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5.1 ABSTRACT 22 

Purpose: 23 

Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the 24 

retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in 25 

PEDF are associated with increased inflammation and retinal degeneration in aging and 26 

diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient 27 

in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of 28 

neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-29 

mediated inflammatory signaling. 30 

Methods: 31 

C57BL/6J mice expressing the RPE65 M450/M450 allele were crossed to PEDF KO/KO and 32 

wildtype (PEDF +/+) littermates. Mice were exposed to 50,000 lux light for 5 hours to 33 

initiate acute damage. Changes in visual function outcomes were tracked via 34 

electroretinogram (ERG), confocal scanning laser ophthalmoscopy(cSLO), and spectral 35 

domain optical coherence tomography (SD-OCT) on days 3, 5, and 7 post-light exposure. 36 

Gene and protein expression of Galectin-3 were measured by digital drop PCR (ddPCR) and 37 

western blot. To further investigate the role of galectin-3 on visual outcomes and PEDF 38 

expression after damage, we also used a small-molecule inhibitor to reduce its activity. 39 

Results: 40 

Following light damage, PEDF KO/KO mice showed more severe retinal thinning, impaired 41 

visual function (reduced a-, b-, and c-wave amplitudes), and increased Galectin-3 expressing 42 

immune cell infiltration compared to PEDF +/+. PEDF KO/KO mice had suppressed damage-43 
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associated increases in IGF-1 expression. Additionally, baseline Galectin-3 mRNA and 44 

protein expression were reduced in PEDF KO/KO mice compared to PEDF +/+. However, after 45 

light damage, Galectin-3 expression decreases in PEDF +/+ mice but increases in PEDF 46 

KO/KO mice without reaching PEDF +/+ levels. Galectin-3 inhibition worsens retinal 47 

degeneration, reduces PEDF expression in PEDF +/+ mice, and mimics the effects seen in 48 

PEDF knockouts. 49 

Conclusions: 50 

Loss of PEDF alone does not elicit functional defects in C57BL/6J mice.  However, under 51 

light stress, PEDF deficiency significantly increases severe retinal degeneration, visual 52 

deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF +/+. PEDF deficiency 53 

reduced baseline expression of Galectin-3, and pharmacological inhibition of Galectin-3 54 

worsens outcomes and suppresses PEDF expression in PEDF +/+, suggesting a novel co-55 

regulatory relationship between the two proteins in mitigating light-induced retinal damage.   56 

  57 
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5.2 INTRODUCTION 58 

Pigment epithelium-derived factor (PEDF), a secreted 50-kDa glycoprotein with neurotrophic 59 

effects, is critical in the development and homeostasis of the vertebrate eye1–4. While other ocular 60 

tissues express PEDF, the retinal pigment epithelium (RPE) is the primary producer of PEDF and is 61 

crucial for retinal health and visual signaling. 5–9. RPE ablation studies have shown that loss of the 62 

RPE leads to disorganization of multiple retinal layers during development; however, 63 

supplementation with PEDF is sufficient to rescue this phenotype in X. leavis in ex vivo tissue 64 

culture models 1. Similarly, loss of the RPE and PEDF expression in the eye is associated with 65 

aging2,10,11 and ocular pathology12,13, including diabetic retinopathy14,15 and vascular glaucoma 15.  66 

PEDF has putative anti-inflammatory roles in eye 16,17 and was first described as an anti-tumor factor 67 

by Tombran-Tink and colleagues in 1990 because of its ability to differentiate retinoblastoma 68 

cells18,19. Since then, multiple studies have identified PEDF as a significant support in cellular 69 

differentiation, retinal development, inflammation, vascularization, and neuroprotection of 70 

photoreceptors and neurons 7,20–27. In this study, we asked if PEDF has a protective role in the retina 71 

and RPE following LIRD in a C57BL/6J mouse strain that confers resistance to light damage.  72 

  73 

In 2006, An et al. studied the secreted proteome of RPE cell cultures isolated from patients with 74 

AMD and compared them to control eyes 28,29. Interestingly, they found a 3-fold increase in the 75 

secretion of four proteins in eye patients with age-related macular degeneration (AMD) compared to 76 

controls; among them were galectin-3 (Lgals3) and pigment epithelium-derived factor (PEDF), 77 

suggesting that both may be involved in the pathology of the phenotype. Galectin-3, a member of the 78 

β-galactosidase binding protein family, is endogenously expressed in the cytosol. Galectin-3 is 79 

secreted via a non-classical pathway to the cell surface of the RPE, where it participates in a cell 80 

lattice formation and cell-cell interaction observed during EMT of myofibroblastic RPE cells 3031 81 

Galectin-3 has also been implicated in fine-tuning inflammatory responses of immune cells during 82 

neurodegeneration via its increased affinity for β-1, 6-N- glycosylation on the cell surface of RPE 83 
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cells undergoing EMT and the increased secretion from RPE and immune cells after damage 30–35. 84 

However, the role that PEDF expression may play in the modulation of galectin-3 after damage in 85 

the eye is not fully understood.  86 

 87 

This study identified a novel potential molecular target and signaling pathway that connects the RPE 88 

and inflammation via a PEDF-Galectin-3 mediated signaling paradigm. The interplay between PEDF 89 

and Galectin-3 may reveal an additional level of regulation of ocular immune privilege facilitated by 90 

the RPE over immune cell behavior. Using in vivo imaging techniques, electroretinograms, protein 91 

and gene expression analysis, and immunofluorescence, we examine how the loss of PEDF 92 

expression after light damage increases galectin-3 expression, recruitment of subretinal immune 93 

cells, and progressive loss of visual structures and function over time.  These findings support the 94 

importance of PEDF in protecting eye tissues against LIRD.  95 

 96 

5.3 METHODS 97 

 98 

5.3.4  Animal husbandry  99 

The Emory University Institutional Animal Care and Use Committee approved mouse handling, 100 

care, housing, and experimental design. The experiments were compiled with the Association for 101 

Research in Vision and Ophthalmology (ARVO) and Accreditation of Laboratory Animal Care 102 

(AAALAC) guidelines and doctrine. Mice were housed and maintained on a 12-hour light/dark cycle 103 

at 22 °C, with standardized rodent chow (Lab Diet 5001; PMI Nutrition Inc., LLC, Brentwood, MO, 104 

USA). Mice had access to water ad libitum. The Emory University Division of Animal Resources 105 

supervised mouse care and housing. A roughly equal representation of male and female mice was 106 

used in all experiments. Animals were euthanized using standardized asphyxiation via CO2 gas for 5 107 

min, followed by confirmatory cervical dislocation. 108 

 109 
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5.3.5 Breeding Scheme 110 

PEDF knockout/null (PEDF KO/KO or PEDF-null) mice, which were gifted from Dr. Hans 111 

Grossniklaus and Dr. Sue Crawford at Northwestern University Feinberg School of Medicine (JAX 112 

Laboratory Stock No. 030065). This mouse strain has had exons 3-6 of the PEDF gene replaced by 113 

an IRES-lacZ cassette systemically. We bred PEDF(ko/+) x PEDF(ko/+) on the RPE65 M450/M450  on 114 

C57BL/6J . The breeding scheme resulted in litters that were approximately 25% PEDF KO/KO 115 

(experimental) and 25% PEDF +/+ (wildtype controls). These mice were used for all protein and gene 116 

expression analysis. To assess immune cell dynamics we used CX3CR-1 GFP knock-in mice on the 117 

C57BL/6J background were acquired from Jackson Laboratory (Stock NO. 005582).  We maintained 118 

a line that was homozygous for PEDF-ko and another line that was homozygous for PEDF-wt. Both 119 

sets of mice were then bred to produce heterozygous CX3CR1(gfp/+) on the RPE65 M450/M450 120 

background. The resultant animals were either PEDF KO/KO; CX3CR-1 GFP/+; RPE65 M450/M450 or 121 

PEDF +/+; CX3CR1 GFP/GFP; RPE65 M450/M450. All PEDF KO/KO experiments were conducted in animals 122 

that were more than P60 but less than P380. Genotyping was performed using a polymerase chain 123 

reaction to confirm the deletion of the PEDF gene product. The genotyping results were hidden from 124 

experimental biologists until after in vivo experiments, and samples were collected to limit 125 

ascertainment biases.  126 

 127 

5.3.6  Light-induced retinal damage (LIRD) conditions and LIRD box information 128 

Mice were dark-adapted overnight before light damage initiation. Phototoxic light damage was 129 

induced using Fancier 500-A LED light lamp panels (Fancier Studio, Haywood, CA), which was 130 

modified to fit on transparent polycarbonate model 750 cages. The protocol is a modification of 131 

previously described phototoxic damage models36,37. The light intensity was calibrated using a VWR 132 

® Light Meter with outputs (catalog No. 62344-944, Radnor, PA) to 50,000 lux. The mice were 133 

treated with topical 1% Atropine eye drops for two rounds of 10 seconds per eye. Mice were exposed 134 
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to high-intensity light damage for 5 hours during the dark phase of the animals (7PM-12 AM or 135 

ZT12- ZT17). After light damage, animals were returned to their home cages for recovery. 136 

5.3.7  Immunofluorescence staining and Histology. 137 

5.3.7.1  RPE Flat mounts: 138 

Immunofluorescence was used to detect galectin-3 positive cells and RPE cells to assess the extent 139 

of immune cell recruitment and damage. Samples were dissected using the technique reported by 140 

Zhang et al.38–40. In brief, after enucleation, the eye is placed into a 4% Paraformaldehyde/PBS 141 

mixture to incubate for 30 minutes. The lens was removed, and four flaps were made to flatten the 142 

RPE sheet to a conventional slide with an adhered silicon gasket (Grace Bio-Labs, Bend, OR). The 143 

RPE flat mounts were blocked in Hank’s Balanced salt solution (#SH30588.01; Hyclone, Logan, 144 

UT) containing 0.3 % (V/V) Triton X-100 and 1% (W/V) bovine serum albumin for 1 hour at 22 ˚C 145 

or overnight at 4°C in a humidity chamber. The samples were then stained with Galectin-3 (1:250), 146 

Vimentin (1:250), IGF-1(1:250), and ZO-1(1:200) overnight at 4°C. The next day, the flat mounts 147 

were washed with HBSS/Triton X-100 solution and incubated in secondary antibody in HBSS/ 148 

Triton 100 X/BSA solution for 1 hour at 22°C. After secondary incubation, samples were washed 149 

with HBSS/Triton 100 X solution before mounting with fluoromount G.    150 

 151 

5.3.7.2  Retinal Sections  152 

Eyes were fixed in fixation solution (97% methanol, VWR, Cat. #BDH20291GLP; 3% acetic acid, 153 

Cat. #Fisher BP2401-500) at −80 °C for 4 days, embedded in paraffin, and sectioned through the 154 

sagittal plane on a microtome at thickness of 5 µm as previously described by Sun et al41. Nuclei in 155 

the outer nuclear layer (ONL) were counted manually by an individual masked to sample identity. 156 

Only nuclei within a 100-micron region were counted using Adobe Photoshop (Version 27.4.0) at 157 

regularly spaced intervals of 500 microns apart from the optic nerve in both the inferior and superior 158 

directions. Deparaffinized retinal sections were also stained for immunofluorescence in a humidity 159 

chamber as described by Zhang et al38. Slides were mounted using Vectashield Vibrance (Vector 160 
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Labs H-1700-2; Newark, CA) was used to mount the coverslip, and the sections were imaged using 161 

an A1R confocal on a Nikon Ti2 microscope. All primary and secondary antibodies used for this 162 

study are listed in Table 1. 163 

 164 

5.3.8  Rhodopsin staining assay 165 

Animals were euthanized, and eye samples were collected within 1 hour of light onset (between ZT0 166 

and ZT1) to capture maximal phagosome production. Murine eyes were enucleated and placed in 167 

glass tubes of “freeze-sub” solution of 97% methanol (Fisher Scientific A433p-4) and 3% acetic acid 168 

that was chilled with dry ice, following the method of Sun and coworkers 42.  Tubes were placed at -169 

80°C for at least four days to dehydrate the tissue. The sections were then treated as described in 170 

section 2.4.2. The primary antibodies (mouse anti-rhodopsin, Abcam, catalog #ab3267, [1:250] and 171 

Rabbit anti-BEST1, Abcam, catalog # ab14927 [1:250]) are then added to the blocking solution and 172 

put on the slides overnight at room temperature in a humidified chamber. The next day, the 173 

secondary antibody is added to the blocking solution. Slides were washed and nuclei stained before 174 

mounting in fluoromount G (catalog #0100-01; SouthernBiotech, Birmingham, AL, USA). The shed 175 

rod outer segments (rhodopsin-positive vesicles) within RPE were quantified as phagosomes. Counts 176 

were performed by three independent, masked observers using Photoshop (Adobe Photoshop, 177 

Version 27.4.0), and each count was averaged for final counts per sample.   178 

 179 

 180 

5.3.9  Electroretinogram 181 

Mice were dark-adapted overnight for ERG testing, conducted under dim red light conditions as 182 

previously described 43. Anesthesia was administered intraperitoneally with a 100 mg/kg ketamine 183 

and 10 mg/kg xylazine solution ketamine; KetaVed from Boehringer Ingelheim Vetmedica, Inc., Fort 184 

Dodge, IA (CAS # 1867-66-9); xylazine from PivetalVet, Greely, CO, USA. Proparacaine (1%; 185 

Akorn Inc.) and tropicamide (1%; Akorn Inc.) eyedrops were used for topical anesthesia and pupil 186 
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dilation. Mice were kept on a 39 °C heating pad during the procedure. ERGs were recorded using the 187 

Diagnosys Celeris system (Diagnosys, LLC, Lowell, MA, USA), with corneal electrodes on each 188 

eye and the contralateral eye as the reference. Full-field ERGs were recorded for scotopic conditions 189 

at stimulus intensities of 0.001, 0.005, 0.01, 0.1, and 1 cd s/m² with a 4 ms flash duration, collecting 190 

signals for 0.3 sec to assess a- and b-wave function. For c-wave analysis, a 10 cd s/m² flash was 191 

used, with a 5-sec signal collection. After light adaptation for 10 minutes, photopic ERGs were 192 

captured at 3 and 10 cd s/m². Post-recording, mice were placed in their home cages on heating pads 193 

to recover from anesthesia unless further prepared for SD-OCT and cSLO examinations. 194 

5.3.10 In Vivo Ocular Imaging   195 

 196 

5.3.10.1 Spectral Domain Optical Coherence Tomography (SD-OCT):  197 

Mice were anesthetized during the previous ERG examination, and a ketamine booster was administered 198 

to extend the examination period. The procedure for in vivo ocular posterior segment morphology 199 

analysis has been previously described 38. In brief, spectral domain optical coherence tomography (SD-200 

OCT) using the MICRON® IV Spectral Domain Optical Coherence Tomography (SD-OCT) system with 201 

a fundus camera (Phoenix Research Labs, Pleasanton, CA, USA) was used sequentially to examine the 202 

retinal anatomy. Micron IV system, circular scans ~100 µm from the optic nerve head were collected (50 203 

scans averaged together) to generate image-guided OCT images of retinal layers and fundus. Retinal 204 

layers were annotated according to previously published nomenclature 44Total retinal thickness and 205 

photoreceptor (outer nuclear layer thickness) were analyzed using Photoshop (Adobe Photoshop 2024 206 

version 25.5) as previously described38.  207 

 208 

5.3.10.2  Confocal Scanning Laser Ophthalmoscope (cSLO)  209 

Immediately afterward, a rigid, specialized contact lens adapted for mouse imaging (Heidelberg 210 

Engineering) was placed on the eye (back optic zone radius, 1.7 mm; diameter, 3.2 mm; power, Plano), 211 

and blue autofluorescence (BAF) imaging at the layer of the photoreceptor-RPE was obtained using 212 
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Heidelberg Spectralis and SD-OCT instrument with a 25 D lens (HRA)CT2-MC; Heidalberg Engineering, 213 

Heidalberg, Germany). Afterward, mice were injected with a reversal agent (0.5 mg/mL 214 

atipamezole(Antisedan); Zoetis, Parsippany, NJ) injection volume 5 µL per gram mouse weight; and 215 

placed individually in cages on top of heated water pads to recover. 216 

 217 

 218 

5.3.11 Western Blot Protocol 219 

As described in Ferdous et al. 2019 and Ferdous et al. 2023, immunoblot experiments were 220 

conducted. In brief, two dissected eye cups (containing both the retina and RPE/ Sclera) were 221 

collected from each animal. Protein was extracted via mechanical rending of tissue by a QIAGEN 222 

TissueLyser in a solution of radioimmunoprecipitation (RIPA) buffer containing protease inhibitors 223 

(completed mini protein inhibitor catalog #118361530001) and phosphatase inhibitors (PhosSTOP 224 

EASypack #04906845001).  Protein concentration was determined using Pierce bicinchonic Acid 225 

(BCA) Assay, and absorbance was measured at 562 nm using a Synergy H1 Hybrid Plate Reader 226 

(Biotek). After ascertaining protein concentration, the samples were diluted to 0.8 mg/mL and heated 227 

to 95 ˚C for 10 minutes to denature proteins before electrophoresis. Samples were run on a pre-cast 228 

Criterion gel (Biorad TGX Stain free Gel 4%-20%, Catalog # 567-8094) along with 10µL of a 229 

molecular weight ladder (Bio-Rad Catalog # 1610376) and run at 120V for 90 mins.  230 

 231 

5.3.12  TUNEL Staining protocol 232 

The manufacturer instructions for the Promega DeadEnd TUNEL Fluorometric kit (Promega G3250) 233 

were followed. In brief, tissue sections were deparaffinized in 5 steps of xylene for 2 min each. The 234 

tissue sections were then rehydrated in a graded ethanol series (100, 90, 80, 70, 60, and 50%) for 2 235 

min each. The slides were then washed for 5 min in PBS (Corning 46-013-CM) and mounted in the 236 

Sequenza system. Sections were incubated for 15 min in Z-fix (Anatech, Fisher Scientific 237 

NC935141), washed twice in PBS for 5 min each, incubated in Proteinase K solution for 8 min, 238 
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washed with PBS for 5 min, fixed with Z-fix for 5 min, washed with PBS for 5 min, incubated with 239 

rTDT enzyme and nucleotide mix in equilibration buffer for two hours, washed with 2× SSC for 5 240 

min, counterstained with 2.5 m Hoechst 33342 in TBS for 10 min, and rinsed with TBS for 5 min. 241 

Coverslips were then mounted using VectaShield Vibrance and imaged using an A1R confocal on a 242 

Nikon Ti2 microscope. 243 

 244 

5.3.13 Galectin-3 inhibitor experiments 245 

At baseline, animals were assessed by electroretinogram, spectral domain coherence tomography 246 

(SD-OCT), and confocal scanning laser ophthalmoscope (CSLO) to evaluate any inherent structural 247 

or functional features or defects. Animals were injected with 15mg/kg of TD139 (33DFTG, catalog # 248 

AOB37408, AOBIOUS, Inc. Scranton, Pennsylvania) intraperitoneally daily beginning one day 249 

before light damage administration until day five post damage. Animals were then assessed using the 250 

same in vivo measures for retina architecture and structure changes.   251 

 252 

5.3.14  Gene expression analysis (digital drop PCR) 253 

Eyes were collected between 10 AM and 2 PM to standardize gene expression. The cornea and iris 254 

were removed via an incision, followed by the lens, and the neuroretina was separated from the 255 

RPE/choroid eye cup. Retinas were flash-frozen in RNase-free tubes and pre-chilled on dry ice. 256 

RPE/choroid eye cups were incubated in RNAprotect® Cell Reagent (Qiagen, Cat # 76106, 257 

Germantown, Maryland).  for 10 minutes, with occasional agitation to release RPE cells. Cells were 258 

pelleted by centrifugation (>12,000 x g for 5 minutes), the supernatant was discarded, and the cells 259 

were stored at -80°C. RNA extraction was performed using the Qiagen RNeasy Mini Kit (Cat 260 

#74106). Samples were homogenized in RLT buffer with a stainless-steel bead, followed by ethanol 261 

addition and vortexing. The mixture was processed through an RNeasy column, washed with RW1 262 

and RPE buffers, and eluted with nuclease-free water. The final RNA samples were stored at -80°C. 263 

cDNA synthesis was conducted using the Qiagen Quantitect RT kit. 264 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2024. ; https://doi.org/10.1101/2024.12.04.626802doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.04.626802
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12 

Digital drop PCR (ddPCR) Reactions 265 

Reaction mixes containing reverse transcriptase, primers, RT buffer, and QX200TM ddPCR 266 

EvaGreen Supermix (Bio-Rad: 186–4034) were added to 2μL of cDNA template for a total volume 267 

of 20 μL /well on the plate Twin-Tec plate (CAS # 951020320; Eppendorf, Enfield, CT). Fill empty 268 

well with RT Buffer and seal plate with tape film and spin down and mix. Plates were preheated at 269 

95 C for 2 min/cycle. After using the droplet generator to generate droplets on the ddPCR plate, seal 270 

the droplet plate with foil film using the Biorad program. Then place the sealed Twin-Tec plate into 271 

ddPCR apparatus (QX200 Droplet Digital PCR (ddPCR™) System – Bio-Rad) and run the program 272 

as detailed in manufacturer’s manual.  273 

  274 
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 275 

 276 

5.3.15  Imaris analysis 277 

The intensity, size, and distribution of Galectin-3 positive immune cells were analyzed using Imaris 278 

software 10.1.0 by Bitplane. Maximum intensity projection images of each RPE flat mount were 279 

processed using IMARIS 10.1.0 (Bitplane, Inc.), in which individual cells were identified, 280 

segmented, and quantified morphologically. Before converting and uploading images to Imaris, the 281 

corneal flaps and optic nerve heads were removed via the crop tool in Photoshop. Subretinal immune 282 

cell counts were conducted using the spots function in Imaris (artifacts and cell particulates were 283 

manually rejected) so that only cells with intact soma were quantified. Cell counts were normalized 284 

against double-blind manual cell counts of the same samples.  285 

 286 

5.3.16 Statistical analysis 287 

Statistical analysis was conducted using Prism 9.1.0 (on Mac OS X 14 Sonoma) (GraphPad 288 

Software, Inc., La Jolla, CA, USA). Data are presented as mean +/- standard deviation (SD), with 289 

statistical testing for individual datasets described in the Figure legends. A p-value <0.05 was 290 

considered statistically significant. Demographic distributions and sample sizes are summarized in 291 

Table 1. All statistical tests used are detailed in the Figure Legends. 292 

  293 
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Table 1: antibody and reagent information 294 
Antibody  Antibody 

Type  
Species Company 

and Catalog 
information  

Concentration 

Galectin-3 Primary  Goat R&D Systems 
( AF1197) 

1:250 

ZO-1 Primary  Rat Sigma 1:250 
Vimentin(D21H3) Primary  Rabbit Cell Signaling 

(mAB5741S) 
1:200 

IGF-1 Primary 
(conjugated 
AF546) 

Mouse Santa Cruz 
(sc-518040) 

1:100 

IBA-1 Primary  Rabbit Abcam 
(ab178847) 

(1:1000) 

Pentahydrate(bis-
Benzamide)Hoec
hst 33258 

DNA nuclear 
Stain N/A 

Thermo-Fisher 
Catalog #: 
H3569 

[1:250] 

TUNEL N/A N/A Promega 
DeadEnd 
TUNEL 
Flurometric 
Kit- G3250 

 

Mouse anti- 
Rhodopsin Primary Mouse Abcam, 

ab3267 [1:250] 

Rabbit anti-Best1 Primary Rabbit Abcam, 
ab14927 [1:250] 

Donkey anti-Rat 
(AF488) Secondary Rat 

Life 
Technologies, 
Catalog # 
A21208 

[1:1000] 

Donkey anti-rabbit 
(AF568) Secondary Rabbit 

Life 
Technologies, 
Catalog # 
A10042 

[1:1000] 

Donkey Anti-
Mouse(AF488) Secondary Mouse 

Life 
Technologies 
Catalog 
#A21202 

[1:1000] 

Donkey Anti-
Goat(AF647) Secondary Goat 

Abcam 
Catalog # 
A32849 

[1:1000] 

     
 295 

  296 
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 297 
Table 2: Digital Drop PCR Primer sequences 298 
Gene Protein Primer Sequence Size Species 
Hrpt HRPT-

HEX(IDT)  
Mm.PT.39a22214828 
 

 Mouse 

Il6 IL6 dMmuCPE5095532 
 

70 Mouse 

Il1b IL1B Mm.PT.58.41616450 
 

119 Mouse 

Lgals3 Galectin-
3 

Mm.PT.58.8335884 
 

130 Mouse 

Nlrp3 NLRP3 Mm.PT.58.13974318 
 

90 Mouse 

Snai1 SNAI1 Mm.PT.58.43057042 
 

122 Mouse 

     
  299 
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 300 

5.4 RESULTS 301 

5.4.1 Figure 1: Loss of PEDF is a Phenotype Modifier for Sensitivity to Phototoxic Damage in 302 

C57BL/6J 303 

Expression of PEDF protects neurons and photoreceptors26,45,46. Conversely, loss of PEDF is linked 304 

to neurodegenerative disease phenotypes, including an autosomal dominant retinitis pigmentosa 305 

locus in human studies24,47.  To determine if loss of PEDF sensitizes C57BL/6J mice to phototoxic 306 

damage, we crossed PEDF-null mice to mice with a hypomorphic mutation in the RPE65 gene, 307 

resulting in reduced sensitivity to light damage.  We exposed these animals to 50,000 lux of light 308 

for 5 hours. We found that PEDF-null animals had more mottling in the fundus after LIRD than 309 

wildtype controls and experienced more retinal degeneration and thinning (see Figure. 1E-F). We 310 

quantified these changes amongst PEDF+/+, PEDF +/-, and PEDF KO/KO. We found that PEDF +/- 311 

behaved very similarly to PEDF +/+ animals and showed minimal perturbances to ocular structure 312 

after LIRD (Fig. 1G-H). However, PEDF KO/KO showed significant losses of photoreceptor thickness 313 

and total retinal thickness compared to PEDF+/+ and PEDF+/- animals (Figure 1G-H). Analysis: One-314 

way ANOVA with Brown-Forsythe test and Barlett’s correction. Retinal thickness: PEDF+/+ vs. 315 

PEDF +/- p-value= not significant(ns); PEDF+/+ vs. PEDF KO/KO **p-value<0.01; PEDF +/- vs. PEDF 316 

KO/KO **p-value0.01. Photoreceptor thickness: PEDF+/+ vs. PEDF +/- = ns; PEDF +/+ vs. PEDF KO/KO 317 

****p-value<0.0001; PEDF +/- vs. PEDF KO/KO ****p-value<0.000. PEDF +/+ n=5, PEDF +/-n=4, 318 

PEDF KO/KO n=4).  This data suggests that PEDF is protective against increased phototoxic damage.  319 

 320 

5.4.2 Figure 2: Loss of PEDF increases damage-associated autofluorescent dots at the level of the 321 

RPE 322 

We used cSLO to capture dynamic changes at the level of the photoreceptor-RPE interface. At 323 

baseline, there were no differences or abnormalities between PEDF +/+ (2A-B) or PEDF KO/KO (2F-324 

G) in the vasculature or at the level of the RPE interface. However, when assessing the same 325 
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animals on Day 7, the number of damage-associated punctate at the RPE-photoreceptor layer was 326 

significantly increased in the PEDF KO/KO(2H-J) animals compared to the PEDF +/+ (2C-E). This 327 

data suggests that PEDF-null animals have improved response to damage via the appearance of 328 

damage-associated foci at the RPE-photoreceptor interface.  329 

 330 

5.4.3 Figure 3A: There is regionality to the damage phenotype in PEDF knockouts compared to 331 

the wild type.  332 

We used H&E to quantify the number of nuclei remaining in the outer nuclear layer (ONL) after LIRD 333 

damage to assess the degree of the damage and morphological changes. PEDF +/+ animals still had 334 

relatively normal morphology with intact RPE layer and photoreceptor inner and outer segments before 335 

and after LIRD (Figure 3A-B). However, the PEDF KO/KO animal displayed a significant loss of total 336 

retinal thickness, a drastically diminished ONL, an almost complete loss of photoreceptor inner and outer 337 

segments, and compromised RPE integrity (shown via white arrows: differences in RPE thickness; Fig. 338 

3C-D). There were regional characteristics to this damage phenotype in the PEDF KO/KO animals, with 339 

retinal structures on the superior portion of the eye being more severely diminished compared to the 340 

inferior region of the eye (Fig.3E). A similar phenotype was also shown in day five after damage [data not 341 

shown]. (Analysis: One-way ANOVA with Brown-Forsythe test and Barlett’s correction; ## p-value<0.01 342 

and ###p-value< 0.001; PEDF +/+ n=4, PEDF KO/KO n=4). This phenomenon is characteristic of light 343 

damage models, as described by Rapp and Williams48,49 and our data confirms that.  344 

Previous light studies in rats have suggested that peak DNA damage occurs within the first 8-16 345 

hours after damage 50. To assess if PEDF KO/KO animals were still undergoing significant levels of active 346 

apoptosis at day 7, we stained for DNA fragmentation using TUNEL and immune cells using CX3CR1-347 

GFP. PEDF KO/KO animals had significantly more apoptotic cells at day 7, resulting in a more depleted 348 

outer nuclear layer than wild-type controls. Additionally, there are more immune cells in the PEDF KO/KO 349 

subretinal space compared to the wild-type animals at the same time point (Fig. 3L-N; quantified in Fig. 350 

3O: Analysis: One-way ANOVA with Tukey’s multiple comparison tests: untreated vs. PEDF+/+ p-351 
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value=ns; untreated vs. PEDF KO/KO **p-value <0.01; PEDF +/+ vs PEDF KO/KO **p-value<0.01. untreated 352 

n=3, PEDF +/+ n=4, PEDF KO/KO n=3.) This data suggests that loss of PEDF increased regional loss of 353 

photoreceptors after light damage.  354 

 355 

5.4.4 Figure 4: PEDF KO/KO animals’ RPE fails to increase rhodopsin metabolism after light 356 

damage.  357 

Loss of PEDF in the RPE affects aging and RPE functional deficiency2,51. To assess changes in RPE 358 

function in the absence of PEDF, we performed a rhodopsin metabolism assay as a proxy for RPE 359 

phagocytic capacity, a critical function of the RPE. We found that at day seven after LIRD, PEDF +/+ 360 

animals significantly increased rhodopsin metabolism in response to damage. However, PEDF KO/KO mice 361 

failed to significantly increase rhodopsin metabolism, although they showed increased damage compared 362 

to wild-type littermate controls (See Figure 4F; quantified in Fig. 4G: Two-way ANOVA with Tukey’s 363 

multiple comparison test, *p-value<0.05). Defects in phagocytosis of PEDF KO/KO mice have been 364 

previously documented10. These data suggest that loss of PEDF results in reduced capacity for 365 

phagocytosis by the RPE.  366 

 367 

5.4.5 Figure 5: PEDFKO/KO results in loss of retinal function following light stress  368 

We also assessed for functional changes using electroretinograms to accompany the distinctive in vivo 369 

and post-mortem histology analysis that we performed. Under scotopic conditions, we found that at 370 

baseline until three days post-LIRD, there was no significant difference between genotypes in either a- or 371 

b-wave function. However, by days 5 and 7, there were significant defects in a- and b-wave amplitudes of 372 

PEDF KO/KO compared to wild-type littermates (Fig. 3A-B: Two-way ANOVA with Sidak’s Multiple 373 

comparison correction. Scotopic a-wave- Day 5: PEDF +/+ vs. PEDF KO/KO **-p-value<0.01. Day 7: **p-374 

value<0.01 n=3-7/group/timepoint. Scotopic b-wave: Day 5: *p-value<0.05. Day 7: *p-value<0.05). To 375 

accompany the rhodopsin metabolism analysis, we used c-wave analysis as a proxy to evaluate the RPE 376 

function. We found that after light damage, there is not a significant difference between PEDF +/+ and 377 
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PEDF KO/KO animals until day seven post-LIRD damage (Fig5.C: Two-way ANOVA with Sidak’s multiple 378 

comparison correction: PEDF+/+ vs. PEDF KO/KO; Day 5-ns; Day 7 *p-value<0.05). This datum aligns with 379 

the functional deficits observed in the RPE in our immunofluorescence data from Figure 4. We also 380 

assessed the scotopic and photopic waveforms of PEDF KO/KO compared to PEDF +/+ at baseline and day 381 

seven post-LIRD. PEDF KO/KO animals have a slightly lower b-wave and c-wave amplitude compared to 382 

PEDF +/+ littermate controls at baseline (Fig.5D); however, there were no defects in phototopic function 383 

(Fig. 5F). At day seven after damage, both scotopic and photopic waveforms worsened in PEDF KO/KO 384 

animals compared to PEDF +/+ animals (Fig. 5E and 5G). These data suggest that the loss of PEDF 385 

negatively affects the retina and RPE function and leads to increased damage after LIRD compared to 386 

PEDF +/+ littermates.    387 

 388 

5.4.6 Figure 6: PEDF KO/KO Results in Suppression of the Damaged-Associated Increase in IGF1 389 

Expression after Light Damage 390 

Studies of hypoxic trauma, diabetic retinopathy, and pharmacological damage in the eye have linked the 391 

expression of PEDF and insulin-like growth factor 1(IGF-1) to the protection of RPE cells and other 392 

ocular structures after insult 52–54. To determine if loss of PEDF impacts the expression of IGF-1 after 393 

damage, we used immunofluorescence to stain retinal sections of PEDF +/+ and PEDF KO/KO animals. We 394 

quantified the expression of IGF-1 from baseline until day seven post-damage. Notably, PEDF KO/KO 395 

animals showed significant reductions in IGF-1 starting at day three compared to wildtype littermates ( 396 

Fig 6Q: Two-way ANOVA with Tukey’s multiple comparison test, n=3-4 animals/group/timepoint. Day 3: 397 

****p-value<0.0001; Day 5: ****<0.0001; Day 7: ****p-value<0.0001). Increased infiltrating galectin-3 398 

positive immune cells were found at the RPE-photoreceptor interface in PEDF KO/KO animals and 399 

significantly more damage via loss of ONL thickness compared to wildtype littermates (See Fig. 6A-P). 400 

To confirm these findings, we tested the protein expression of IGF-1 in PEDF +/+ and PEDF KO/KO animals. 401 

At baseline, there is no significant difference in IGF-1 expression among PEDF +/+ and PEDF KO/KO 402 

animals (Two-way ANOVA with Tukey’s multiple comparison test. N=3-6 animals/group/timepoint. 403 
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Baseline: PEDF +/+ vs. PEDF KO/KO =ns). PEDF +/+ animals significantly increased IGF-1 expression 404 

by day seven after damage (PEDF +/+ no damage vs. PEDF +/+ Day 7 post *p-value<0.05). Notably, the 405 

expression of IGF-1 in response to damage was significantly dampened in PEDF KO/KO compared to PEDF 406 

+/+ animals at day 7 (PEDF +/+ Day 7 vs. PEDF KO/KO Day 7 **p-value<0.01). Immune cells, like 407 

microglia, with high expression of IGF1 are associated with neuroprotection 55,56. We found that subretinal 408 

immune cells in the PEDF +/+ animals on day 7 showed a prominent expression of IGF1 in the cell 409 

body/cytoplasm. However, the subretinal immune cells in the PEDF KO/KO had very little to no expression 410 

of IGF-1. These data may suggest that loss of PEDF results in global loss of IGF-1 expression and 411 

increased recruitment of IGF-1 deficient immune cells.  412 

 413 

5.4.7 Figure 7: Loss of PEDF results in robust inflammatory response compared to wildtype 414 

controls 415 

Pigment epithelium-derived factor regulates inflammatory responses in multiple diseases, including 416 

diabetic retinopathy, dry eye disease, and cancer studies 17,21,57–61. Specifically, the 44-mer and 17-mer 417 

PEDF peptides have been associated with antagonizing IL-6 production, thus suppressing chorioretinal 418 

inflammation 62. We used immunofluorescence staining of RPE flat mounts to evaluate how the loss of 419 

PEDF affects the recruitment of subretinal immune cells at different time points after LIRD. The number 420 

of subretinal immune cells in PEDF KO/KO and wildtype littermates is comparable at baseline. However, 421 

after LIRD, PEDF KO/KO animals had significantly more recruitment of subretinal immune cells by day 422 

five than wildtype littermates (See Fig. 7A-D; quantified in Fig. 7E: Two-way ANOVA with Sidak’s 423 

multiple comparison test, Day 5: PEDF +/+ vs. PEDF KO/KO **p-value 0.01). The number of subretinal 424 

immune cells peaked on day 7 (****p-value 0.0001). Additionally, the cells had higher expression of 425 

galectin-3, a pleiotropic, β-galactoside-binding protein associated with reactive microglia, compared to 426 

wildtype littermate controls at day seven post 33.   427 

 428 

5.4.8 Figure 8: Loss of PEDF differentially affects Lgals and Nlrp3 gene expression  429 
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To determine if loss of PEDF differential affects inflammasome activation after LIRD, we first used 430 

digital drop PCR to assess mRNA expression of both Lgals3 and Nlrp3 in both the retina (data not shown) 431 

and RPE. Lgals3, the gene that encodes galectin-3, mRNA expression was significantly lower in the RPE 432 

of PEDF KO/KO animals compared to wildtype littermate controls at baseline (Two-way ANOVA with 433 

Tukey’s multiple comparison test. *p-value<0.05).  However, the amount of the transcript significantly 434 

increases on day 7 in PEDF KO/KO animals compared to wildtype littermates at the same time point (**p-435 

value< 0.01).  Additionally, Nlrp3 mRNA in the RPE only increased significantly at day seven post-LIRD 436 

in PEDF KO/KO compared to wildtype littermates (*p-value<0.05). The supplemental information can find 437 

the mRNA expression of LGALS3 and NLRP3 in RPE and SNAI1, IL-6, and IL1-beta expression in 438 

retina and RPE. The loss of PEDF differentially regulates genes that encode galectin-3 and 439 

inflammasome-associated protein, Nlrp3, at baseline and after LIRD, implicating PEDF in regulating 440 

galectin-3 gene expression.  441 

 442 

5.4.9 Figure 9: Loss of PEDF reduces total Galectin-3 expression 443 

Previous studies have identified immune cells recruited to the subretinal space as a unique subset enriched 444 

for galectin-3 63,64. To investigate the relationship between the loss of PEDF and galectin-3 expression, we 445 

performed protein expression analysis via western blot at baseline and day seven post-LIRD in PEDF 446 

KO/KO compared to PEDF +/+. PEDF KO/KO animals, at baseline, had significantly lower galectin-3 protein 447 

expression than those of PEDF +/+ littermate controls (PEDF +/+ vs. PEDF KO/KO Baseline ****p-448 

value<0.0001). This data substantiated results from Figure 8A, which showed lower Lgals3 mRNA 449 

expression in PEDF KO/KO animals at baseline. However, while the level of galectin-3 protein expression 450 

in PEDF KO/KO animals increases after phototoxic damage, it remains suboptimal to PEDF +/+ animals at 451 

the same time point (Two-way ANOVA with Tukey multiple comparison test, n=3/group/timepoint.  452 

PEDF +/+ vs PEDF KO/KO Day 7 ***p-value 0.001). These data suggest the loss of PEDF significantly 453 

affects the protein expression of Galectin-3 both before and after LIRD.   454 

 455 
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5.4.10 Figure 10: Inhibition of Galectin-3 with TD139 significantly decreases PEDF levels after 456 

light damage  457 

Previous studies have correlated increased expression of galectin-3 with poor clinical outcomes in 458 

multiple eye diseases 65–70. Additionally, the inhibition galectin-3 by genetic manipulation or 459 

pharmacological targeting dampened immune cell activity 71. To determine if dampening the galectin-3 460 

expression would be protective after LIRD damage, we pharmacologically inhibited Galectin-3 in PEDF 461 

+/+ animals using TD139 to determine if inhibiting galectin-3 was protective after LIRD. We found that 462 

treatment with galectin-3 inhibitor (TD139) did not significantly affect galectin-3 protein levels. 463 

However, we did notice significant differences in the visual function of animals without LIRD exposure 464 

(data not shown). Interestingly, we found that animals treated with galectin-3 inhibitor had a worse 465 

damage phenotype than LIRD-only controls. Surprisingly, PEDF levels in animals treated with TD139 466 

and LIRD were significantly lower than in the LIRD-only control group (One-way ANOVA with Tukey’s 467 

multiple comparison test. n=3 animals/group.  PEDF +/+ No damage vs. PEDF +/+ LIRD only: p-value=ns; 468 

PEDF +/+ no damage vs. PEDF +/+ LIRD + Gal-3 inhibitor ***p-value<0.001; PEDF +/+ LIRD only vs. 469 

PEDF +/+ LIRD + Gal-3 inhibitor *p-value<0.01). Treatment with TD139 alone does not affect visual 470 

function or Galectin-3 protein expression compared to vehicle only(See Supplemental Figure 1). These 471 

data suggest a potential correlation between PEDF and Galectin-3 expression since inhibition of galectin-472 

3 significantly decreases PEDF expression. 473 

 474 

5.5 DISCUSSION 475 

 476 

The findings from this study reveal that PEDF plays a significant regulatory role in facilitating immune 477 

privilege and suppressing inflammation to protect vulnerable tissues from damage within the ocular 478 

microenvironment. Previous studies have evaluated and purported the protective role of PEDF against 479 

photoreceptor death in albino rat models under various light damage conditions; these studies showed that 480 

intravitreal supplementation with exogenous PEDF was protective; however, the mechanism for this 481 
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protection was not established72,73. These studies were limited in that they used albino animals, which are 482 

not as translatable to normal vision in humans, and they used This study aimed to examine the influence 483 

of PEDF on the outcome of visual function, galectin-3 positive subretinal immune cell recruitment, and 484 

effects on the neurotrophic factor, IGF-1, after light damage. By employing a global deletion model of 485 

PEDF and comparing the multiple visual metrics to wildtype controls, we could identify phenotypic shifts 486 

during damage resolution that coincide with expression changes in IGF-1 and Galectin-3. Studying these 487 

molecular mechanisms may be the basis for better understanding and predicting the pathological onset of 488 

disease, reveal new pathway interactions for conserved biomarkers, and present new considerations for 489 

therapeutic approaches employing gene therapy.  To our knowledge, our study is the first to evaluate the 490 

potential regulatory axis of PEDF-Galectin-3-IGF-1 in visual function. Additionally, according to our 491 

understanding, this is the first study to implicate PEDF in the modulation of galectin-3 expression in the 492 

eye. Overall, our results implicate the loss of PEDF as an essential regulator of both IGF-1 and Galectin-3 493 

expression after light damage, suggesting an additional level of RPE-mediated regulation of 494 

immunosuppression in the ocular microenvironment.  495 

 496 

 497 

Immune privilege in the eye requires an intact RPE monolayer, which secretes factors that suppress the 498 

immune response, controls the maturation of immune cells, and leads to apoptosis of infiltrating 499 

macrophages, magnifying the role of RPE in facilitating immunomodulation74–81. Studies of pigment 500 

epithelia derived from various ocular tissues suggest that immunosuppression is achieved by cell-cell 501 

contact, soluble factors, or both 240, depending on the source of epithelia. The retinal pigment epithelia 502 

predominantly utilize secreted, soluble factors to suppress immune cell activation. Previous studies have 503 

described the immunomodulatory functions of the RPE via the secretion of cytokines and neuropeptides, 504 

like alpha-macrophage stimulating hormone(⍺-MSH) and Neuropeptide Y(NPY)79,81–83. However, the 505 

complete mechanism by which the RPE participates in immunomodulation has not been fully elucidated. 506 

 507 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2024. ; https://doi.org/10.1101/2024.12.04.626802doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.04.626802
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

 508 

Loss of PEDF is associated with aging and reductions in RPE functionality 11,84. Here, we accessed the 509 

potential immunomodulatory effects of the secreted homeostatic marker, PEDF, on damage outcomes and 510 

inflammation. Previous studies have described overexpression of or supplementation with PEDF as 511 

protective of photoreceptors and motor neurons, improvements in mitochondrial function and cortical 512 

neurons after damage, and inhibition of inflammatory damage 2,22,45,85–88. Additionally, deletion of PEDF 513 

is associated with aging, increased inflammation, and increased loss of visual function 3,20,24,89. Our results 514 

confirm the findings of other studies since the loss of PEDF resulted in increased retinal thinning, more 515 

damage-associated auto-fluorescent dots at the RPE-photoreceptor interface, significant loss of the 516 

photoreceptor layer, and increased cell death compared to littermate controls. 517 

Additionally, when evaluating the retinal function, we found that the RPE of PEDF KO/KO animals had a 518 

reduced capacity for rhodopsin metabolism after LIRD compared to littermate controls at the same time 519 

point.  Retinal function loss reduced scotopic a-,b, and c-wave amplitudes by five to seven days after light 520 

damage in PEDF KO/KO animals compared to littermate controls. These data suggest that PEDF is 521 

protective against excessive damage after phototoxic light exposure.  522 

 523 

 524 

The RPE is the major contributor to IGF-1 secretion in the ocular environment 90. The importance of IGF-525 

1 as a neurotropic factor and a regulator of immune cell function has been described in the eye and other 526 

tissue types under normal and pathological conditions, like cancer and ischemia 53,55,56,91–93. Additionally, 527 

decreases in IGF-1 expression have been correlated with aging, increased damage, and apoptosis in eye 528 

and brain studies94–96. To assess how the loss of PEDF may affect the expression and abundance of the 529 

neurotrophic factor, IGF-1, we first evaluated IGF-1 immunoreactivity in retinal sections of PEDF KO/KO 530 

animals compared to PEDF +/+ animals at baseline. Baseline data showed no significant changes in IGF-1 531 

expression between genotypes. However, after insult, there was a considerable loss in IGF-1 expression 532 

beginning on Day 3 of PEDF KO/KO animals, which increased to Day 7. We confirmed these findings via 533 
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western blot analysis, showing a significant reduction in IGF1 protein expression in PEDF KO/KO 534 

compared to wild-type littermates at day 7.  IGF-1 inhibits apoptosis of photoreceptors via the 535 

downregulation of caspase-3 and c-JUN signaling; thus, the reduced expression of IGF-1 may explain the 536 

increased degree of apoptosis observed in Fig.3B 53,95,96. The presence of IGF-1 and Galectin-3 co-537 

expression in neuroprotective immune cells has been reported previously 55,56,97. We also assessed the 538 

presence of IGF-1 in recruited subretinal immune cells adhered to RPE flat mounts collected from PEDF 539 

+/+ and PEDF KO/KO animals at day seven post-LIRD. We found that PEDF KO/KO animals had fewer IGF-1 540 

positive immune cells (See Fig. 6W-Y) compared to the PEDF +/+(Fig.6T-V) at the same time point. IGF-1 541 

modulates macrophage responsiveness and activity when challenged with a high-fat diet, shifting the 542 

transcriptional and morphological phenotypes to that of an M2-like proinflammatory macrophage98.   A 543 

decrease in IGF-1 and PEDF expression has also been described in aging studies, which may suggest a 544 

similar mechanism as observed during our light damage experiments in the absence of PEDF 99–102. The 545 

loss of IGF-1 expression with age likely affects microglia function and sensitivity. The loss of PEDF leads 546 

to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1-547 

expressing immune cells.    548 

 549 

 550 

Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during 551 

neurodegeneration in the brain and the eye 33,97,103–106.  In the eye, galectin-3 enriched subretinal immune 552 

cells are recruited to the photoreceptor-RPE interface, suggesting that there may be a functional 553 

requirement for galectin-3 in the subretinal space 64,105,106. Elevated galectin-3 expression is associated 554 

with poor prognostic outcomes65–67,70. Additionally, an ocular proteome study comparing AMD patients to 555 

age-matched controls found a significant increase in the secretion of galectin-3 binding protein and 556 

pigment epithelium-derived factor from the RPE 107. However, the correlation between PEDF expression, 557 

Galectin-3 levels, and damage outcomes has yet to be investigated. We hypothesized that loss of PEDF 558 

will increase galectin-3 expressing cells and global expression of galectin-3, ultimately leading to 559 
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increased inflammation in the ocular microenvironment. To evaluate this, we quantified the number of 560 

galectin-3 expressing cells that adhered to the RPE at baseline and day seven between PEDF KO/KO 561 

compared to littermate controls. At baseline, there was no difference between genotypes. However, after 562 

damage, we found that the total number of galectin-3 positive cells was significantly increased in PEDF 563 

KO/KO animals compared to wildtype controls (See Fig. 7A-E), suggesting that without damage, there is no 564 

increased infiltration of immune cells. However, after damage initiation, PEDF KO/KO animals had 565 

significantly more galectin-3 expressing cells infiltrating the subretinal space compared to wild-type 566 

littermates at the same time. Damage to the subretinal space, neurodegeneration, and aging are associated 567 

with an increased activation of inflammation signaling and recruitment of immune cells 108–114. To 568 

investigate if PEDF KO/KO animals exhibit differential expression of galectin-3 and inflammasome 569 

mediator NLRP3, we used digital drop PCR. We found that galectin-3 mRNA expression in the RPE from 570 

PEDF KO/KO was significantly reduced compared to wild-type littermates. However, after damage, there is 571 

a significant increase in Lgals3 and NLRP3 expression at day 7 in PEDF KO/KO animals compared to the 572 

wildtype controls, which dampens the expression of these genes at the same time point.  In agreement 573 

with the gene expression data, galectin-3 protein expression was significantly lower in PEDF KO/KO 574 

animals compared to PEDF+/+. On day 7, post-damage, PEDF +/+ animals reduced galectin-3 expression 575 

considerably compared to baseline expression; conversely, galectin-3 increased in the PEDF KO/KO animals 576 

at the same time point. Notably, while galectin-3 protein expression in PEDF KO/KO animals increased over 577 

baseline expression, there was significantly lower expression of galectin-3 protein at day seven compared 578 

to PEDF +/+. These data may suggest that loss of PEDF affects the steady state of galectin-3 expression. 579 

Interestingly, when we pharmacologically inhibited galectin-3 activity in PEDF +/+ animals during LIRD, 580 

we found it significantly decreased PEDF levels compared to LIRD-only controls (see Fig. 10), leading to 581 

poorer visual outcomes (data not shown). These data suggest that PEDF protects ocular function after 582 

LIRD via a novel galectin-3-mediated mechanism.  583 

 584 

 585 
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PEDF suppresses eye diseases and cancer studies 58,59,115. In this study, we hypothesized that the protective 586 

role of PEDF in the ocular microenvironment after damage includes regulation of inflammation and 587 

immune privilege via galectin-3 mediated signaling. This study reports a putative relationship between 588 

galectin-3 and PEDF, suggesting that galectin-3 enriched immune cells within the subretinal space are a 589 

positive regulator of PEDF expression after light damage. However, the precise molecular signaling by 590 

which loss of PEDF impacts Galectin-3 and IGF-1 expression requires further study. 591 

  592 
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5.7 FIGURES AND TABLES 602 

5.7.1 Figure 1: Loss of Pigment Epithelium Derived Factor Modifies Sensitivity to Phototoxic 603 
Damage in C57BL/6J Animals 604 

 605 

Fundus and retinal C57BL/6J animals that express wild-type PEDF (PEDF +/+) or PEDF knockout 606 

(PEDF KO/KO) animals are shown. Figure 1A shows Spectral Domain Optical Coherence 607 

Tomography (SD-OCT) images of the Fundus and circular B-scans of the retinal architecture around 608 

the optic nerve. Top row: PEDF +/+ animals are shown in the top row at both baselines and on day 609 

seven post-LIRD. Bottom row: PEDF KO/KO animals at baseline and Day 7 Post LIRD. White 610 

arrows denote regions of damage-associated mottling of the fundus. Figure 1B shows the 611 

quantification of total retinal thickness and the thickness of the photoreceptor layer of PEDF +/+ 612 

n=5, PEDF KO/+ n=4, PEDF KO/KO= n=4 at Day 7 Post LIRD. One-way ANOVA Brown-Forsythe 613 

test with Barlett’s correction. * p-value< 0.05, ** p-value<0.01, *** p-value<0.001, **** p-614 

value<0.0001. 615 

  616 
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5.7.2 Figure 2: Loss of PEDF Increases Damaged-Associated Autofluorescent Dots at the Level of 617 
the RPE 618 

 619 

 620 

Heidelberg Spectralis cSLO (confocal scanning laser ophthalmoscope) images show an increased 621 

accumulation of autofluorescent dots/granules at the level of the photoreceptor-RPE interface after 622 

phototoxic damage that is not present at baseline. Images were taken at -12 diopters at the level of the 623 

interdigitations of RPE and photoreceptors using both the infrared (to detect vascular architecture) and the 624 

blue autofluorescence filter (to detect fluorescent dots). Representative Images at baseline for PEDF 625 

+/+(2A-B) and PEDF KO/KO (2F-G) and at Day 7 Post LIRD (PEDF +/+: 2C-E; PEDF KO/KO: 2H-J). A Zoom 626 

(red box) of each representative image with red arrows highlighting individual dots. 627 

  628 
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5.7.3 Figure 3: Loss of PEDF Results in Regional Damage and Increases Apoptosis of 629 
Photoreceptor Cells.  630 

 631 

 632 

The morphology of the postmortem tissue shows significant regional alterations in retinal architecture. 633 

Figure 3A-B shows a representative image of PEDF +/+ with no damage and day seven post-LIRD. 634 

Representative images of PEDF KO/KO animals with no damage(Figure 2C) and day seven post-damage 635 

(Figure 2D) are shown. Figure 2D shows severe loss of the outer nuclear layer (ONL), disruption of the 636 

photoreceptor inner and outer segment layer, and aberrations in the RPE monolayer in PEDF KO/KO 637 

compared to PEDF +/+ controls at day five post-light damage. Figure 3E quantifies ONL counts from -638 

1750 microns(superior) to 1750 microns (inferior) on either side of the optic nerve. The damage is 639 
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regionally isolated to the superior portion of the retina and is significantly between PEDF KO/KO n=4 640 

and PEDF +/+ n=4. One-way ANOVA with Brown-Forsythe test and Barlett’s correction. # p-value<0.05, 641 

## p-value<0.01, ### p-value<0.001, #### p-value <0.0001. The loss trend was the same on day seven 642 

post-LIRD (data not shown).  643 

Figure 3F-N shows representative images of retinal sections stained for TUNEL (green), immune cells via 644 

CX3CR1-GFP (red), and cell nuclei (DAPI) of no damage control (3F-H), Day 7 PEDF +/+(3I-K) and, 645 

Day 7 PEDF KO/KO (3L-N).  These data are quantified in Figure 3O and show that PEDF KO/KO have 646 

significantly more TUNEL-positive cells than either the untreated (** p-value<0.01) or the PEDF +/+ (** 647 

p-value<0.01) group. 648 

  649 
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5.7.4 Figure 4: PEDF KO/KO RPE Fail to Increase Rhodopsin Metabolism after Light Damage 650 

 651 

Loss of PEDF results in a suboptimal production of phagosomes by the RPE after light-induced retinal 652 

damage. Figure 4A-F shows representative retinal immunofluorescence images of a PEDF +/+ and     653 

PEDF KO/KO at day 7 Post-light damage.  The sections were stained with Rhodopsin(green) to visualize 654 

shed rod outer segments and phagosomes, Best1(red) was used to visualize the RPE monolayer, and cell 655 

nuclei were stained with DAPI (blue). Figure 4G, notably, the PEDF +/+ animals significantly increase 656 

production to redress clearance demands at day seven post-LIRD compared to untreated PEDF+/+(Two-657 

way ANOVA, Tukey’s multiple comparison test, *p-value<0.05). However, while PEDF KO/KO animals 658 

had a more significant accumulation of phagosomes at baseline, they failed to increase phagosome 659 

production after light damage. 660 

  661 
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5.7.5 Figure 5 The Loss of PEDF leads to significant deficits in visual function after light damage 662 

exposure. 663 

 664 

 665 

 666 
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The figure shows the maximal visual output of a-wave, b-wave, and c-wave at a flash intensity of 10 667 

candelas/second/meters2 (cd.s/m2). These data show no statistically significant difference in the visual 668 

function of the PEDF KO/KO compared to PEDF +/+  at baseline or on day three after light damage. 669 

However, after day three there is a notable decrease in visual function of PEDF KO/KO animals in both a- 670 

and b-wave amplitudes at 10Hz that persists to day 7(a-wave: day 5: ** p-value<0.01; day 7: ** p-671 

value<0.01 and b-wave: day 5: *p-value <0.05; day 7: *p-value<0.05. n=3-7/time point/group) see Figure 672 

5A and 5B; Two-way ANOVA with Sidak’s multiple comparison correction). Significant loss of the c-673 

wave amplitudes is delayed to day seven post-light damage (See Fig. 2C: Two-way ANOVA with Sidak’s 674 

multiple comparison corrections, day 7: * p-value<0.01). The scotopic waveforms of PEDF KO/KO mice 675 

also reveal a slight depression in the waveform amplitude at baseline compared to PEDF +/+ (n=3-676 

4/genotype). This reduction in waveform amplitude is more pronounced at day seven post-LIRD 677 

(n=5/genotype; See Figures 5D and 5E). Photopic waveforms show a similar trend as scotopic waveforms 678 

with significantly reduced amplitudes in PEDF KO/KO at day 7 compared to PEDF +/+ littermates (See 679 

Fig. 5F-G).   680 

  681 
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5.7.6 Figure 6: Loss of PEDF Suppresses the Damage-Associated Increase in IGF-1 after Light 682 
Damage 683 

 684 

 685 

 686 

Retinal sections were collected at days 3, 5, and 7 post light damage and stained for the neurotrophic 687 

factor, IGF-1(red), the immune cell marker, IBA1(green), immune cell activation marker, Galectin-688 

3(white), and dapi(blue). Staining showed that at baseline, there was no significant difference between 689 

PEDF +/+ and PEDF KO/KO animals without damage. Figure 6A-P is a representative image showing the 690 

degree of expression of IGF-1 and Galectin-3 and the infiltration of immune cells from the retina to the 691 

subretinal space. After light damage, there is an increase in Galectin-3 positive cell expression in both 692 
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genotypes at day 3, with the earliest deposition at the photoreceptor-RPE interface occurring at day 3. By 693 

day 7, only the PEDF KO/KO animals still have Galectin-3 positive cells at the interface of the 694 

photoreceptors-RPE. Additionally, when quantifying the immunofluorescent signal of IGF-1, there are 695 

statically significant differences between the PEDF +/+ and PEDF KO/KO as early as day 3. The levels of 696 

IGF-1 continue to decrease until day seven post LIRD (see Fig. 6Q). Analysis: Two-way ANOVA with 697 

Tukey’s multiple comparison test, n=3-5/ group/time point. * p-value< 0.05, ** p-value<0.01, *** p-698 

value<0.001, **** p-value<0.0001. In Figure 6R, we confirm this finding via total eye cup expression of 699 

IGF-1 normalized to GAPDH in no damage controls versus at day seven post-LIRD via western blot. 700 

Figure 6R quantifies the total expression of IGF-1 between PEDF +/+ and PEDF KO/KO before and after 701 

LIRD. Analysis: Two-way ANOVA with Tukey’s multiple comparison test, n=3-6/group/timepoint. 702 

Subretinal immune cells recruited to RPE in PEDF KO/KO have lower expression of IGF-1 than PEDF +/+ 703 

animals. Figure 6T-Y shows a representative image of PEDF +/+( 6T-V) and PEDF KO/KO (6W-Y) stained 704 

for ZO1(blue), IGF-1(red), and CX3CR1-GFP (green) to look for heterogeneity in the immune cell 705 

population. 706 

  707 
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5.7.7 Figure 7: Loss of PEDF increases infiltration of galectin-3+ immune cells  708 
compared to PEDF +/+ 709 

 710 

We collected RPE flat mounts to assess if PEDF KO/KO animals showed an increased inflammatory profile 711 

and stained them for Galectin-3 (red) and CX3CR1-GFP(Green). We found that PEDF KO/KO animals were 712 

like PEDF +/+ animals at baseline and up to day three post-LIRD damage. However, by day 5, there was 713 

the inflammation phenotype significantly increased in PEDF KO/KO animals compared to littermate 714 

controls * p-value< 0.05, ** p-value<0.01, *** p-value<0.001, **** p-value<0.0001 (Analysis: Two-way 715 

ANOVA with sidak’s multiple comparison correction. N=3-5 animals group/ time point. p-value: Day 5: 716 

** vs Day 7 **). Figure 7A-D shows a representative image of the subretinal immune cell morphology in 717 

PEDF +/+ and PEDF KO/KO animals at baseline and Day 7. Figure 7E shows the total number of Gal-3 718 

positive cells counted from baseline to day seven post-LIRD between PEDF +/+ and PEDF KO/KO 719 

  720 
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5.7.8 Figure 8: Loss of PEDF Increases Galectin-3 Gene Expression at Day 7 Post LIRD 721 
Compared to Wildtype Littermates 722 

  723 

Retinal and RPE tissues were collected separately, and RNA was extracted from each tissue sample type. 724 

Figure 9A quantifies Lgals3 and Nlrp3 gene expression normalized to HRPT in the retina between PEDF 725 

+/+ and PEDF KO/KO at baseline and Day 7 Post LIRD. Figure 9A-B shows the gene expression of Lgals3 726 

and Nlrp3 at the same time points in the RPE. The Lgals3 expression in the RPE Two-way ANOVA; 727 

PEDF KO/KO baseline vs. PEDF KO/KO Day 7: *p-value<0.05; PEDF +/+ Day 7 vs. PEDF KO/KO Day 7: *p-728 

value<0.05. However, only at day 7 in the RPE is Nlrp3 expression significantly different in the PEDF 729 

KO/KO compared to littermate controls(*p-value<0.05). 730 

  731 
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5.7.9 Figure 9: Loss of PEDF Reduces Total Galectin-3 Expression Before and After LIRD 732 

 733 

PEDF KO/KO animals have significantly lower expression of Galectin-3 at baseline compared to littermate 734 

controls. Additionally, after damage, there is a suboptimal increase in Galectin-3 protein expression on 735 

day seven post-LIRD. PEDF +/+ animals dampen galectin-3 expression in response to LIRD damage at 736 

day 7, suggesting differential temporal regulation of the protein when PEDF is present compared to when 737 

it is not. Figure 9A shows a western blot that was probed for PEDF (50kDa), Galectin-3(~30kDa), and 738 

GAPDH (~37kDa) loading control. The results from Figure 9A are quantified in Figure 9B and show that 739 

there are significant differences in Galectin-3 expression at both baselines (Two-way ANOVA with 740 

Tukey’s multiple comparison correction. **** p-value<0.0001. sample sizes: 3 animals/group/time point) 741 

and at Day 7 (****p-value<0.0001) between PEDF KO/KO and PEDF +/+ animals. While Galectin-3 742 

expression increases in the PEDF KO/KO animals at day seven compared to baseline, it is still dampened 743 

compared to the Gal-3 expression of PEDF +/+ at the same time point. 744 

  745 
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5.7.10 Figure 10: Treatment with Galectin-3 inhibitor, TD139, significantly decreases PEDF 746 
expression in PEDF +/+ animals after LIRD. 747 

 748 

 749 

Figure 10A shows a western blot exhibiting that PEDF+/+ with no damage controls have high levels 750 

of PEDF, and exposing PEDF+/+ animals to LIRD shows a decrease in PEDF levels. Still, it is not 751 

significantly different from no-damage controls. However, by adding the galectin-3 inhibitor to 752 

LIRD, there is a significant loss of PEDF compared to LIRD, and there is no damage control. 10B is 753 

a quantification of 10A. (One-way ANOVA with Tukey’s multiple comparison test. No damage vs. 754 
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LIRD only (Day 5 post) ns; not significant. No damage vs. LIRD (day 5) + Gal-3 inhibitor ***p-755 

value<0.001. LIRD only (Day 5) vs. LIRD (Day 5) + Gal-3 inhibitor (*p-value<0.0.5). 10C shows 756 

representative fundus and retinal images taken using SD-OCT, displaying the effects of TD139 757 

treatment with and without LIRD. Treatment with an inhibitor in conjunction with LIRD 758 

significantly increased retinal thinning compared to the control of LIRD only. Note: TD139 759 

treatment alone does not affect visual function Galectin-3 expression levels ( Supplemental Figure 760 

1). 761 
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5.7.11 Figure 11: Schematic of Model Summary 763 

764 

  765 

Fig 11A: Schematic summary illustrating significant differences between PEDF +/+ and PEDF KO/KO 766 

animals and the impacts on IGF-1 and Galectin-3 expression.  767 

Fig 11B: Shows the proposed immunomodulatory network influencing photoreceptor death, immune 768 

cells, and RPE cells. Images made using Biorender.  769 
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