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ABSTRACT: Hydration free energy (HFE) is a key factor in improving protein−ligand
binding free energy (BFE) prediction accuracy. The HFE itself can be calculated using the
three-dimensional reference interaction model (3D-RISM); however, the BFE predictions
solely evaluated using 3D-RISM are not correlated to the experimental BFE for abundant
protein−ligand pairs. In this study, to predict the BFE for multiple sets of protein−ligand
pairs, we propose a machine learning approach incorporating the HFEs obtained using 3D-
RISM, termed 3D-RISM-AI. In the learning process, structural metrics, intra-/
intermolecular energies, and HFEs obtained via 3D-RISM of ∼4000 complexes in the
PDBbind database (ver. 2018) were used. The BFEs predicted using 3D-RISM-AI were well correlated to the experimental data
(Pearson’s correlation coefficient of 0.80 and root-mean-square error of 1.91 kcal/mol). As important factors for the prediction, the
difference in the solvent accessible surface area between the bound and unbound structures and the hydration properties of the
ligands were detected during the learning process.

■ INTRODUCTION
Developing accurate and efficient methods for predicting the
binding affinity of ligands to target proteins is required in
computer-aided drug discovery.1 The binding affinity exper-
imentally evaluated using the half-maximal inhibitory concen-
tration (IC50) or the dissociation constant (Kd) can be
converted to binding free energy (BFE).2,3 Currently, BFE
calculations based on atomic structures are widely performed
in pharmaceutical processes daily. For example, in in silico
screening processes, to rank many ligands in terms of affinity,
BFEs of the ligands are calculated quickly. Thus, empirical
scores of docking simulations (e.g., Glide4) are frequently used.
After the screening process, ligand optimization processes are
conducted to increase the ligand activity. Therefore, the BFEs
of a few tens of ligands must be calculated accurately to
examine the structure−activity relationships. Thus, free energy
calculations based on molecular dynamics (MD) simulations
are useful.1 To improve the accuracy of BFE calculations, the
accurate treatment of the hydration effects is a key factor
because many water molecules are involved in the ligand-
binding process. Upon ligand binding, water molecules in the
binding site are replaced by the ligand and are forced to
rearrange in the bound state.5 The hydration water molecules
around the ligand in the isolated state are dispelled upon ligand
binding. In MD simulations using an explicit solvent, the
hydration effects can be considered explicitly. However, MD
simulations have high computational demands, leading to a
loss in computational efficiency. Therefore, precisely handling
the hydration effects is a trade-off between accuracy and
efficiency.
Various computational methods for BFE calculation based

on physicochemical approaches1,4,6−22 using the thermody-

namic cycle (Figure 1) or data-driven approaches using
machine learning23−31 have been proposed to date. The
required computational burdens of physicochemical ap-
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Figure 1. Thermodynamic cycle of the binding free energy. The
protein (gray) and ligand (green) are shown under the upper and
lower conditions representing vacuum and solution, respectively. The
binding free energy (ΔGbind) is obtained from the binding free energy
in vacuum (ΔGbindvacuum) and the hydration free energies for the protein
(Δμprotein), ligand (Δμligand), and complex (Δμcomplex).
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proaches differ depending on the incorporation methods of the
hydration effects. In most physicochemical approaches, the
interaction energy between a protein and a ligand can be
calculated using force fields, whereas the hydration effects are
handled differently. For example, in docking simulations with
abundant protein−ligand pairs, the receptor structure is often
fixed, and the hydration effect is implicitly and approximately
evaluated using empirical score functions (e.g., Glide score4) to
quickly evaluate BFEs. In molecular mechanics (MM) and
Poisson−Boltzmann surface area (PB/SA) or MM and
generalized Born surface area (GB/SA) methods, the
interaction energy between a protein and a ligand and the
configurational entropies are calculated using MM, where the
hydration free energies (HFEs) of the protein, ligand, and
complex are approximately calculated using a continuous
dielectric model (i.e., implicit solvent model).9,10 In con-
tinuous dielectric models, the detailed molecular features of
water molecules such as hydrogen bonding, the hydrophobic
effect, and the rearrangement of the water molecules upon
solute insertion are missing. Recently, instead of continuum
models, a solution statistical-mechanics theory-based method,
called the three-dimensional reference interaction model (3D-
RISM), was combined with MM.11−16 The 3D-RISM method
can evaluate HFEs, preserving the molecular features.34−37 The
3D-RISM method provides a thermally averaged distribution
of solvent molecules around solute molecules, and HFE can be
calculated through an integral equation using the distribution
function. The MM/3D-RISM method can successfully predict
the BFE of a group of ligands with different activities for the
same protein. The 3D-RISM method has also been applied to
the statistical analysis of hydration water based on a large
number of 3D-RISM calculations,38 development of an
efficient method to calculate HFEs,39 or binding-site searches
by extending the theory to the distribution of atoms
constituting the ligand.40 The 3D-RISM method, combined
with MM or extended protocols described above, improves the
prediction of HFEs.11−16,38−40

As a more rigorous approach, free energy calculations using
all-atom MD simulations have been used to obtain the BFE
between the bound and unbound states, such as the alchemical
approach,17 the potential of mean force (PMF)-based
approach,18 free energy perturbation (FEP)+,19 generalized
replica exchange with solute tempering (gREST)+FEP,20

pmx,21 and massively parallel computation of absolute BFE
with well-equilibrated states (MP-CAFEE).22 The free energy
calculations have been applied to the relative or absolute BFE
calculations, and they exhibit a good correlation with
experimental BFEs. However, because of the high computa-
tional demands of MD simulations, free energy calculations for
abundant protein−ligand pairs are practically difficult.
In contrast to the physicochemical approach described

above, machine learning approaches predict BFEs by learning
the correlation between experimental BFE data and input
features, such as structural metrics and scoring functions.23−31

Recently, a large amount of experimental BFE data and crystal
structures of the protein−ligand complex have been stored in
databases (e.g., the PDBbind database32,33), and machine
learning models using the data for BFE prediction, for example,
KDEEP,

24 XGB-Score,25 and SFCscoreRF26, have been proposed.
As the input features, the descriptors given by structural
metrics, such as atomic coordinates, distances between atoms,
and amino acid sequences, or energetic metrics, such as scoring
functions, were employed,23 in which the relationships

between the descriptors and the experimental BFE data were
learned and a regression model was built. The selection of the
appropriate features describing the experimental BFE data is
one of the key points for accuracy.23 Therefore, as descriptors,
incorporating well-defined physicochemical quantities related
to BFE, as well as conventional structural metrics, has the
potential for accurate predictions of abundant protein−ligand
pairs. Thus, incorporating hydration effects as an input feature
may improve the accuracy of BFE predictions.
Herein, we propose a machine learning approach combined

with the 3D-RISM method for BFE predictions. First, we
calculated the BFEs for 3993 protein−ligand pairs in the
PDBbind database using MM/3D-RISM (Figure 1). However,
the BFEs evaluated using the 3D-RISM method exhibited a
poor correlation with the experimental BFEs. Although the
MM/3D-RISM strategy predicted the BFEs of a few ligands
with a similar scaffold for the same protein, the strategy failed
with multiple types of protein−ligand pairs. We also attempted
to apply the improved version of 3D-RISM to BFE
calculations. According to Palmer et al., the HFEs for 185
neutral small molecules calculated using the 3D-RISM method
deviated from the experimental HFEs, and the difference was
proportional to the partial molar volume.41 Therefore, they
proposed a universal correction, in which the contribution of
the partial molar volume was simply subtracted from the HFE
obtained using the 3D-RISM method. However, in our
calculation of the BFEs, their correction did not improve the
correlation between the calculated and experimental BFEs.
Therefore, we developed a machine learning approach using
thermodynamic quantities obtained from the 3D-RISM
method as principal descriptors, termed 3D-RISM-AI. By
introducing a machine learning algorithm for regression, we
aimed to predict BFEs for abundant protein−ligand pairs,
which cannot be expressed simply by energy addition and
subtraction operations in the thermodynamic cycle. Regression
models were constructed from the structural features and
thermodynamic quantities calculated using 3D-RISM for the
3993 protein−ligand pairs in the PDBbind database. Four
machine learning algorithms were used for the regression, and
their performance was verified. The best-performing learning
model exhibited a high correlation between the predicted and
experimental BFEs: Pearson’s correlation coefficient (R) of
0.80, Spearman’s rank correlation coefficient (ρ) of 0.77, and
root-mean- square error (RMSE) of 1.91 kcal/mol. Although
the performance of 3D-RISM-AI is comparable to that of other
machine learning models (R = 0.753−0.806, ρ = 0.647−0.796,
and RMSE = 1.80−2.22 kcal/mol), the advantage of 3D-
RISM-AI is that the feature importance analysis allows us to
determine thermodynamic quantities that are effective in the
BFE predictions.

■ THEORETICAL BACKGROUND
The BFE (ΔGbind) between a protein and a ligand is defined as

= +G G G G( )bind complex protein ligand (1)

where Gcomplex, Gprotein, and Gligand are the free energies of the
complex, protein, and ligand, respectively. The free energy is
decomposed into the following three terms: the internal energy
of the solute molecule (E), configurational entropy of the
solute molecule (S), and HFE (Δμ), as follows:

= +G E TSX X X X (2)
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where T is the temperature and X is one of the complexes,
proteins, or ligands. According to the thermodynamic cycle of
BFE (Figure 1), ΔGbind can be obtained by the sum of the BFE
in vacuum (ΔGbindvacuum) and the difference in the HFE (ΔΔμ) as
follows:

= +G Gbind bind
vacuum (3)

Here, we focus on one conformation of the solute complex
(e.g., the crystal structure) and suppose that the conformations
of both protein and ligand do not change from those in the
complex, and the contributions of the entropy term can be
neglected. Under this assumption, the terms on the right-hand
side of eq 3 are

G E E Ebind
vacuum

complex protein ligand (4)

= complex protein ligand (5)

The internal energies in eq 4 can be calculated using a force
field.
The HFE (eq 5) is obtained using the 3D-RISM

method.34−37 On the basis of the statistical solution theory,
thermodynamic quantities are obtained through the pair
distribution function, g(r), which can be obtained by solving
the Ornstein−Zernike (OZ) integral equation as a function of
the total correlation function, h(r) = g(r) − 1, together with
incorporating closure approximations. In the case of molecular
liquids, the OZ equation includes degrees of freedom for both
configuration and rotation, and it is difficult to solve such high-
dimensional equations for complicated molecules. In contrast,
using the RISM approximation, the molecules are described as
a set of atom sites corresponding to atom types, and the
molecular OZ equation can be approximately rewritten as the
equation of site−site distance, which is called 1D-RISM.42,43
Because the 1D-RISM approach uses the spherically symmetric
site−site correlation function, the three-dimensional distribu-
tion of the solvent molecules around the solute molecule
cannot be described. Therefore, an extension of RISM to three
dimensions, called 3D-RISM, was introduced. In 3D-RISM,
the total correlation functions of the solute and solvent sites
are obtained using the 3D-RISM equation:

= | |h cr r r r r( ) ( ) ( ) d
(6)

= +r r h r( ) ( ) ( ) (7)

where hα(r) is the total correlation function of the solute site
and the solvent site of the atom type for α, cξ(r′) is the direct
correlation function of the solvent atom type for ξ, and χξα (|r-
r’ |) is the susceptibility function of the solvent sites in the bulk
solvent given by eq 7. In eq 7, ωξα(r) is the intramolecular
correlation function of the solvent molecule, ρα is the site-
number density for atom type α in the bulk solvent, and hξα(r)
is the total correlation function of the intramolecular sites
calculated from the 1D-RISM. To solve eq 6, the Kovalenko−
Hirata (KH) closure, which is an approximate relationship
between the total and direct correlation functions, is
introduced.37 The KH closure is given by

+ =
+ >

h
d d

d d
r

r r

r r
( ) 1

exp( ( )) when ( ) 0

1 ( ) when ( ) 0

l
mooo
n
ooo (8)

= +d u h cr r r r( ) ( ) ( ) ( ) (9)

where β is 1/kBT, kB is the Boltzmann constant, and uα(r) is
the solute−solvent site potential calculated from the force field.
Using eqs 6−9, HFE is calculated as follows:

= k T h h c
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where Θ is the Heaviside step function.
In the supervised machine learning, the relationship between

objective and explanatory variables is expressed as a regression
model.23 Using the training data set comprising the
experimental BFE values for the n protein−ligand pairs as
the objective variable and the thermodynamic quantities and
the structural indices calculated from each pair as the
explanatory valuables, a regression model is given by

=_G f x y z( , , ..., ; )n n n n
bind exp
( ) ( ) ( ) ( )

(11)

where ΔGbind_exp(n) is the experimental BFE for the nth protein−
ligand pair, {x(n), y(n), ..., z(n)} represents the input feature
vector comprising multiple descriptors calculated from the nth
pair, θ is the hyperparameter, and the function f is determined
by optimizing the objective function L as

{ }_L f Gx y zmin ( , , ..., ; )n n n n( ) ( ) ( )
bind exp
( )

(12)

Using the training regression model f, the BFE for the new (n +
1)th pair, which is not included in the training data set, can be
predicted as

=_
+ + + +G f x y z( , , ..., ; )n n n n

bind predict
( 1) ( 1) ( 1) ( 1)

(13)

The settings of function f, the hyperparameters, and the
objective function to be optimized depend on the regression
algorithm. In this study, four types of regression algorithms
were employed: ridge regression (RR),44 support vector
regression (SVR),45 random forest regression (RFR),46 and
extreme gradient boosting regression (XGBR).47 RR and SVR
use a linear function with regularization term or the support
vector and kernel trick, and RFR and XGBR use the decision
tree for the regression process. The machine learning approach
is expected to provide functions of BFEs that cannot be
expressed by a simple linear operation of energies (eqs 1−5
and 10), as defined by the thermodynamic cycle, because the
function given by the regression algorithm is represented by a
nonlinear optimized function depending on the data set and
explanatory variables used.

■ METHODS
Data Sets. The experimental BFE values and the crystal

structures for the protein−ligand complex in the PDBbind
database (ver. 2018) were used.32,33 In the PDBbind database,
from 16151, the refined set (ver. 2018, the number of
complexes: n = 4463) was defined according to the quality of
the crystal structures.48 In addition, the core set (ver. 2016, n =
285) was selected from the refined set, 57 clusters were
determined using amino acid sequence similarities, and five
representative proteins were selected from each cluster. Crystal
structures in the refined set containing unnatural amino acids
or atomic collisions that could not be treated in the
computational preprocess were excluded from the calculations.
Finally, we used 3933 complexes in the refined set, including
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217 complexes as the core set. In the machine learning process,
217 complexes for the core set were used as test data and 3716
complexes (the refined set except for the core set) were used as
training data. The complexes used as training data did not
contain complexes in the test data.

3D-RISM Calculations. Before the 3D-RISM calculations,
structural modeling was performed on 3993 crystal structures.
All crystal water molecules were removed. With multiple
protein complexes, a protein located within 10 Å of the ligand
was used. For missing residues, the acetyl cap and N-methyl
cap were added to the missing N- and C-termini, respectively.
The protonation states of histidine were determined using the
ProtAssign module implemented in Maestro.49 Energy
minimizations for the modeling structures were performed
using the GB solvent model implemented in Amber18 and
AmberTools19.50 The force fields for proteins and ligands
were ff14SB and the generalized amber force field (GAFF),
respectively.51,52 The partial charge of the ligand was
determined using the AM1-BCC method.53,54 Two-step
minimizations were performed: a 250-step steepest descent
method and a 250-step conjugate gradient method. In the
energy minimizations, position constraints with a force
constant of 5 kcal/mol were added to the heavy atoms. The
cutoff distance of the long-range interactions was set to 12 Å.
3D-RISM calculations were performed using the

rism3d.snglpnt command in AmberTools19.50 The complex
structure after the energy minimizations was used as the input
structure. For closure, the KH closure was used.37 For 1D-
RISM, the dielectrically consistent reference interaction site
model (DRISM) theory was used.36 The water model was the
SPC/E model,55 the water density was set to 0.999 g/cm3, and
the temperature was 298 K. The buffer distance between the
solute molecule and the boundary in the calculation box was
set to 20 Å, and the grid spacing on the three-dimensional grid
was set to 0.5 × 0.5 × 0.5 Å3. The other parameters were set to
default values.

Descriptors Used in 3D-RISM-AI. Thirteen thermody-
namic quantities described below were calculated from
complex structures. Using the Amber force field and 3D-
RISM method, the internal energy (E, eq 4) and HFE (Δμ, eqs
5 and 10) were calculated for the complex, protein, and ligand,
as well as BFE (eq 3). The protein and ligand structures were
extracted from the complex structures. From the 3D-RISM
calculations, thermodynamic quantities related to the HFE,
such as the partial molar volume (V), enthalpy term (ε), and
entropy term (−TS), were calculated. In addition, the Δμ, V, ε,
and TS terms were decomposed into polar and apolar
contributions. Consequently, 13 thermodynamic quantities
(E, Δμ, Δμapolar, Δμpolar, V, Vapolar, Vpolar, −TS, −TSapolar,
−TSpolar, ε, εapolar, and εpolar) were obtained.
The structural indices were also calculated. Because the

BFEs are correlated to the solvent accessible surface area
(SASA),1 the SASA values for the complex, protein, and ligand
were calculated using CppTraj in AmberTools19.50 To
incorporate the conformational entropy of the ligand, the
number of rotatable bonds was calculated using Rdkit,56

because the entropy is correlated to the rotatable bonds.57 In
addition, the difference in each quantity between the complex
and the isolated protein or ligand was calculated as XBind =
Xcomplex − Xprotein − Xligand. Hereinafter, the difference was
denoted as “Bind” and the Bind descriptors were calculated for
the 13 thermodynamic quantities and SASA.

In summary, 58 descriptors were used as input features in
the 3D-RISM-AI. The descriptors comprised four types (i.e.,
complex, protein, ligand, and Bind) of the 13 thermodynamic
quantities and SASA, the number of rotatable bonds of the
ligand, and BFE. The overall procedure and summary of the
descriptors are shown in Figure 2. Each descriptor value was
standardized to a mean of zero and a variance of one. All
training data are available on GitHub (https://github.com/
IkeguchiLab/3D-RISM-AI).

Machine Learning. Four regression algorithms were used
in supervised machine learning: RR, SVR, RFR, and XGBR.
The models for RR, SVR, and RFR were built using scikit-
learn,58 and the model for XGBR was built using xgboost.47 A
Gaussian kernel is used in SVR. The hyperparameters and
feature selection were optimized by 5-fold cross-validation
using the training data set. A grid search is used in the
hyperparameter search. The objective variables�the exper-
imental BFE data�were calculated from Kd as ΔG = kBT ln
Kd. The optimization was evaluated using the averaged root-
mean-squared error (RMSE) from the 5-fold cross-validation.
After the optimization, a regression model with all training data
(n = 3716) was built using a combination of the hyper-
parameters and the set of descriptors that exhibited the lowest
mean RMSE.

Figure 2. Overall procedure of 3D-RISM-AI. Quantities of the
complex, protein, ligand, and binding are denoted as Com_A, Prt_A,
Lig_A, and Bind_A, respectively. The descriptors denoted as A are
the internal energy (E), HFE (Δμ), partial molar volume (V),
enthalpy term of the HFE (ε), entropy term of the HFE (−TS), and
solvent accessible surface area (SASA). The index i represents the
total value and the polar and apolar decomposed values. The number
of rotatable bonds of the ligand is Lig_Nrotatable. The BFE is
Bind_Gtheory. The regression algorithms used are the extreme gradient
boosting regression (XGBR), random forest regression (RFR),
support vector regression (SVR), and ridge regression (RR).
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Using the training regression model, BFEs were predicted
for the test data set (n = 217). Compared to the experimental
and predicted BFEs, the accuracy of the learning model was
evaluated using Pearson’s correlation coefficient (R), Spear-
man’s rank correlation coefficient (ρ), and the RMSE. In the
evaluation using RMSE, data with an absolute value of the
difference between the experimental and predicted values
within 2 kcal/mol were classified as a low absolute error
(LAE), and the data with an error larger than 2 kcal/mol were
classified as a high absolute error (HAE). In the decision tree-
based algorithms (RFR and XGBR), the feature importance
was evaluated using the information gain, a measure of
improvement in the objective function when creating a branch
in the decision tree, and the default measure was used in scikit-
lean (RFR) and xgboost (XGBR).47,58 All test data together
with learning and prediction codes are available on GitHub
(https://github.com/IkeguchiLab/3D-RISM-AI).

■ RESULTS AND DISCUSSION
Binding Free Energies Calculated Using 3D-RISM and

the Thermodynamic Cycle. First, we calculated the BFEs
for 3993 protein−ligand pairs using the 3D-RISM method and
the thermodynamic cycle (Figure 1). The calculated BFEs
exhibited a poor correlation with the experimental BFEs
(Figure 3), with a Pearson’s correlation coefficient (R) of

0.047, Spearman’s rank correlation coefficient (ρ) of 0.069,
and RMSE of 49.25 kcal/mol. The calculated BFEs were one
digit larger than the experimental BFEs. We also attempted an
improved version of 3D-RISM in which the contribution of the
partial molar volume was subtracted from the HFE obtained
using the original 3D-RISM method.41 However, the
correlation between the calculated and experimental BFEs
did not improve (Figure S1), with R = 0.049, ρ = 0.124, and
RMSE = 187.68 kcal/mol.
Although the MM/3D-RISM strategy predicted the BFEs of

a few ligands with a similar scaffold for the same protein, the
strategy failed with multiple types of protein−ligand pairs.
Therefore, we developed a machine learning method, termed
3D-RISM-AI, using thermodynamic quantities obtained by the
3D-RISM method as principal descriptors. Because the
machine learning method can handle nonlinear relationships
between an objective variable (BFEs) and explanatory variables

(thermodynamic and structural features), it is possible to
improve the BFE prediction using 3D-RISM.

Training Process. To build an optimal regression model,
feature selection was performed using the training data set (n =
3716). The best combination of descriptor types was searched
for in each regression algorithm (Figure 4). In this feature

selection, eight combinations of the descriptor types involved
in Bind and the three remaining types (i.e., complex, protein,
and ligand) were examined, and the mean RMSE was
evaluated with 5-fold cross-validation (Table S1). For all
algorithms, combining the descriptor types of the ligand,
protein, and complex, besides the Bind, resulted in a lower
mean RMSE, suggesting that the Bind-type descriptors alone
were not effective for the BFE predictions.
Consequently, we selected the best combination exhibiting

the lowest mean RMSE and employed all descriptor types
(denoted as H in Figure 4) for XGBR, RFR, and SVR and the
Bind, ligand, and complex descriptors (denoted as F in Figure
4) for the RR. Before examining the performance of the test
data set, as shown in the next section, using all training data
sets, a learning model was constructed for each algorithm with
the optimized hyperparameters and the best combination of
the feature types.

Performance of the 3D-RISM-AI. Using the test data set
(n = 217), BFEs were predicted using each learning model
(Figure 5). In contrast to the BFE prediction based solely on
the 3D-RISM method (Figure 3), the BFEs predicted from all
regression models in 3D-RISM-AI were well correlated to the
experimental BFEs. In a comparison of the four algorithms,
XGBR exhibited the best performance for all indicators: R =
0.80, ρ = 0.77, RMSE = 1.91 kcal/mol, and 154 data in LAE
(Figure 5a). Here, the data in LAE represents the number of
predicted BFEs within a 2 kcal/mol deviation from the
experimental BFE. RFR, which is a decision tree-based method
similar to XGBR, also showed a better performance (R = 0.78,
ρ = 0.75, RMSE = 2.02 kcal/mol, and 141 data in LAE)
(Figure 5b). In contrast, the performance of RR (R = 0.65, ρ =
0.66, RMSE = 2.36 kcal/mol, and 132 data points in LAE) and
SVR (R = 0.68, ρ = 0.64, RMSE = 2.21 kcal/mol, and 150 data

Figure 3. Correlation between the experimental and calculated BFEs
using the 3D-RISM method and thermodynamic cycle for 3993
protein−ligand pairs. The Pearson’s correlation coefficient (R),
Spearman’s rank correlation coefficient (ρ), and root-mean-squared
error (RMSE) are 0.047, 0.069, and 49.25 kcal/mol, respectively.

Figure 4. Performance depends on features included in the regression
algorithms. The feature combination patterns denoted as A to H are
represented in the table.
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points in LAE) were relatively poor in this examination (Figure
5c,d).
Decision tree-type regressions, such as XGBR and RFR,

worked well for predicting BFE. Because RR uses a linear
function for the regression model, its capability to express the
relationship between the experimental BFE and the input

features may be poor. As for SVR, the mean RMSE in the
training process for only Bind descriptors (denoted as A in
Figure 4) showed similar values of XGBR or RFR; however,
the mean RMSE of SVR did not decrease when other
descriptors were included, which was a different behavior from
the decision tree-type algorithms.

Figure 5. Comparison of the predicted BFEs using four learning models. Blue and orange dots represent the low absolute error (LAE) data and the
high absolute error (HAE) data, respectively. LAE means that the difference between the predicted and experimental BFE is smaller than 2 kcal/
mol. The difference for HAE is larger than 2 kcal/mol.

Figure 6. Rate of information gain in the training process of XGBR. The top descriptor is the difference in SASA upon ligand binding
(Bind_SASA). The second to fifth descriptors are the HFE components of ligands: the entropy term (Lig_−TStotal), partial molar volume
(Lig_Vtotal), HFE (Lig_μtotal), and polar component of the partial molar volume (Lig_Vpol). The sixth and seventh descriptors are the apolar
component of the enthalpy (Lig_εapol) and the apolar component of the enthalpy difference in HFE upon ligand binding (Bind_εapol), respectively.
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The performance of XGBR and RFR in 3D-RISM-AI was
compared with that of other machine learning approaches. For
example, the performance of the KDEEP based on the three-
dimensional convolutional neural network was R = 0.82, ρ =
0.82, and RMSE = 1.73 kcal/mol.24 As for the decision tree
type learning model with structure and interaction-energy
features, such as RF-Score, ID-Score, SFCscoreRF, XGB-Score,
and ΔvinaXGB, their performances were R = 0.753−0.806, ρ =
0.647−0.796, and RMSE = 1.80−2.22 kcal/mol for the best
model for each approach.25−29 The performance of the 3D-
RISM-AI was comparable to that of previous machine learning
models using different descriptors and algorithms. However,
because 3D-RISM-AI was based on well-defined thermody-
namic quantities, the factor analysis of the decision tree
method allowed us to analyze descriptors that were important
for predicting the BFE, as shown in the next section.

Feature Importance in the BFE Prediction. To
understand descriptors that were effective for BFE prediction,
the feature importance was analyzed using information gain in
the XGBR learning model. The contribution to reducing the
loss function was evaluated by determining the information
gain of each descriptor. According to the ratio of the
information gain of each descriptor to the total gain, the
difference in SASA upon ligand binding (Bind_SASA) and the
descriptors related to the HFE components of ligands (Lig_−
TStotal, Lig_Vtotal, Lig_μtotal, Lig_Vpol, and Lig_εapol) were
important in the learning process (Figure 6). Among the top
seven descriptors with ratios above 0.02, besides Bind_SASA,
only Bind_εapol was the Bind-type descriptor. In RFR, the most
important descriptors were almost the same as the top
important descriptors in XGBR. In particular, Bind_SASA
and the HFE components of the ligands were assigned as
important descriptors (Figure S2). These results suggest that,
except for Bind_SASA, the descriptors related to the HFE
components of the ligands calculated from 3D-RISM notably
contributed to the BFE prediction.
To further understand the important physicochemical

descriptors for prediction, the correlation among the
descriptors was analyzed. The top seven descriptors of
XGBR described above were classified into two groups
exhibiting high correlations among the descriptors, which
were hydrophobic and hydrophilic features (Figure 7).
Although the descriptors related to hydrophobicity (Bind_-
SASA, Lig_−TStotal, and Lig_Vtotal) were the top three (Figure
6), the remaining important descriptors were hydrophilic
features. Because both hydrophobic and hydrophilic features

are important for BFE prediction, the physicochemical features
of hydrophobicity and hydrophilicity should be learned in a
well-balanced manner.
The correlations between the descriptors and experimental

BFEs were compared with the machine learning results (Figure
8). The largest correlation coefficient of the individual
descriptors with the experimental BFEs was less than 0.5.
Considering that the correlation coefficients of the machine
learning results were 0.6−0.8 (Figure 5), the machine learning
algorithms could develop regression models showing higher
correlations with the experimental BFEs. The top descriptors
correlated to the experimental BFEs were similar to those that
were important in the learning process of the decision tree
(Figure 7). The top descriptors were Bind_SASA, Bind_εapol,
and the ligand HFE-related descriptors. The top seven
descriptors were hydrophobic features that correlated well
with each other in the correlation matrix (Figure S3).
Interestingly, the correlations between the hydrophilic features
and the experimental BFEs were relatively small (no
hydrophilic descriptor in the top seven), although their feature
importance was not small (three in the top seven). These
results indicate that in the machine learning algorithms the
weights of the hydrophobic and hydrophilic descriptors were
learned in a well-balanced manner.

Trends in Predicted BFEs by XGBR and Data Bias. To
investigate data bias, the distributions of the predicted BFEs
using XGBR and the experimental BFEs were compared
(Figure 9). In a comparison of the distributions across all test
data (Figure 9a), the predicted BFEs were biased toward the
mean of BFEs about −9 kcal/mol. In the LAE data, the
distributions were similar to each other (Figure 9b). By
contrast, in the HAE data, the experimental BFEs were broadly
distributed and the predicted BFEs were biased toward the
mean (Figure 9c). This inaccuracy could be attributed to the
experimental BFE data used in the training process were not
uniformly distributed and biased toward the mean (Figure S4).
Therefore, the amount of data largely deviating from the mean
was small, and the construction of the regression model failed
to predict the data deviating from the mean.
Finally, we should discuss future approaches to address the

limitations in the above analyses and to improve accuracy by
incorporating new features not considered in the 3D-RISM-AI.
First, because the training data set in the PDBbind database
was biased around the mean, more training data, including
uniformly distributed BFEs over a wide energy range, are
necessary. The BFE data for multiple types of ligands
frequently used in the structure−activity relationship analyses
would be effective. Second, the performance of 3D-RISM-AI
depended on the performance of the 3D-RISM method and
the force field used. Because the important features were the
ligand HFEs and their components are given by the 3D-RISM
method, solving the challenges inherent to the theoretical
framework and numerical calculations, such as the closure and
force field, would directly improve 3D-RISM-AI. In addition,
the interactions of ligand molecules include weak interactions,
such as cation−π, CH−π, and interactions related to halogen
atoms, such as halogen bonding and sigma holes, which cannot
be represented by conventional force fields but captured by
quantum chemical (QM) calculations. Therefore, it would be a
good strategy to improve the accuracy of the ligand force field
or to add the interactions given by QM calculations as new
descriptors. Third, the 3D-RISM-AI does not incorporate
dynamic features. Both structural fluctuations in the solution

Figure 7. Correlation matrix of the top seven descriptors. The polar
and apolar components, that is, hydrophilic and hydrophobic features,
are denoted by Pol and Apol, respectively.
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and the structural diversity of the unbound states leading to
configurational entropy changes could be considered com-
bined with MD simulations. Fourth, 3D-RISM-AI is
complementary to other machine learning approaches, such
as KDEEP, which employs structural features as descriptors. The
3D-RISM-AI uses thermodynamic quantities based on HFE as
descriptors and can incorporate structural information with
different properties in a complementary manner.
Here, we discuss several issues to be resolved in the future

before applying 3D-RISM-AI to in silico pharmaceutical
processes, such as high-throughput virtual screening (HTVS)
and structure−activity relationship analyses for abundant
protein−ligand pairs. First, in these processes, complex models
are obtained using docking simulations; however, the models
usually deviate from experimental ones. As only experimental
structures were used in the current 3D-RISM-AI, it is not clear
how sensitive the machine learning model is to the quality of
the structures of the protein−ligand complexes. Next, the
computational time required to calculate the descriptors is an
issue in HTVS. In this study, it required approximately 6 h
using one central processing unit (CPU) core to conduct the
3D-RISM calculation for a protein or a complex, depending on
the size of the protein: approximately 2 and 42 h were the

minimum and maximum, respectively, and 6 h was the median.
To perform the 3D-RISM calculations for abundant pairs in
HTVS, which typically involves at least 100000s of molecules
and often millions, a large number of CPU cores such as
supercomputers are required. Alternatively, a graphics
processing unit (GPU) version of the 3D-RISM method
could be used for speeding up the 3D-RISM calculation.59

Furthermore, the recently developed deep learning model for
the 3D-RISM results,60 which is capable of quickly predicting
water distributions around proteins, could potentially work
with 3D-RISM-AI. Finally, it is required to examine whether
3D-RISM-AI is a better approach to find hit compounds
because it is not clear whether the machine learning model is
significantly more accurate than the docking scores. Solving
these issues and applying 3D-RISM-AI to pharmaceutical
processes are future challenges.

■ CONCLUSIONS
Using the HFE based on the 3D-RISM method as the principal
input feature, we proposed a machine learning approach to
predict the BFE for abundant protein−ligand pairs, termed
3D-RISM-AI. Whereas the BFEs solely evaluated using the 3D-
RISM method through the thermodynamic cycle were not

Figure 8. Correlations between the descriptors and experimental BFEs. The correlation is evaluated using the absolute value of Pearson’s
correlation coefficient (R).

Figure 9. Histograms of BFEs. The distributions are (a) all test data sets, (b) data for the low absolute error (LAE) with |ΔGXGBR − ΔGexp)| ≤ 2
kcal/mol, and (c) data for the high absolute error (HAE) with |ΔGXGBR − ΔGexp)| > 2 kcal/mol. The solid and dashed lines represent the predicted
BFEs by XGBR and the experimental BFEs, respectively.
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correlated to the experimental data, the BFEs predicted using
3D-RISM-AI showed a good correlation with the experimental
BFEs: R = 0.80, ρ = 0.77, and RMSE = 1.91 kcal/mol.
Although the performance was comparable to that of other
machine learning approaches using other input features, the
important factor analysis allowed us to understand the
important features for predicting BFEs, such as the difference
in the SASA between the unbound and bound structures and
the ligand HFE-related descriptors. The physicochemical
features described by the most important descriptors were
hydrophobic, but the rest were hydrophilic, indicating that the
balance between them is important for the predictions.
Although the importance of both hydrophobic and hydrophilic
interactions is well-known, the fine balance between them
could be automatically detected using the machine learning
approach of the physicochemical-based 3D-RISM-AI. In
addition, the machine learning framework of 3D-RISM-AI
can incorporate both structural diversity sampled from MD
simulations and other structural or energetic input features.
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