprints

kNN
AUC ranging from
0.625 to 0.992, with
an average of 0.842

[228]

Interpretable-
ADMET 2022

ChEMBL,
PubChem,
DrugBank,
publications in the
literature

Matched molecular
pair
(MMP)-processed
fingerprint

Graph convolutional
neural network
(GCNN), graph
attention network
(GAT)

AUC of 0.977 in
GCNN, AUC of 0.974
in GAT

[229]

HelixADMET 2022

ZINC15, DrugBank,
ChEMBL, CPDB,
Tox21, CYP450,
PubChem assays

Subgraph (local
structure) of a
compound,
molecular 3D
conformation,
molecular
fingerprints

GNN, RF AUC range of 0.803
to 0.967 [230]

Prediction and
mechanistic
analysis of DILI
based on chemical
structure

2021 DILIrank [231],
SIDER

ECFP4 fingerprints,
predicted protein
targets, Mordred
molecular descriptors

SVM, RF
Mean balanced
accuracy of
0.759 ± 0.027

[232]

DILI prediction by
maximizing
fidelity through
explicit subgraph
feature mining

2022 DILIst [233], TDC
[234]

SMILES converted to
RDKit mol and
networkx graph
object

Supervised subgraph
mining (SSM)

AUC: 0.691, F1-score:
0.784, MCC: 0.338 [235]
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Table 4. Cont.

Approach Year Datasets Features Algorithms Performance Ref.

deephERG 2019 ChEMBL Mol2vec, 2D MOE
descriptors Multitask DNN

Best AUC: 0.967, 29.6%
of FDA-approved drugs
potentially possessed
hERG inhibitory activity

[31]

Cardiotoxicity
prediction of
Artemisinin
derivatives

2021 PubMed, PubChem,
DrugBank

The calculated
descriptors RF

AUC greater than 0.830
for cardio-toxicity
parameters

[236]

Predicting
mutagenicity in
pyrrolizidine
alkaloids

2021
The literatures
[237–239], EFSA
dataset [240]

MolPrint2D
fingerprints, chemistry
development kit

Lazar with high
confidence, all lazar
predictions, RF, logistic
regression (stochastic
gradient descent),
logistic regression
(scikit), NN, SVM

Accuracies of 80–85% [241]

Carcinogenic
classification using a
triple classification
prediction model

2023

Inventory of
Hazardous Chemicals
[242], Globally
Harmonized System
of Classification and
Labeling of Chemicals
(GHS) [243]

Generated by
calculation and RF
feature selection,
including AATSC0p
and GATS1e

MLP. XGBoost. kNN,
complement naïve
Bayes, SVM, LR. RF

The best accuracy in
IARC dataset by RF [244]

5. Conclusions and Future Perspectives

In conclusion, the integration of AI in drug discovery represents a significant paradigm
shift in medicinal chemistry, rather than just a technological addition. AI unlocks insights
from complex datasets that were previously unreachable, and its value in data-driven
drug discovery is poised to become increasingly prominent. However, alongside the high
expectations for AI’s potential, it is vital to exercise caution. AI models heavily rely on
large amounts of high-quality data, making access to diverse and sufficient data crucial for
accurate learning and prediction. In the context of drug discovery, these data encompass
information about known compounds, biological processes, disease mechanisms, clinical
data, patient adverse events, and more. Due to the intricate nature of biological processes,
the multitude of variables impacting drug action, and individual variations, many aspects
cannot be interpreted or applied in isolation. This complexity presents challenges for
achieving full automation, often requiring domain knowledge-based optimization and
expert-guided manual curation. Efforts to address these limitations of AI applications have
gained momentum across multiple domains. A significant emphasis is now on gathering
or digitalizing diverse datasets, ensuring that AI tools represent a comprehensive spectrum
of the data. To overcome data deficiency, researchers are using pre-trained models and
fine-tuning them on specific, smaller datasets. This approach makes AI applications more
adaptable and data efficient. There is also a concerted effort to bolster the robustness of AI,
certifying that it performs reliably on previously unseen data.

Drug discovery and development, especially within the life-critical industry, neces-
sitate human involvement for real-world experimental validation and clinical trials, ex-
tending beyond virtual simulations alone. Incorporating AI into these fields amplifies
some of the ethical considerations, especially around data privacy, transparency, or poten-
tial bias. Furthermore, using AI on electronic medical records could risk patient privacy
breaches. Nevertheless, AI technology can greatly enhance the efficiency of experiments
for researchers, particularly in computationally intensive tasks or in identifying intricate
patterns that might evade human observation. The optimal scenario is one where humans
and AI technology collaborate, each leveraging their respective strengths. Addressing tech-
nical challenges, ensuring data robustness, validating AI models, and considering ethical
implications requires a continuous collaborative approach involving academia, industry,
and regulatory agencies.
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