1	5	Title: Loss of Pigment Epithelium Derived Factor Sensitizes C57BL/6J Mice to Light-Induced
2		Retinal Damage
3		
4		Authors: Debresha A. Shelton ¹ , Jack T. Papania ¹ , Tatiana E. Getz ¹ , Jana T. Sellers ¹ , Preston E.
5		Giradot ¹ , Micah A. Chrenek ¹ , Hans E. Grossniklaus ¹ , Jeffrey H. Boatright ^{1,2} , John M. Nickerson ¹
6		
7	Aff	iliations:
8	¹ De	partment of Ophthalmology, Emory University, Atlanta, Georgia, United States
9	² At	anta Veterans Administration Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia,
10	Uni	ted States
11		
12	Cor	respondence to: Please address all correspondence to Dr. John M. Nickerson; Department of
13	Opł	nthalmology, Emory University, B5602, 1365B Clifton Road, NE, Atlanta, GA, 30322; Phone 404-
14	778	-4411; email: litjn@emory.edu
15		
16	Fun	ding: Supported by National Institutes of Health (NIH) grants R01EY028450, R01EY021592,
17	P30	EY006360, R01EY028859, T32EY07092, and T32GM008490, the Abraham and Phyllis Katz
18	Fou	ndation, VA RR&D I01RX002806 and I21RX001924, VA RR&D C9246C (Atlanta Veterans
19	Adı	ninistration Center for Excellence in Vision and Neurocognitive Rehabilitation), and a challenge grant
20	to t	he Department of Ophthalmology at Emory University from Research to Prevent Blindness, Inc.
21		

2

22 5.1 ABSTRACT

23 **Purpose**:

24	Pigment epithelium-derived factor (PEDF) is a neurotrophic glycoprotein secreted by the
25	retinal pigment epithelium (RPE) that supports retinal photoreceptor health. Deficits in
26	PEDF are associated with increased inflammation and retinal degeneration in aging and
27	diabetic retinopathy. We hypothesized that light-induced stress in C57BL/6J mice deficient
28	in PEDF would lead to increased retinal neuronal and RPE defects, impaired expression of
29	neurotrophic factor Insulin-like growth factor 1 (IGF-1), and overactivation of Galectin-3-
30	mediated inflammatory signaling.
31	Methods:
32	C57BL/6J mice expressing the RPE65 M450/M450 allele were crossed to PEDF $^{\rm KO/KO}$ and
33	wildtype (PEDF ^{+/+}) littermates. Mice were exposed to 50,000 lux light for 5 hours to
34	initiate acute damage. Changes in visual function outcomes were tracked via
35	electroretinogram (ERG), confocal scanning laser ophthalmoscopy(cSLO), and spectral
36	domain optical coherence tomography (SD-OCT) on days 3, 5, and 7 post-light exposure.
37	Gene and protein expression of Galectin-3 were measured by digital drop PCR (ddPCR) and
38	western blot. To further investigate the role of galectin-3 on visual outcomes and PEDF
39	expression after damage, we also used a small-molecule inhibitor to reduce its activity.
40	Results:
41	Following light damage, PEDF KO/KO mice showed more severe retinal thinning, impaired
42	visual function (reduced a-, b-, and c-wave amplitudes), and increased Galectin-3 expressing
43	immune cell infiltration compared to PEDF +/+. PEDF KO/KO mice had suppressed damage-

3

44	associated increases in IGF-1 expression. Additionally, baseline Galectin-3 mRNA and
45	protein expression were reduced in PEDF $^{\text{KO/KO}}$ mice compared to PEDF $^{+/+}$. However, after
46	light damage, Galectin-3 expression decreases in PEDF ^{+/+} mice but increases in PEDF
47	KO/KO mice without reaching PEDF ^{+/+} levels. Galectin-3 inhibition worsens retinal
48	degeneration, reduces PEDF expression in PEDF $^{+/+}$ mice, and mimics the effects seen in
49	PEDF knockouts.
50	Conclusions:
51	Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under
51 52	Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual
51 52 53	Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF ^{+/+} . PEDF deficiency
51 52 53 54	Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF ^{+/+} . PEDF deficiency reduced baseline expression of Galectin-3, and pharmacological inhibition of Galectin-3
51 52 53 54 55	Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF ^{+/+} . PEDF deficiency reduced baseline expression of Galectin-3, and pharmacological inhibition of Galectin-3 worsens outcomes and suppresses PEDF expression in PEDF ^{+/+} , suggesting a novel co-
51 52 53 54 55 56	Loss of PEDF alone does not elicit functional defects in C57BL/6J mice. However, under light stress, PEDF deficiency significantly increases severe retinal degeneration, visual deficits, Galectin-3 expression, and suppression of IGF-1 than PEDF ^{+/+} . PEDF deficiency reduced baseline expression of Galectin-3, and pharmacological inhibition of Galectin-3 worsens outcomes and suppresses PEDF expression in PEDF ^{+/+} , suggesting a novel co- regulatory relationship between the two proteins in mitigating light-induced retinal damage.

4

58 5.2 INTRODUCTION

59	Pigment epithelium-derived factor (PEDF), a secreted 50-kDa glycoprotein with neurotrophic
60	effects, is critical in the development and homeostasis of the vertebrate eye ¹⁻⁴ . While other ocular
61	tissues express PEDF, the retinal pigment epithelium (RPE) is the primary producer of PEDF and is
62	crucial for retinal health and visual signaling. ⁵⁻⁹ . RPE ablation studies have shown that loss of the
63	RPE leads to disorganization of multiple retinal layers during development; however,
64	supplementation with PEDF is sufficient to rescue this phenotype in X. leavis in ex vivo tissue
65	culture models ¹ . Similarly, loss of the RPE and PEDF expression in the eye is associated with
66	aging ^{2,10,11} and ocular pathology ^{12,13} , including diabetic retinopathy ^{14,15} and vascular glaucoma ¹⁵ .
67	PEDF has putative anti-inflammatory roles in eye ^{16,17} and was first described as an anti-tumor factor
68	by Tombran-Tink and colleagues in 1990 because of its ability to differentiate retinoblastoma
69	cells ^{18,19} . Since then, multiple studies have identified PEDF as a significant support in cellular
70	differentiation, retinal development, inflammation, vascularization, and neuroprotection of
71	photoreceptors and neurons ^{7,20–27} . In this study, we asked if PEDF has a protective role in the retina
72	and RPE following LIRD in a C57BL/6J mouse strain that confers resistance to light damage.
73	
74	In 2006, An et al. studied the secreted proteome of RPE cell cultures isolated from patients with
75	AMD and compared them to control eyes ^{28,29} . Interestingly, they found a 3-fold increase in the
76	secretion of four proteins in eye patients with age-related macular degeneration (AMD) compared to
77	controls; among them were galectin-3 (Lgals3) and pigment epithelium-derived factor (PEDF),
78	suggesting that both may be involved in the pathology of the phenotype. Galectin-3, a member of the
79	β -galactosidase binding protein family, is endogenously expressed in the cytosol. Galectin-3 is
80	secreted via a non-classical pathway to the cell surface of the RPE, where it participates in a cell
81	lattice formation and cell-cell interaction observed during EMT of myofibroblastic RPE cells ³⁰³¹
82	Galectin-3 has also been implicated in fine-tuning inflammatory responses of immune cells during
83	neurodegeneration via its increased affinity for β -1, 6-N- glycosylation on the cell surface of RPE

r		•	
	7		
L	4		

84		cells undergoing EMT and the increased secretion from RPE and immune cells after damage ^{30–35} .
85		However, the role that PEDF expression may play in the modulation of galectin-3 after damage in
86		the eye is not fully understood.
87		
88		This study identified a novel potential molecular target and signaling pathway that connects the RPE
89		and inflammation via a PEDF-Galectin-3 mediated signaling paradigm. The interplay between PEDF
90		and Galectin-3 may reveal an additional level of regulation of ocular immune privilege facilitated by
91		the RPE over immune cell behavior. Using in vivo imaging techniques, electroretinograms, protein
92		and gene expression analysis, and immunofluorescence, we examine how the loss of PEDF
93		expression after light damage increases galectin-3 expression, recruitment of subretinal immune
94		cells, and progressive loss of visual structures and function over time. These findings support the
95		importance of PEDF in protecting eye tissues against LIRD.
96		
97	5.3	METHODS
98		
99	5.3.	4 <u>Animal husbandry</u>
100		The Emory University Institutional Animal Care and Use Committee approved mouse handling,
101		care, housing, and experimental design. The experiments were compiled with the Association for
102		Research in Vision and Ophthalmology (ARVO) and Accreditation of Laboratory Animal Care
103		(AAALAC) guidelines and doctrine. Mice were housed and maintained on a 12-hour light/dark cycle
104		at 22 °C, with standardized rodent chow (Lab Diet 5001; PMI Nutrition Inc., LLC, Brentwood, MO,
105		USA). Mice had access to water ad libitum. The Emory University Division of Animal Resources
106		supervised mouse care and housing. A roughly equal representation of male and female mice was
107		used in all experiments. Animals were euthanized using standardized asphyxiation via CO ₂ gas for 5
108		min, followed by confirmatory cervical dislocation.
109		

6

110 5.3.5 Breeding Scheme

111	PEDF knockout/null (PEDF KO/KO or PEDF-null) mice, which were gifted from Dr. Hans
112	Grossniklaus and Dr. Sue Crawford at Northwestern University Feinberg School of Medicine (JAX
113	Laboratory Stock No. 030065). This mouse strain has had exons 3-6 of the PEDF gene replaced by
114	an IRES-lacZ cassette systemically. We bred PEDF(ko/+) x PEDF(ko/+) on the RPE65 $^{M450/M450}$ on
115	C57BL/6J . The breeding scheme resulted in litters that were approximately 25% PEDF $^{\rm KO/KO}$
116	(experimental) and 25% PEDF ^{+/+} (wildtype controls). These mice were used for all protein and gene
117	expression analysis. To assess immune cell dynamics we used CX3CR-1 GFP knock-in mice on the
118	C57BL/6J background were acquired from Jackson Laboratory (Stock NO. 005582). We maintained
119	a line that was homozygous for PEDF-ko and another line that was homozygous for PEDF-wt. Both
120	sets of mice were then bred to produce heterozygous $CX3CR1(gfp/+)$ on the RPE65 M450/M450
121	background. The resultant animals were either PEDF KO/KO; CX3CR-1 GFP/+; RPE65 M450/M450 or
122	PEDF ^{+/+} ; CX3CR1 G ^{FP/GFP} ; RPE65 ^{M450/M450} . All PEDF ^{KO/KO} experiments were conducted in animals
123	that were more than P60 but less than P380. Genotyping was performed using a polymerase chain
124	reaction to confirm the deletion of the PEDF gene product. The genotyping results were hidden from
125	experimental biologists until after in vivo experiments, and samples were collected to limit
126	ascertainment biases.
127	
128	5.3.6 Light-induced retinal damage (LIRD) conditions and LIRD box information
129	Mice were dark-adapted overnight before light damage initiation. Phototoxic light damage was
130	induced using Fancier 500-A LED light lamp panels (Fancier Studio, Haywood, CA), which was
131	modified to fit on transparent polycarbonate model 750 cages. The protocol is a modification of
132	previously described phototoxic damage models ^{36,37} . The light intensity was calibrated using a VWR
133	® Light Meter with outputs (catalog No. 62344-944, Radnor, PA) to 50,000 lux. The mice were
134	treated with topical 1% Atropine eye drops for two rounds of 10 seconds per eye. Mice were exposed

7

to high-intensity light damage for 5 hours during the dark phase of the

- 136 ZT12- ZT17). After light damage, animals were returned to their home cages for recovery.
- 137 5.3.7 <u>Immunofluorescence staining and Histology.</u>
- 138 5.3.7.1 <u>RPE Flat mounts:</u>
- 139 Immunofluorescence was used to detect galectin-3 positive cells and RPE cells to assess the extent
- 140 of immune cell recruitment and damage. Samples were dissected using the technique reported by
- 141 Zhang et al.^{38–40}. In brief, after enucleation, the eye is placed into a 4% Paraformaldehyde/PBS
- 142 mixture to incubate for 30 minutes. The lens was removed, and four flaps were made to flatten the
- 143 RPE sheet to a conventional slide with an adhered silicon gasket (Grace Bio-Labs, Bend, OR). The
- 144 RPE flat mounts were blocked in Hank's Balanced salt solution (#SH30588.01; Hyclone, Logan,
- 145 UT) containing 0.3 % (V/V) Triton X-100 and 1% (W/V) bovine serum albumin for 1 hour at 22 °C
- 146 or overnight at 4°C in a humidity chamber. The samples were then stained with Galectin-3 (1:250),
- 147 Vimentin (1:250), IGF-1(1:250), and ZO-1(1:200) overnight at 4°C. The next day, the flat mounts
- 148 were washed with HBSS/Triton X-100 solution and incubated in secondary antibody in HBSS/
- 149 Triton 100 X/BSA solution for 1 hour at 22°C. After secondary incubation, samples were washed
- 150 with HBSS/Triton 100 X solution before mounting with fluoromount G.
- 151

152 5.3.7.2 <u>Retinal Sections</u>

153 Eyes were fixed in fixation solution (97% methanol, VWR, Cat. #BDH20291GLP; 3% acetic acid, Cat. #Fisher BP2401-500) at -80 °C for 4 days, embedded in paraffin, and sectioned through the 154 sagittal plane on a microtome at thickness of 5 µm as previously described by Sun et al⁴¹. Nuclei in 155 156 the outer nuclear layer (ONL) were counted manually by an individual masked to sample identity. 157 Only nuclei within a 100-micron region were counted using Adobe Photoshop (Version 27.4.0) at 158 regularly spaced intervals of 500 microns apart from the optic nerve in both the inferior and superior 159 directions. Deparaffinized retinal sections were also stained for immunofluorescence in a humidity chamber as described by Zhang et al³⁸. Slides were mounted using Vectashield Vibrance (Vector 160

_
•
1

161	Labs H-1700-2; Newark, CA) was used to mount the coverslip, and the sections were imaged using
162	an A1R confocal on a Nikon Ti2 microscope. All primary and secondary antibodies used for this
163	study are listed in <u>Table 1</u> .

164

165 5.3.8 <u>Rhodopsin staining assay</u>

166 Animals were euthanized, and eye samples were collected within 1 hour of light onset (between ZT0 167 and ZT1) to capture maximal phagosome production. Murine eyes were enucleated and placed in 168 glass tubes of "freeze-sub" solution of 97% methanol (Fisher Scientific A433p-4) and 3% acetic acid that was chilled with dry ice, following the method of Sun and coworkers ⁴². Tubes were placed at -169 170 80°C for at least four days to dehydrate the tissue. The sections were then treated as described in 171 section 2.4.2. The primary antibodies (mouse anti-rhodopsin, Abcam, catalog #ab3267, [1:250] and 172 Rabbit anti-BEST1, Abcam, catalog # ab14927 [1:250]) are then added to the blocking solution and 173 put on the slides overnight at room temperature in a humidified chamber. The next day, the 174 secondary antibody is added to the blocking solution. Slides were washed and nuclei stained before 175 mounting in fluoromount G (catalog #0100-01; SouthernBiotech, Birmingham, AL, USA). The shed 176 rod outer segments (rhodopsin-positive vesicles) within RPE were quantified as phagosomes. Counts 177 were performed by three independent, masked observers using Photoshop (Adobe Photoshop, 178 Version 27.4.0), and each count was averaged for final counts per sample. 179

180

181 5.3.9 <u>Electroretinogram</u>

Mice were dark-adapted overnight for ERG testing, conducted under dim red light conditions as
previously described ⁴³. Anesthesia was administered intraperitoneally with a 100 mg/kg ketamine
and 10 mg/kg xylazine solution ketamine; KetaVed from Boehringer Ingelheim Vetmedica, Inc., Fort
Dodge, IA (CAS # 1867-66-9); xylazine from PivetalVet, Greely, CO, USA. Proparacaine (1%;
Akorn Inc.) and tropicamide (1%; Akorn Inc.) evedrops were used for topical anesthesia and pupil

187	dilation. Mice were kept on a 39 °C heating pad during the procedure. ERGs were recorded using the
188	Diagnosys Celeris system (Diagnosys, LLC, Lowell, MA, USA), with corneal electrodes on each
189	eye and the contralateral eye as the reference. Full-field ERGs were recorded for scotopic conditions
190	at stimulus intensities of 0.001, 0.005, 0.01, 0.1, and 1 cd s/m ² with a 4 ms flash duration, collecting
191	signals for 0.3 sec to assess a- and b-wave function. For c-wave analysis, a 10 cd s/m ² flash was
192	used, with a 5-sec signal collection. After light adaptation for 10 minutes, photopic ERGs were
193	captured at 3 and 10 cd s/m ² . Post-recording, mice were placed in their home cages on heating pads
194	to recover from anesthesia unless further prepared for SD-OCT and cSLO examinations.
195	5.3.10 In Vivo Ocular Imaging
196	
197	5.3.10.1 Spectral Domain Optical Coherence Tomography (SD-OCT):
198	Mice were anesthetized during the previous ERG examination, and a ketamine booster was administered
199	to extend the examination period. The procedure for in vivo ocular posterior segment morphology
200	analysis has been previously described ³⁸ . In brief, spectral domain optical coherence tomography (SD-
201	OCT) using the MICRON [®] IV Spectral Domain Optical Coherence Tomography (SD-OCT) system with
202	a fundus camera (Phoenix Research Labs, Pleasanton, CA, USA) was used sequentially to examine the
203	retinal anatomy. Micron IV system, circular scans $\sim 100 \ \mu m$ from the optic nerve head were collected (50
204	scans averaged together) to generate image-guided OCT images of retinal layers and fundus. Retinal
205	layers were annotated according to previously published nomenclature ⁴⁴ Total retinal thickness and
206	photoreceptor (outer nuclear layer thickness) were analyzed using Photoshop (Adobe Photoshop 2024
207	version 25.5) as previously described ^{38} .
208	
209	5.3.10.2 Confocal Scanning Laser Ophthalmoscope (cSLO)
210	Immediately afterward, a rigid, specialized contact lens adapted for mouse imaging (Heidelberg
211	Engineering) was placed on the eye (back optic zone radius, 1.7 mm; diameter, 3.2 mm; power, Plano),
212	and blue autofluorescence (BAF) imaging at the layer of the photoreceptor-RPE was obtained using

213	Heidelberg Spectralis and SD-OCT instrument with a 25 D lens (HRA)CT2-MC; Heidalberg Engineering,
214	Heidalberg, Germany). Afterward, mice were injected with a reversal agent (0.5 mg/mL
215	atipamezole(Antisedan); Zoetis, Parsippany, NJ) injection volume 5 µL per gram mouse weight; and
216	placed individually in cages on top of heated water pads to recover.
217	
218	
219	5.3.11 Western Blot Protocol
220	As described in Ferdous et al. 2019 and Ferdous et al. 2023, immunoblot experiments were
221	conducted. In brief, two dissected eye cups (containing both the retina and RPE/ Sclera) were
222	collected from each animal. Protein was extracted via mechanical rending of tissue by a QIAGEN
223	TissueLyser in a solution of radioimmunoprecipitation (RIPA) buffer containing protease inhibitors
224	(completed mini protein inhibitor catalog #118361530001) and phosphatase inhibitors (PhosSTOP
225	EASypack #04906845001). Protein concentration was determined using Pierce bicinchonic Acid
226	(BCA) Assay, and absorbance was measured at 562 nm using a Synergy H1 Hybrid Plate Reader
227	(Biotek). After ascertaining protein concentration, the samples were diluted to 0.8 mg/mL and heated
228	to 95 °C for 10 minutes to denature proteins before electrophoresis. Samples were run on a pre-cast
229	Criterion gel (Biorad TGX Stain free Gel 4%-20%, Catalog # 567-8094) along with 10µL of a
230	molecular weight ladder (Bio-Rad Catalog # 1610376) and run at 120V for 90 mins.
231	
232	5.3.12 <u>TUNEL Staining protocol</u>
233	The manufacturer instructions for the Promega DeadEnd TUNEL Fluorometric kit (Promega G3250)
234	were followed. In brief, tissue sections were deparaffinized in 5 steps of xylene for 2 min each. The
235	tissue sections were then rehydrated in a graded ethanol series (100, 90, 80, 70, 60, and 50%) for 2
236	min each. The slides were then washed for 5 min in PBS (Corning 46-013-CM) and mounted in the
237	Sequenza system. Sections were incubated for 15 min in Z-fix (Anatech, Fisher Scientific
238	NC935141), washed twice in PBS for 5 min each, incubated in Proteinase K solution for 8 min,

239	washed with PBS for 5 min, fixed with Z-fix for 5 min, washed with PBS for 5 min, incubated with
240	rTDT enzyme and nucleotide mix in equilibration buffer for two hours, washed with $2 \times$ SSC for 5
241	min, counterstained with 2.5 m Hoechst 33342 in TBS for 10 min, and rinsed with TBS for 5 min.
242	Coverslips were then mounted using VectaShield Vibrance and imaged using an A1R confocal on a
243	Nikon Ti2 microscope.
244	
245	5.3.13 Galectin-3 inhibitor experiments
246	At baseline, animals were assessed by electroretinogram, spectral domain coherence tomography
247	(SD-OCT), and confocal scanning laser ophthalmoscope (CSLO) to evaluate any inherent structural
248	or functional features or defects. Animals were injected with 15mg/kg of TD139 (33DFTG, catalog #
249	AOB37408, AOBIOUS, Inc. Scranton, Pennsylvania) intraperitoneally daily beginning one day
250	before light damage administration until day five post damage. Animals were then assessed using the
251	same in vivo measures for retina architecture and structure changes.
252	
253	5.3.14 Gene expression analysis (digital drop PCR)
254	Eyes were collected between 10 AM and 2 PM to standardize gene expression. The cornea and iris
255	were removed via an incision, followed by the lens, and the neuroretina was separated from the
256	RPE/choroid eye cup. Retinas were flash-frozen in RNase-free tubes and pre-chilled on dry ice.
257	RPE/choroid eye cups were incubated in RNAprotect® Cell Reagent (Qiagen, Cat # 76106,
258	Germantown, Maryland). for 10 minutes, with occasional agitation to release RPE cells. Cells were
259	pelleted by centrifugation (>12,000 x g for 5 minutes), the supernatant was discarded, and the cells
260	were stored at -80°C. RNA extraction was performed using the Qiagen RNeasy Mini Kit (Cat
261	#74106). Samples were homogenized in RLT buffer with a stainless-steel bead, followed by ethanol
262	addition and vortexing. The mixture was processed through an RNeasy column, washed with RW1
263	and RPE buffers, and eluted with nuclease-free water. The final RNA samples were stored at -80°C.
264	cDNA synthesis was conducted using the Qiagen Quantitect RT kit.

12

265 <u>Digital drop PCR (ddPCR) Reactions</u>

266	Reaction mixes containing reverse transcriptase, primers, RT buffer, and QX200TM ddPCR
267	EvaGreen Supermix (Bio-Rad: 186–4034) were added to 2µL of cDNA template for a total volume
268	of 20 μ L /well on the plate Twin-Tec plate (CAS # 951020320; Eppendorf, Enfield, CT). Fill empty
269	well with RT Buffer and seal plate with tape film and spin down and mix. Plates were preheated at
270	95 C for 2 min/cycle. After using the droplet generator to generate droplets on the ddPCR plate, seal
271	the droplet plate with foil film using the Biorad program. Then place the sealed Twin-Tec plate into
272	ddPCR apparatus (QX200 Droplet Digital PCR (ddPCR TM) System – Bio-Rad) and run the program
273	as detailed in manufacturer's manual.

13

5.3.15 <u>Imaris analysis</u>
The intensity, size, and distribution of Galectin-3 positive immune cells were analyzed using Imaris
software 10.1.0 by Bitplane. Maximum intensity projection images of each RPE flat mount were
processed using IMARIS 10.1.0 (Bitplane, Inc.), in which individual cells were identified,
segmented, and quantified morphologically. Before converting and uploading images to Imaris, the
corneal flaps and optic nerve heads were removed via the crop tool in Photoshop. Subretinal immune
cell counts were conducted using the spots function in Imaris (artifacts and cell particulates were
manually rejected) so that only cells with intact soma were quantified. Cell counts were normalized
against double-blind manual cell counts of the same samples.
5.3.16 <u>Statistical analysis</u>
Statistical analysis was conducted using Prism 9.1.0 (on Mac OS X 14 Sonoma) (GraphPad
Software, Inc., La Jolla, CA, USA). Data are presented as mean +/- standard deviation (SD), with
statistical testing for individual datasets described in the Figure legends. A p-value <0.05 was
considered statistically significant. Demographic distributions and sample sizes are summarized in
Table 1. All statistical tests used are detailed in the Figure Legends.

294 Table 1: antibody and reagent information

Antibody	Antibody	Species	Company	Concentration
	Туре		and Catalog	
Galectin-3	Primary	Goat	R&D Systems (AF1197)	1:250
ZO-1	Primary	Rat	Sigma	1:250
Vimentin(D21H3)	Primary	Rabbit	Cell Signaling (mAB5741S)	1:200
IGF-1	Primary (conjugated AF546)	Mouse	Santa Cruz (sc-518040)	1:100
IBA-1	Primary	Rabbit	Abcam (ab178847)	(1:1000)
Pentahydrate(bis- Benzamide)Hoec hst 33258	DNA nuclear Stain	N/A	Thermo-Fisher Catalog #: H3569	[1:250]
TUNEL	N/A	N/A	Promega DeadEnd TUNEL Flurometric Kit- G3250	
Mouse anti- Rhodopsin	Primary	Mouse	Abcam, ab3267	[1:250]
Rabbit anti-Best1	Primary	Rabbit	Abcam, ab14927	[1:250]
Donkey anti-Rat (AF488)	Secondary	Rat	Life Technologies, Catalog # A21208	[1:1000]
Donkey anti-rabbit (AF568)	Secondary	Rabbit	Life Technologies, Catalog # A10042	[1:1000]
Donkey Anti- Mouse(AF488)	Secondary	Mouse	Life Technologies Catalog #A21202	[1:1000]
Donkey Anti- Goat(AF647)	Secondary	Goat	Abcam Catalog # A32849	[1:1000]

15

297

298 Table 2: Digital Drop PCR Primer sequences

Gene	Protein	Primer Sequence	Size	Species
Hrpt	HRPT- HEX(IDT)	Mm.PT.39a22214828		Mouse
116	IL6	dMmuCPE5095532	70	Mouse
ll1b	IL1B	Mm.PT.58.41616450	119	Mouse
Lgals3	Galectin- 3	Mm.PT.58.8335884	130	Mouse
NIrp3	NLRP3	Mm.PT.58.13974318	90	Mouse
Snai1	SNAI1	Mm.PT.58.43057042	122	Mouse

16

2	n	n
J	υ	υ

301 5.4 RESULTS

302 5.4.1 Figure 1: Loss of PEDF is a Phenotype Modifier for Sensitivity to Phototoxic Damage in

303 C57BL/6J

Expression of PEDF protects neurons and photoreceptors^{26,45,46}. Conversely, loss of PEDF is linked 304 305 to neurodegenerative disease phenotypes, including an autosomal dominant retinitis pigmentosa 306 locus in human studies^{24,47}. To determine if loss of PEDF sensitizes C57BL/6J mice to phototoxic 307 damage, we crossed PEDF-null mice to mice with a hypomorphic mutation in the RPE65 gene. 308 resulting in reduced sensitivity to light damage. We exposed these animals to 50,000 lux of light 309 for 5 hours. We found that PEDF-null animals had more mottling in the fundus after LIRD than 310 wildtype controls and experienced more retinal degeneration and thinning (see Figure. 1E-F). We quantified these changes amongst PEDF^{+/+}, PEDF^{+/-}, and PEDF^{KO/KO}. We found that PEDF^{+/-} 311 behaved very similarly to PEDF ^{+/+} animals and showed minimal perturbances to ocular structure 312 after LIRD (Fig. 1G-H). However, PEDF KO/KO showed significant losses of photoreceptor thickness 313 and total retinal thickness compared to PEDF^{+/+} and PEDF^{+/-} animals (Figure 1G-H). Analysis: One-314 way ANOVA with Brown-Forsythe test and Barlett's correction. Retinal thickness: PEDF^{+/+} vs. 315 PEDF ^{+/-} p-value= not significant(ns); PEDF^{+/+} vs. PEDF ^{KO/KO} **p-value<0.01; PEDF ^{+/-} vs. PEDF 316 KO/KO ******p-value0.01. Photoreceptor thickness: PEDF^{+/+} vs. PEDF^{+/-} = ns; PEDF^{+/+} vs. PEDF^{KO/KO} 317 ****p-value<0.0001; PEDF ^{+/-} vs. PEDF ^{KO/KO} ****p-value<0.000. PEDF ^{+/-} n=5, PEDF ^{+/-} n=4, 318 PEDF KO/KO n=4). This data suggests that PEDF is protective against increased phototoxic damage. 319 320 321 5.4.2 Figure 2: Loss of PEDF increases damage-associated autofluorescent dots at the level of the 322 RPE 323 We used cSLO to capture dynamic changes at the level of the photoreceptor-RPE interface. At baseline, there were no differences or abnormalities between PEDF^{+/+} (2A-B) or PEDF^{KO/KO} (2F-324

G) in the vasculature or at the level of the RPE interface. However, when assessing the same

17

animals on Day 7, the number of damage-associated punctate at the RPE-photoreceptor layer was
 significantly increased in the PEDF ^{KO/KO}(2H-J) animals compared to the PEDF ^{+/+} (2C-E). This
 data suggests that PEDF-null animals have improved response to damage via the appearance of
 damage-associated foci at the RPE-photoreceptor interface.

330

331 5.4.3 Figure 3A: There is regionality to the damage phenotype in PEDF knockouts compared to 332 the wild type.

333 We used H&E to quantify the number of nuclei remaining in the outer nuclear layer (ONL) after LIRD damage to assess the degree of the damage and morphological changes. PEDF ^{+/+} animals still had 334 335 relatively normal morphology with intact RPE layer and photoreceptor inner and outer segments before and after LIRD (Figure 3A-B). However, the PEDF ^{KO/KO} animal displayed a significant loss of total 336 337 retinal thickness, a drastically diminished ONL, an almost complete loss of photoreceptor inner and outer 338 segments, and compromised RPE integrity (shown via white arrows: differences in RPE thickness; Fig. 3C-D). There were regional characteristics to this damage phenotype in the PEDF KO/KO animals, with 339 340 retinal structures on the superior portion of the eye being more severely diminished compared to the 341 inferior region of the eye (Fig.3E). A similar phenotype was also shown in day five after damage [data not 342 shown]. (Analysis: One-way ANOVA with Brown-Forsythe test and Barlett's correction; ## p-value<0.01 and $^{\#\#\#}$ p-value< 0.001; PEDF $^{+/+}$ n=4, PEDF $^{KO/KO}$ n=4). This phenomenon is characteristic of light 343 damage models, as described by Rapp and Williams^{48,49} and our data confirms that. 344

Previous light studies in rats have suggested that peak DNA damage occurs within the first 8-16 hours after damage ⁵⁰. To assess if PEDF ^{KO/KO} animals were still undergoing significant levels of active apoptosis at day 7, we stained for DNA fragmentation using TUNEL and immune cells using CX3CR1-GFP. PEDF ^{KO/KO} animals had significantly more apoptotic cells at day 7, resulting in a more depleted outer nuclear layer than wild-type controls. Additionally, there are more immune cells in the PEDF ^{KO/KO} subretinal space compared to the wild-type animals at the same time point (Fig. 3L-N; quantified in Fig. 3O: Analysis: One-way ANOVA with Tukey's multiple comparison tests: untreated vs. PEDF^{+/+} p-

352	value=ns; untreated vs. PEDF KO/KO ** p-value <0.01; PEDF ^{+/+} vs PEDF KO/KO ** p-value<0.01. untreated
353	n=3, PEDF ^{+/+} n=4, PEDF ^{KO/KO} n=3.) This data suggests that loss of PEDF increased regional loss of
354	photoreceptors after light damage.
355	
356	5.4.4 Figure 4: PEDF ^{KO/KO} animals' RPE fails to increase rhodopsin metabolism after light
357	damage.
358	Loss of PEDF in the RPE affects aging and RPE functional deficiency ^{2,51} . To assess changes in RPE
359	function in the absence of PEDF, we performed a rhodopsin metabolism assay as a proxy for RPE
360	phagocytic capacity, a critical function of the RPE. We found that at day seven after LIRD, PEDF $^{+/+}$
361	animals significantly increased rhodopsin metabolism in response to damage. However, PEDF KO/KO mice
362	failed to significantly increase rhodopsin metabolism, although they showed increased damage compared
363	to wild-type littermate controls (See Figure 4F; quantified in Fig. 4G: Two-way ANOVA with Tukey's
364	multiple comparison test, *p-value<0.05). Defects in phagocytosis of PEDF KO/KO mice have been
365	previously documented ¹⁰ . These data suggest that loss of PEDF results in reduced capacity for
366	phagocytosis by the RPE.
367	
368	5.4.5 Figure 5: PEDF ^{KO/KO} results in loss of retinal function following light stress
369	We also assessed for functional changes using electroretinograms to accompany the distinctive in vivo
370	and post-mortem histology analysis that we performed. Under scotopic conditions, we found that at
371	baseline until three days post-LIRD, there was no significant difference between genotypes in either a- or
372	b-wave function. However, by days 5 and 7, there were significant defects in a- and b-wave amplitudes of
373	PEDF KO/KO compared to wild-type littermates (Fig. 3A-B: Two-way ANOVA with Sidak's Multiple
374	comparison correction. Scotopic a-wave- Day 5: PEDF ^{+/+} vs. PEDF ^{KO/KO} ** -p-value<0.01. Day 7: ** p-
375	value<0.01 n=3-7/group/timepoint. Scotopic b-wave: Day 5: *p-value<0.05. Day 7: *p-value<0.05). To
376	accompany the rhodopsin metabolism analysis, we used c-wave analysis as a proxy to evaluate the RPE
377	function. We found that after light damage, there is not a significant difference between PEDF $^{+/+}$ and

19

378	PEDF KO/KO animals until day seven post-LIRD damage (Fig5.C: Two-way ANOVA with Sidak's multiple
379	comparison correction: PEDF ^{+/+} vs. PEDF ^{KO/KO} ; Day 5-ns; Day 7 *p-value<0.05). This datum aligns with
380	the functional deficits observed in the RPE in our immunofluorescence data from Figure 4. We also
381	assessed the scotopic and photopic waveforms of PEDF $^{\text{KO/KO}}$ compared to PEDF $^{+/+}$ at baseline and day
382	seven post-LIRD. PEDF KO/KO animals have a slightly lower b-wave and c-wave amplitude compared to
383	PEDF ^{+/+} littermate controls at baseline (Fig.5D); however, there were no defects in phototopic function
384	(Fig. 5F). At day seven after damage, both scotopic and photopic waveforms worsened in PEDF $^{\text{KO/KO}}$
385	animals compared to PEDF $^{+/+}$ animals (Fig. 5E and 5G). These data suggest that the loss of PEDF
386	negatively affects the retina and RPE function and leads to increased damage after LIRD compared to
387	PEDF ^{+/+} littermates.

388

5.4.6 Figure 6: PEDF ^{KO/KO} Results in Suppression of the Damaged-Associated Increase in IGF1 Expression after Light Damage

391 Studies of hypoxic trauma, diabetic retinopathy, and pharmacological damage in the eye have linked the 392 expression of PEDF and insulin-like growth factor 1(IGF-1) to the protection of RPE cells and other ocular structures after insult ⁵²⁻⁵⁴. To determine if loss of PEDF impacts the expression of IGF-1 after 393 damage, we used immunofluorescence to stain retinal sections of PEDF ^{+/+} and PEDF ^{KO/KO} animals. We 394 quantified the expression of IGF-1 from baseline until day seven post-damage. Notably, PEDF KO/KO 395 396 animals showed significant reductions in IGF-1 starting at day three compared to wildtype littermates (397 Fig 6Q: Two-way ANOVA with Tukey's multiple comparison test, n=3-4 animals/group/timepoint. Day 3: ****p-value<0.0001; Day 5: ****<0.0001; Day 7: ****p-value<0.0001). Increased infiltrating galectin-3 398 positive immune cells were found at the RPE-photoreceptor interface in PEDF KO/KO animals and 399 400 significantly more damage via loss of ONL thickness compared to wildtype littermates (See Fig. 6A-P). To confirm these findings, we tested the protein expression of IGF-1 in PEDF^{+/+} and PEDF^{KO/KO} animals. 401 At baseline, there is no significant difference in IGF-1 expression among PEDF ^{+/+} and PEDF ^{KO/KO} 402 403 animals (Two-way ANOVA with Tukey's multiple comparison test. N=3-6 animals/group/timepoint.

20

404	Baseline: PEDF +/+ vs. PEDF KO/KO =ns). PEDF ^{+/+} animals significantly increased IGF-1 expression
405	by day seven after damage (PEDF +/+ no damage vs. PEDF ^{+/+} Day 7 post *p-value<0.05). Notably, the
406	expression of IGF-1 in response to damage was significantly dampened in PEDF KO/KO compared to PEDF
407	^{+/+} animals at day 7 (PEDF ^{+/+} Day 7 vs. PEDF ^{KO/KO} Day 7 ** p-value<0.01). Immune cells, like
408	microglia, with high expression of IGF1 are associated with neuroprotection ^{55,56} . We found that subretinal
409	immune cells in the PEDF $^{+/+}$ animals on day 7 showed a prominent expression of IGF1 in the cell
410	body/cytoplasm. However, the subretinal immune cells in the PEDF KO/KO had very little to no expression
411	of IGF-1. These data may suggest that loss of PEDF results in global loss of IGF-1 expression and
412	increased recruitment of IGF-1 deficient immune cells.
413	
414	5.4.7 Figure 7: Loss of PEDF results in robust inflammatory response compared to wildtype
415	controls
416	Pigment epithelium-derived factor regulates inflammatory responses in multiple diseases, including
417	diabetic retinopathy, dry eye disease, and cancer studies ^{17,21,57-61} . Specifically, the 44-mer and 17-mer
418	PEDF peptides have been associated with antagonizing IL-6 production, thus suppressing chorioretinal
419	inflammation ⁶² . We used immunofluorescence staining of RPE flat mounts to evaluate how the loss of
420	PEDF affects the recruitment of subretinal immune cells at different time points after LIRD. The number
421	of subretinal immune cells in PEDF KO/KO and wildtype littermates is comparable at baseline. However,
422	after LIRD, PEDF KO/KO animals had significantly more recruitment of subretinal immune cells by day
423	five than wildtype littermates (See Fig. 7A-D; quantified in Fig. 7E: Two-way ANOVA with Sidak's
424	multiple comparison test, Day 5: PEDF ^{+/+} vs. PEDF ^{KO/KO} ** p-value 0.01). The number of subretinal
425	immune cells peaked on day 7 (****p-value 0.0001). Additionally, the cells had higher expression of
426	galectin-3, a pleiotropic, β -galactoside-binding protein associated with reactive microglia, compared to
427	wildtype littermate controls at day seven post ³³ .
428	

429 5.4.8 Figure 8: Loss of PEDF differentially affects Lgals and Nlrp3 gene expression

21

430	To determine if loss of PEDF differential affects inflammasome activation after LIRD, we first used
431	digital drop PCR to assess mRNA expression of both Lgals3 and Nlrp3 in both the retina (data not shown)
432	and RPE. Lgals3, the gene that encodes galectin-3, mRNA expression was significantly lower in the RPE
433	of PEDF KO/KO animals compared to wildtype littermate controls at baseline (Two-way ANOVA with
434	Tukey's multiple comparison test. *p-value<0.05). However, the amount of the transcript significantly
435	increases on day 7 in PEDF $^{KO/KO}$ animals compared to wildtype littermates at the same time point (**p-
436	value< 0.01). Additionally, Nlrp3 mRNA in the RPE only increased significantly at day seven post-LIRD
437	in PEDF KO/KO compared to wildtype littermates (*p-value<0.05). The supplemental information can find
438	the mRNA expression of LGALS3 and NLRP3 in RPE and SNAI1, IL-6, and IL1-beta expression in
439	retina and RPE. The loss of PEDF differentially regulates genes that encode galectin-3 and
440	inflammasome-associated protein, Nlrp3, at baseline and after LIRD, implicating PEDF in regulating
441	galectin-3 gene expression.

442

443 5.4.9 Figure 9: Loss of PEDF reduces total Galectin-3 expression

444 Previous studies have identified immune cells recruited to the subretinal space as a unique subset enriched for galectin-3 ^{63,64}. To investigate the relationship between the loss of PEDF and galectin-3 expression, we 445 446 performed protein expression analysis via western blot at baseline and day seven post-LIRD in PEDF KO/KO compared to PEDF +/+. PEDF KO/KO animals, at baseline, had significantly lower galectin-3 protein 447 expression than those of PEDF^{+/+} littermate controls (PEDF^{+/+} vs. PEDF^{KO/KO} Baseline ****p-448 value<0.0001). This data substantiated results from Figure 8A, which showed lower Lgals3 mRNA 449 expression in PEDF KO/KO animals at baseline. However, while the level of galectin-3 protein expression 450 in PEDF KO/KO animals increases after phototoxic damage, it remains suboptimal to PEDF +/+ animals at 451 452 the same time point (Two-way ANOVA with Tukey multiple comparison test, n=3/group/timepoint. PEDF ^{+/+} vs PEDF ^{KO/KO} Day 7 ***p-value 0.001). These data suggest the loss of PEDF significantly 453 454 affects the protein expression of Galectin-3 both before and after LIRD.

22

456 5.4.10 Figure 10: Inhibition of Galectin-3 with TD139 significantly decreases PEDF levels after 457 light damage

458 Previous studies have correlated increased expression of galectin-3 with poor clinical outcomes in 459 multiple eye diseases $^{65-70}$. Additionally, the inhibition galectin-3 by genetic manipulation or 460 pharmacological targeting dampened immune cell activity ⁷¹. To determine if dampening the galectin-3 461 expression would be protective after LIRD damage, we pharmacologically inhibited Galectin-3 in PEDF 462 ^{+/+} animals using TD139 to determine if inhibiting galectin-3 was protective after LIRD. We found that 463 treatment with galectin-3 inhibitor (TD139) did not significantly affect galectin-3 protein levels. 464 However, we did notice significant differences in the visual function of animals without LIRD exposure 465 (data not shown). Interestingly, we found that animals treated with galectin-3 inhibitor had a worse 466 damage phenotype than LIRD-only controls. Surprisingly, PEDF levels in animals treated with TD139 467 and LIRD were significantly lower than in the LIRD-only control group (One-way ANOVA with Tukey's multiple comparison test. n=3 animals/group. PEDF ^{+/+} No damage vs. PEDF ^{+/+} LIRD only: p-value=ns; 468 PEDF ^{+/+} no damage vs. PEDF ^{+/+} LIRD + Gal-3 inhibitor *******p-value<0.001; PEDF ^{+/+} LIRD only vs. 469 PEDF ^{+/+} LIRD + Gal-3 inhibitor *p-value<0.01). Treatment with TD139 alone does not affect visual 470 function or Galectin-3 protein expression compared to vehicle only(See Supplemental Figure 1). These 471 472 data suggest a potential correlation between PEDF and Galectin-3 expression since inhibition of galectin-473 3 significantly decreases PEDF expression.

474

475 5.5 DISCUSSION

476

The findings from this study reveal that PEDF plays a significant regulatory role in facilitating immune privilege and suppressing inflammation to protect vulnerable tissues from damage within the ocular microenvironment. Previous studies have evaluated and purported the protective role of PEDF against photoreceptor death in albino rat models under various light damage conditions; these studies showed that intravitreal supplementation with exogenous PEDF was protective; however, the mechanism for this

23

482	protection was not established ^{72,73} . These studies were limited in that they used albino animals, which are
483	not as translatable to normal vision in humans, and they used This study aimed to examine the influence
484	of PEDF on the outcome of visual function, galectin-3 positive subretinal immune cell recruitment, and
485	effects on the neurotrophic factor, IGF-1, after light damage. By employing a global deletion model of
486	PEDF and comparing the multiple visual metrics to wildtype controls, we could identify phenotypic shifts
487	during damage resolution that coincide with expression changes in IGF-1 and Galectin-3. Studying these
488	molecular mechanisms may be the basis for better understanding and predicting the pathological onset of
489	disease, reveal new pathway interactions for conserved biomarkers, and present new considerations for
490	therapeutic approaches employing gene therapy. To our knowledge, our study is the first to evaluate the
491	potential regulatory axis of PEDF-Galectin-3-IGF-1 in visual function. Additionally, according to our
492	understanding, this is the first study to implicate PEDF in the modulation of galectin-3 expression in the
493	eye. Overall, our results implicate the loss of PEDF as an essential regulator of both IGF-1 and Galectin-3
494	expression after light damage, suggesting an additional level of RPE-mediated regulation of
495	immunosuppression in the ocular microenvironment.
496	
497	
498	Immune privilege in the eye requires an intact RPE monolayer, which secretes factors that suppress the
499	immune response, controls the maturation of immune cells, and leads to apoptosis of infiltrating
500	macrophages, magnifying the role of RPE in facilitating immunomodulation ^{74–81} . Studies of pigment
501	epithelia derived from various ocular tissues suggest that immunosuppression is achieved by cell-cell
502	contact, soluble factors, or both 240, depending on the source of epithelia. The retinal pigment epithelia
503	predominantly utilize secreted, soluble factors to suppress immune cell activation. Previous studies have
504	described the immunomodulatory functions of the RPE via the secretion of cytokines and neuropeptides,
EOE	

506 complete mechanism by which the RPE participates in immunomodulation has not been fully elucidated.

50)8
----	----

509	Loss of PEDF is associated with aging and reductions in RPE functionality ^{11,84} . Here, we accessed the
510	potential immunomodulatory effects of the secreted homeostatic marker, PEDF, on damage outcomes and
511	inflammation. Previous studies have described overexpression of or supplementation with PEDF as
512	protective of photoreceptors and motor neurons, improvements in mitochondrial function and cortical
513	neurons after damage, and inhibition of inflammatory damage ^{2,22,45,85–88} . Additionally, deletion of PEDF
514	is associated with aging, increased inflammation, and increased loss of visual function ^{3,20,24,89} . Our results
515	confirm the findings of other studies since the loss of PEDF resulted in increased retinal thinning, more
516	damage-associated auto-fluorescent dots at the RPE-photoreceptor interface, significant loss of the
517	photoreceptor layer, and increased cell death compared to littermate controls.
518	Additionally, when evaluating the retinal function, we found that the RPE of PEDF KO/KO animals had a
519	reduced capacity for rhodopsin metabolism after LIRD compared to littermate controls at the same time
520	point. Retinal function loss reduced scotopic <i>a</i> -, <i>b</i> , and <i>c</i> -wave amplitudes by five to seven days after light
521	damage in PEDF KO/KO animals compared to littermate controls. These data suggest that PEDF is
522	protective against excessive damage after phototoxic light exposure.
523	
524	
525	The RPE is the major contributor to IGF-1 secretion in the ocular environment ⁹⁰ . The importance of IGF-
526	1 as a neurotropic factor and a regulator of immune cell function has been described in the eye and other
527	tissue types under normal and pathological conditions, like cancer and ischemia ^{53,55,56,91–93} . Additionally,
528	decreases in IGF-1 expression have been correlated with aging, increased damage, and apoptosis in eye
529	and brain studies ^{94–96} . To assess how the loss of PEDF may affect the expression and abundance of the
530	neurotrophic factor, IGF-1, we first evaluated IGF-1 immunoreactivity in retinal sections of PEDF KO/KO
531	animals compared to PEDF ^{+/+} animals at baseline. Baseline data showed no significant changes in IGF-1
532	expression between genotypes. However, after insult, there was a considerable loss in IGF-1 expression
533	beginning on Day 3 of PEDF KO/KO animals, which increased to Day 7. We confirmed these findings via

534	western blot analysis, showing a significant reduction in IGF1 protein expression in PEDF KO/KO
535	compared to wild-type littermates at day 7. IGF-1 inhibits apoptosis of photoreceptors via the
536	downregulation of caspase-3 and c-JUN signaling; thus, the reduced expression of IGF-1 may explain the
537	increased degree of apoptosis observed in Fig.3B 53,95,96. The presence of IGF-1 and Galectin-3 co-
538	expression in neuroprotective immune cells has been reported previously ^{55,56,97} . We also assessed the
539	presence of IGF-1 in recruited subretinal immune cells adhered to RPE flat mounts collected from PEDF
540	^{+/+} and PEDF ^{KO/KO} animals at day seven post-LIRD. We found that PEDF ^{KO/KO} animals had fewer IGF-1
541	positive immune cells (See Fig. 6W-Y) compared to the PEDF ^{+/+} (Fig.6T-V) at the same time point. IGF-1
542	modulates macrophage responsiveness and activity when challenged with a high-fat diet, shifting the
543	transcriptional and morphological phenotypes to that of an M2-like proinflammatory macrophage ⁹⁸ . A
544	decrease in IGF-1 and PEDF expression has also been described in aging studies, which may suggest a
545	similar mechanism as observed during our light damage experiments in the absence of PEDF ^{99–102} . The
546	loss of IGF-1 expression with age likely affects microglia function and sensitivity. The loss of PEDF leads
547	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1-
547 548	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells.
547 548 549	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells.
547 548 549 550	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells.
547 548 549 550 551	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during
547 548 549 550 551 552	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during neurodegeneration in the brain and the eye ^{33,97,103–106} . In the eye, galectin-3 enriched subretinal immune
547 548 549 550 551 552 553	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during neurodegeneration in the brain and the eye ^{33,97,103–106} . In the eye, galectin-3 enriched subretinal immune cells are recruited to the photoreceptor-RPE interface, suggesting that there may be a functional
547 548 549 550 551 552 553 554	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during neurodegeneration in the brain and the eye ^{33,97,103–106} . In the eye, galectin-3 enriched subretinal immune cells are recruited to the photoreceptor-RPE interface, suggesting that there may be a functional requirement for galectin-3 in the subretinal space ^{64,105,106} . Elevated galectin-3 expression is associated
547 548 549 550 551 552 553 554 555	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during neurodegeneration in the brain and the eye ^{33,97,103–106} . In the eye, galectin-3 enriched subretinal immune cells are recruited to the photoreceptor-RPE interface, suggesting that there may be a functional requirement for galectin-3 in the subretinal space ^{64,105,106} . Elevated galectin-3 expression is associated with poor prognostic outcomes ^{65–67,70} . Additionally, an ocular proteome study comparing AMD patients to
547 548 549 550 551 552 553 554 555 556	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during neurodegeneration in the brain and the eye ^{33,97,103-106} . In the eye, galectin-3 enriched subretinal immune cells are recruited to the photoreceptor-RPE interface, suggesting that there may be a functional requirement for galectin-3 in the subretinal space ^{64,105,106} . Elevated galectin-3 expression is associated with poor prognostic outcomes ^{65-67,70} . Additionally, an ocular proteome study comparing AMD patients to age-matched controls found a significant increase in the secretion of galectin-3 binding protein and
547 548 549 550 551 552 553 554 555 556	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during neurodegeneration in the brain and the eye ^{33,97,103–106} . In the eye, galectin-3 enriched subretinal immune cells are recruited to the photoreceptor-RPE interface, suggesting that there may be a functional requirement for galectin-3 in the subretinal space ^{64,105,106} . Elevated galectin-3 expression is associated with poor prognostic outcomes ^{65–67,70} . Additionally, an ocular proteome study comparing AMD patients to age-matched controls found a significant increase in the secretion of galectin-3 binding protein and pigment epithelium-derived factor from the RPE ¹⁰⁷ . However, the correlation between PEDF expression.
547 548 549 550 551 552 553 554 555 556 557	to insult-initiated down-regulation of IGF-1 protein expression and reduced recruitment of IGF-1- expressing immune cells. Multiple groups have described a unique subclass of immune cells enriched in galectin-3, recruited during neurodegeneration in the brain and the eye ^{33,97,103–106} . In the eye, galectin-3 enriched subretinal immune cells are recruited to the photoreceptor-RPE interface, suggesting that there may be a functional requirement for galectin-3 in the subretinal space ^{64,105,106} . Elevated galectin-3 expression is associated with poor prognostic outcomes ^{65–67,70} . Additionally, an ocular proteome study comparing AMD patients to age-matched controls found a significant increase in the secretion of galectin-3 binding protein and pigment epithelium-derived factor from the RPE ¹⁰⁷ . However, the correlation between PEDF expression, Galectin-3 levels, and damage outcomes has yet to be investigated. We hypothesized that loss of PEDF

560	increased inflammation in the ocular microenvironment. To evaluate this, we quantified the number of
561	galectin-3 expressing cells that adhered to the RPE at baseline and day seven between PEDF $^{KO/KO}$
562	compared to littermate controls. At baseline, there was no difference between genotypes. However, after
563	damage, we found that the total number of galectin-3 positive cells was significantly increased in PEDF
564	KO/KO animals compared to wildtype controls (See Fig. 7A-E), suggesting that without damage, there is no
565	increased infiltration of immune cells. However, after damage initiation, PEDF KO/KO animals had
566	significantly more galectin-3 expressing cells infiltrating the subretinal space compared to wild-type
567	littermates at the same time. Damage to the subretinal space, neurodegeneration, and aging are associated
568	with an increased activation of inflammation signaling and recruitment of immune cells ^{108–114} . To
569	investigate if PEDF KO/KO animals exhibit differential expression of galectin-3 and inflammasome
570	mediator NLRP3, we used digital drop PCR. We found that galectin-3 mRNA expression in the RPE from
571	PEDF KO/KO was significantly reduced compared to wild-type littermates. However, after damage, there is
572	a significant increase in Lgals3 and NLRP3 expression at day 7 in PEDF KO/KO animals compared to the
573	wildtype controls, which dampens the expression of these genes at the same time point. In agreement
574	with the gene expression data, galectin-3 protein expression was significantly lower in PEDF $^{KO/KO}$
575	animals compared to PEDF ^{+/+} . On day 7, post-damage, PEDF +/+ animals reduced galectin-3 expression
576	considerably compared to baseline expression; conversely, galectin-3 increased in the PEDF KO/KO animals
577	at the same time point. Notably, while galectin-3 protein expression in PEDF KO/KO animals increased over
578	baseline expression, there was significantly lower expression of galectin-3 protein at day seven compared
579	to PEDF ^{+/+} . These data may suggest that loss of PEDF affects the steady state of galectin-3 expression.
580	Interestingly, when we pharmacologically inhibited galectin-3 activity in PEDF ^{+/+} animals during LIRD,
581	we found it significantly decreased PEDF levels compared to LIRD-only controls (see Fig. 10), leading to
582	poorer visual outcomes (data not shown). These data suggest that PEDF protects ocular function after
583	LIRD via a novel galectin-3-mediated mechanism.

- 584
- 585

- 586 PEDF suppresses eye diseases and cancer studies ^{58,59,115}. In this study, we hypothesized that the protective
- 587 role of PEDF in the ocular microenvironment after damage includes regulation of inflammation and
- 588 immune privilege via galectin-3 mediated signaling. This study reports a putative relationship between
- 589 galectin-3 and PEDF, suggesting that galectin-3 enriched immune cells within the subretinal space are a
- 590 positive regulator of PEDF expression after light damage. However, the precise molecular signaling by
- 591 which loss of PEDF impacts Galectin-3 and IGF-1 expression requires further study.
- 592

593	5.6	Acknowledgments:	Supported by	Grants from	the National	Institutes of Health	(R01EY028450,
-----	-----	------------------	--------------	-------------	--------------	----------------------	---------------

- 594 R01EY021592, P30EY006360, U01CA242936, R01EY028859, T32EY07092, T32GM008490); by
- the Abraham J. and Phyllis Katz Foundation; by grants from the U.S. Department of Veterans Affairs
- and Atlanta Veterans Administration Center for Excellence in Vision and Neurocognitive
- 597 Rehabilitation (RR&D I01RX002806, I21RX001924; VA RR&D C9246C); and an unrestricted grant
- to the Department of Ophthalmology at Emory University from Research to Prevent Blindness, Inc.
- 599 We would also like to thank Dr. Hans Grossniklaus and Dr. Sue Crawford at Northwestern
- 600 University Feinberg School of Medicine for gifting the PEDF knockout mice used in this study.

29

602 5.7 FIGURES AND TABLES

5.7.1 Figure 1: Loss of Pigment Epithelium Derived Factor Modifies Sensitivity to Phototoxic Damage in C57BL/6J Animals

30

5.7.2 Figure 2: Loss of PEDF Increases Damaged-Associated Autofluorescent Dots at the Level of the RPE

31

629 Figure 3: Loss of PEDF Results in Regional Damage and Increases Apoptosis of 5.7.3

633 The morphology of the postmortem tissue shows significant regional alterations in retinal architecture.

Figure 3A-B shows a representative image of PEDF ^{+/+} with no damage and day seven post-LIRD. 634

Representative images of PEDF KO/KO animals with no damage(Figure 2C) and day seven post-damage 635

636 (Figure 2D) are shown. Figure 2D shows severe loss of the outer nuclear layer (ONL), disruption of the

- 637 photoreceptor inner and outer segment layer, and aberrations in the RPE monolayer in PEDF KO/KO
- compared to PEDF^{+/+} controls at day five post-light damage. Figure 3E quantifies ONL counts from -638

639 1750 microns(superior) to 1750 microns (inferior) on either side of the optic nerve. The damage is

640	regionally isolated	to the superior portion of	f the retina and is significantly between	n PEDF KO/KO n=4
-----	---------------------	----------------------------	---	------------------

- and PEDF^{+/+} n=4. One-way ANOVA with Brown-Forsythe test and Barlett's correction. # p-value<0.05,
- 642 *##* p-value<0.01, *###* p-value<0.001, *####* p-value<0.0001. The loss trend was the same on day seven
- 643 post-LIRD (data not shown).
- 644 Figure 3F-N shows representative images of retinal sections stained for TUNEL (green), immune cells via
- 645 CX3CR1-GFP (red), and cell nuclei (DAPI) of no damage control (3F-H), Day 7 PEDF ^{+/+}(3I-K) and,
- 646 Day 7 PEDF ^{KO/KO} (3L-N). These data are quantified in Figure 3O and show that PEDF ^{KO/KO} have
- 647 significantly more TUNEL-positive cells than either the untreated (** p-value<0.01) or the PEDF $^{+/+}$ (**
- 648 p-value<0.01) group.

33

652 Loss of PEDF results in a suboptimal production of phagosomes by the RPE after light-induced retinal damage. Figure 4A-F shows representative retinal immunofluorescence images of a PEDF ^{+/+} and 653 654 PEDF KO/KO at day 7 Post-light damage. The sections were stained with Rhodopsin(green) to visualize 655 shed rod outer segments and phagosomes, Best1(red) was used to visualize the RPE monolayer, and cell nuclei were stained with DAPI (blue). Figure 4G, notably, the PEDF ^{+/+} animals significantly increase 656 production to redress clearance demands at day seven post-LIRD compared to untreated PEDF^{+/+}(Two-657 way ANOVA, Tukey's multiple comparison test, *p-value<0.05). However, while PEDF KO/KO animals 658 659 had a more significant accumulation of phagosomes at baseline, they failed to increase phagosome 660 production after light damage.

34

662 5.7.5 Figure 5 The Loss of PEDF leads to significant deficits in visual function after light damage

663 exposure.

35

667	The figure shows the maximal visual output of <i>a</i> -wave, b-wave, and <i>c</i> -wave at a flash intensity of 10
668	candelas/second/meters ² (cd.s/m ²). These data show no statistically significant difference in the visual
669	function of the PEDF $^{KO/KO}$ compared to PEDF $^{+/+}$ at baseline or on day three after light damage.
670	However, after day three there is a notable decrease in visual function of PEDF KO/KO animals in both a-
671	and b-wave amplitudes at 10Hz that persists to day 7(a-wave: day 5: ** p-value<0.01; day 7: ** p-
672	value<0.01 and b-wave: day 5: *p-value <0.05; day 7: *p-value<0.05. n=3-7/time point/group) see Figure
673	5A and 5B; Two-way ANOVA with Sidak's multiple comparison correction). Significant loss of the c-
674	wave amplitudes is delayed to day seven post-light damage (See Fig. 2C: Two-way ANOVA with Sidak's
675	multiple comparison corrections, day 7: * p-value<0.01). The scotopic waveforms of PEDF KO/KO mice
676	also reveal a slight depression in the waveform amplitude at baseline compared to PEDF $^{\scriptscriptstyle +\!/\!+}$ (n=3-
677	4/genotype). This reduction in waveform amplitude is more pronounced at day seven post-LIRD
678	(n=5/genotype; See Figures 5D and 5E). Photopic waveforms show a similar trend as scotopic waveforms
679	with significantly reduced amplitudes in PEDF KO/KO at day 7 compared to PEDF $^{+/+}$ littermates (See
680	Fig. 5F-G).

Day 7

Q

36

PEDF +/+ PEDF KO/KO

684

Day 5

Day 3

No Damage

685

РЕДЕ КО/КО

R

(+/+)

PEDF

(KO/KO)

PEDF

37

693	genotypes at day 3, with the earliest deposition at the photoreceptor-RPE interface occurring at day 3. By
694	day 7, only the PEDF KO/KO animals still have Galectin-3 positive cells at the interface of the
695	photoreceptors-RPE. Additionally, when quantifying the immunofluorescent signal of IGF-1, there are
696	statically significant differences between the PEDF $^{+/+}$ and PEDF $^{KO/KO}$ as early as day 3. The levels of
697	IGF-1 continue to decrease until day seven post LIRD (see Fig. 6Q). Analysis: Two-way ANOVA with
698	Tukey's multiple comparison test, n=3-5/ group/time point. * p-value< 0.05, ** p-value<0.01, *** p-
699	value<0.001, **** p-value<0.0001. In Figure 6R, we confirm this finding via total eye cup expression of
700	IGF-1 normalized to GAPDH in no damage controls versus at day seven post-LIRD via western blot.
701	Figure 6R quantifies the total expression of IGF-1 between PEDF $^{+/+}$ and PEDF $^{KO/KO}$ before and after
702	LIRD. Analysis: Two-way ANOVA with Tukey's multiple comparison test, n=3-6/group/timepoint.
703	Subretinal immune cells recruited to RPE in PEDF KO/KO have lower expression of IGF-1 than PEDF +/+
704	animals. Figure 6T-Y shows a representative image of PEDF $^{+/+}$ (6T-V) and PEDF $^{KO/KO}$ (6W-Y) stained
705	for ZO1(blue), IGF-1(red), and CX3CR1-GFP (green) to look for heterogeneity in the immune cell
706	population.

38

7085.7.7Figure 7: Loss of PEDF increases infiltration of galectin-3+ immune cells709compared to PEDF +/+

Two-way ANOVA Sidak's Multiple comparison correction

We collected RPE flat mounts to assess if PEDF KO/KO animals showed an increased inflammatory profile 711 and stained them for Galectin-3 (red) and CX3CR1-GFP(Green). We found that PEDF KO/KO animals were 712 like PEDF ^{+/+} animals at baseline and up to day three post-LIRD damage. However, by day 5, there was 713 714 the inflammation phenotype significantly increased in PEDF KO/KO animals compared to littermate 715 controls * p-value< 0.05, ** p-value< 0.01, *** p-value< 0.001, **** p-value< 0.001 (Analysis: Two-way ANOVA with sidak's multiple comparison correction. N=3-5 animals group/ time point. p-value: Day 5: 716 717 ** vs Day 7 **). Figure 7A-D shows a representative image of the subretinal immune cell morphology in PEDF^{+/+} and PEDF^{KO/KO} animals at baseline and Day 7. Figure 7E shows the total number of Gal-3 718 positive cells counted from baseline to day seven post-LIRD between PEDF ^{+/+} and PEDF ^{KO/KO} 719 720

39

5.7.8 Figure 8: Loss of PEDF Increases Galectin-3 Gene Expression at Day 7 Post LIRD 722 Compared to Wildtype Littermates

723

Retinal and RPE tissues were collected separately, and RNA was extracted from each tissue sample type.
Figure 9A quantifies Lgals3 and Nlrp3 gene expression normalized to HRPT in the retina between PEDF
+/+ and PEDF ^{KO/KO} at baseline and Day 7 Post LIRD. Figure 9A-B shows the gene expression of Lgals3
and Nlrp3 at the same time points in the RPE. The Lgals3 expression in the RPE Two-way ANOVA;
PEDF ^{KO/KO} baseline vs. PEDF KO/KO Day 7: *p-value<0.05; PEDF ^{+/+} Day 7 vs. PEDF ^{KO/KO} Day 7: *p-value<0.05. However, only at day 7 in the RPE is Nlrp3 expression significantly different in the PEDF
^{KO/KO} compared to littermate controls(*p-value<0.05).

40

733

734 PEDF KO/KO animals have significantly lower expression of Galectin-3 at baseline compared to littermate 735 controls. Additionally, after damage, there is a suboptimal increase in Galectin-3 protein expression on day seven post-LIRD. PEDF ^{+/+} animals dampen galectin-3 expression in response to LIRD damage at 736 737 day 7, suggesting differential temporal regulation of the protein when PEDF is present compared to when 738 it is not. Figure 9A shows a western blot that was probed for PEDF (50kDa), Galectin-3(~30kDa), and 739 GAPDH (~37kDa) loading control. The results from Figure 9A are quantified in Figure 9B and show that 740 there are significant differences in Galectin-3 expression at both baselines (Two-way ANOVA with 741 Tukey's multiple comparison correction. **** p-value<0.0001. sample sizes: 3 animals/group/time point) and at Day 7 (****p-value<0.0001) between PEDF KO/KO and PEDF +/+ animals. While Galectin-3 742 expression increases in the PEDF KO/KO animals at day seven compared to baseline, it is still dampened 743 compared to the Gal-3 expression of PEDF $^{+/+}$ at the same time point. 744 745

4	2
---	---

T55 LIRD only (Day 5 post) ns; not significant. No damage vs. LIRD (day 5) + Gal-3 inhibito	r ***p-
---	---------

- 756 value<0.001. LIRD only (Day 5) vs. LIRD (Day 5) + Gal-3 inhibitor (*p-value<0.0.5). 10C shows
- representative fundus and retinal images taken using SD-OCT, displaying the effects of TD139
- 758 treatment with and without LIRD. Treatment with an inhibitor in conjunction with LIRD
- significantly increased retinal thinning compared to the control of LIRD only. Note: TD139
- 760 treatment alone does not affect visual function Galectin-3 expression levels (Supplemental Figure

761

1).

763 5.7.11 Figure 11: Schematic of Model Summary

- Fig 11A: Schematic summary illustrating significant differences between PEDF ^{+/+} and PEDF ^{KO/KO}
- animals and the impacts on IGF-1 and Galectin-3 expression.
- Fig 11B: Shows the proposed immunomodulatory network influencing photoreceptor death, immune
- 769 cells, and RPE cells. Images made using Biorender.
- 770

771 5.8 <u>References</u>

- Jablonski MM, Tombran-Tink J, Mrazek DA, Iannaccone A. Pigment Epithelium-Derived
 Factor Supports Normal Development of Photoreceptor Neurons and Opsin Expression
 after Retinal Pigment Epithelium Removal. *The Journal of Neuroscience* 2000;**20**:7149.
 https://doi.org/10.1523/JNEUROSCI.20-19-07149.2000.
- He Y, Leung KW ah, Ren Y, Pei J, Ge J, Tombran-Tink J. PEDF Improves Mitochondrial
 Function in RPE Cells During Oxidative Stress. *Invest Ophthalmol Vis Sci* 2014;55:6742–
 55. https://doi.org/10.1167/IOVS.14-14696.
- Dixit S, Polato F, Samardzija M, Abu-Asab M, Grimm C, Crawford SE, *et al.* PEDF
 deficiency increases the susceptibility of rd10 mice to retinal degeneration. *Exp Eye Res*2020;**198**:108121. https://doi.org/10.1016/J.EXER.2020.108121.
- Tombran-Tink J, Mazuruk K, Rodriguez IR, Chung D, Linker T, Englander E, et al.
 Organization, Evolutionary Conservation, Expression and Unusual Alu Density of the
 Human Gene for Pigment Epithelium-Derived Factor, a Unique Neurotrophic Serpin.
 Molecular Vision. 1996. URL: http://www.molvis.org/molvis/v2/a11/ (Accessed 22 July
 2024).
- 788 5 Raymond SM, Jackson IJ. The retinal pigmented epithelium is required for development and maintenance of the mouse neural retina. *Current Biology* 1995;**5**:1286–95.
 790 https://doi.org/10.1016/S0960-9822(95)00255-7.
- Karakousis PC, John SK, Behling K, Surace EM, Smith JE, Hendrickson A, *et al.*Localization of pigment epithelium derived factor (PEDF) in developing and adult human ocular tissues. *Mol Vis* 2001;7:154–63.
- 794 7 Longbottom R, Fruttiger M, Douglas RH, Martinez-Barbera JP, Greenwood J, Moss SE.
 795 Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the
 796 epithelium and impact on photoreceptors. *Proc Natl Acad Sci U S A* 2009;**106**:18728–33.
 797 https://doi.org/10.1073/PNAS.0902593106/SUPPL FILE/0902593106SI.PDF.
- Aymerich, Maria S., Alberdi, EM., Martinez, A., Becerra SP. Evidence for pigment
 epithelium derived factor receptors in the neural retina. *Invest Ophthalmol Vis Sci*2001;42:3287–93.
- Becerra SP, Fariss RN, Wu YQ, Montuenga LM, Wong P, Pfeffer BA. Pigment
 epithelium-derived factor in the monkey retinal pigment epithelium and
 interphotoreceptor matrix: apical secretion and distribution. *Exp Eye Res* 2004;**78**:223–34.
 https://doi.org/10.1016/J.EXER.2003.10.013.
- Rebustini IT, Crawford SE, Becerra SP. PEDF Deletion Induces Senescence and Defects
 in Phagocytosis in the RPE. *International Journal of Molecular Sciences 2022, Vol 23, Page 7745* 2022;23:7745. https://doi.org/10.3390/IJMS23147745.
- Bhutto IA, McLeod DS, Hasegawa T, Kim SY, Merges C, Tong P, *et al.* Pigment
 epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged
 human choroid and eyes with age-related macular degeneration. *Exp Eye Res* 2006;82:99–
 110. https://doi.org/10.1016/j.exer.2005.05.007.
- 812 12 Ogata N, Matsuoka M, Imaizumi M, Arichi M, Matsumura M. Decreased levels of
 813 pigment Epithelium-derived factor in eyes with neuroretinal dystrophic diseases. *Am J*814 *Ophthalmol* 2004;137:1129–30. https://doi.org/10.1016/j.ajo.2003.11.080.

- Rogers ME, Navarro ID, Perkumas KM, Niere SM, Allingham RR, Crosson CE, *et al.*Pigment Epithelium-Derived Factor Decreases Outflow Facility. *Invest Ophthalmol Vis Sci* 2013;**54**:6655. https://doi.org/10.1167/IOVS.13-12766.
- 818 14 Spranger J, Osterhoff M, Reimann M, Möhlig M, Ristow M, Francis MK, *et al.* Loss of
 819 the Antiangiogenic Pigment Epithelium-Derived Factor in Patients With Angiogenic Eye
 820 Disease. *Diabetes* 2001;**50**:2641–5. https://doi.org/10.2337/DIABETES.50.12.2641.
- Liu Y, Leo LF, McGregor C, Grivitishvili A, Barnstable CJ, Tombran-Tink J. Pigment
 epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and
 vascular leakage in diabetic retinopathy in Ins2(Akita) mice. *Mol Med* 2012;18:1387–401.
 https://doi.org/10.2119/MOLMED.2012.00008/FIGURES/12.
- Ma B, Zhou Y, Liu R, Zhang K, Yang T, Hu C, *et al.* Pigment epithelium-derived factor
 (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. *Ocul Surf*2021;20:70–85. https://doi.org/10.1016/J.JTOS.2020.12.007.
- Singh RB, Blanco T, Mittal SK, Taketani Y, Chauhan SK, Chen Y, *et al.* Pigment
 Epithelium-derived Factor secreted by corneal epithelial cells regulates dendritic cell
 maturation in dry eye disease. *Ocular Surface* 2020;18:460–9.
 https://doi.org/10.1016/j.jtos.2020.05.002.
- 18 Tombran-Tink J, Johnson L V. Neuronal differentiation of retinoblastoma cells induced by
 medium conditioned by human RPE cells. *Invest Ophthalmol Vis Sci* 1989;**30**:1700–7.
- Alberdi E, Aymerich MS, Becerra SP. Binding of Pigment Epithelium-derived Factor
 (PEDF) to Retinoblastoma Cells and Cerebellar Granule Neurons: EVIDENCE FOR A
 PEDF RECEPTOR *. *Journal of Biological Chemistry* 1999;274:31605–12.
 https://doi.org/10.1074/JBC.274.44.31605.
- Chen X, Xu M, Zhang X, Barnstable CJ, Li X, Tombran-Tink J. Deletion of the Pedf gene
 leads to inflammation, photoreceptor loss and vascular disturbances in the retina. *Exp Eye Res* 2022;**222**:109171. https://doi.org/10.1016/J.EXER.2022.109171.
- Zamiri P, Masli S, Streilein JW, Taylor AW. Pigment Epithelial Growth Factor Suppresses
 Inflammation by Modulating Macrophage Activation. *Invest Ophthalmol Vis Sci*2006;47:3912–8. https://doi.org/10.1167/IOVS.05-1267.
- Park K, Jin J, Hu Y, Zhou K, Ma J-X. Overexpression of Pigment Epithelium-Derived
 Factor Inhibits Retinal Inflammation and Neovascularization. *Am J Pathol* 2011;**178**:688–
 https://doi.org/10.1016/j.ajpath.2010.10.014.
- Polato F, Becerra SP. Pigment Epithelium-Derived Factor, a Protective Factor for
 Photoreceptors in Vivo. *Adv Exp Med Biol* 2016;**854**:699. https://doi.org/10.1007/978-3319-17121-0 93.
- Cayouette M, Smith SB, Becerra SP, Gravel C. Pigment Epithelium-Derived Factor
 Delays the Death of Photoreceptors in Mouse Models of Inherited Retinal Degenerations. *Neurobiol Dis* 1999;6:523–32. https://doi.org/10.1006/NBDI.1999.0263.
- Taniwaki T, Hirashima N, Becerra SP, Chader GJ, Etcheberrigaray R, Schwartz JP.
 Pigment Epithelium-Derived Factor Protects Cultured Cerebellar Granule Cells Against
 Glutamate-Induced Neurotoxicity. *J Neurochem* 1997;68:26–32.
- 856 https://doi.org/10.1046/J.1471-4159.1997.68010026.X.
- 857 26 Bilak MM, Corse AM, Bilak SR, Lehar M, Tombran-Tink J, Kuncl RW. Pigment
- Epithelium-derived Factor (PEDF) Protects Motor Neurons from Chronic Glutamatemediated Neurodegeneration. *J Neuropathol Exp Neurol* 1999;**58**:719–28.
- 860 https://doi.org/10.1097/00005072-199907000-00006.

861	27	Taniwaki T, Becerra SP, Chader GJ, Schwartz JP. Pigment epithelium-derived factor is a
862		survival factor for cerebellar granule cells in culture. J Neurochem 1995;64:2509–17.
863		https://doi.org/10.1046/J.1471-4159.1995.64062509.X.
864	28	An E, Lu X, Flippin J, Devaney JM, Halligan B, Hoffman E, et al. Secreted proteome
865		profiling in human RPE cell cultures derived from donors with age related macular
866		degeneration and age matched healthy donors. J Proteome Res 2006;5:2599-610.
867		https://doi.org/10.1021/pr060121j.
868	29	Yuan X, Gu X, Crabb JS, Yue X, Shadrach K, Hollyfield JG, et al. Quantitative
869		proteomics: Comparison of the macular bruch membrane/choroid complex from age-
870		related macular degeneration and normal eyes. <i>Molecular and Cellular Proteomics</i>
871		2010: 9 :1031–46. https://doi.org/10.1074/mcp.M900523-MCP200.
872	30	Priglinger CS, Obermann J, Szober CM, Merl-Pham J, Ohmaver U, Behler J, et al.
873		Epithelial-to-mesenchymal transition of RPE cells in vitro confers increased 81.6-N-
874		Glycosylation and Increased Susceptibility to Galectin-3 Binding. <i>PLoS One</i>
875		2016: 11 :e0146887, https://doi.org/10.1371/journal.pone.0146887.
876	31	Hughes RC. Secretion of the galectin family of mammalian carbohydrate-binding
877	51	proteins Riochim Riophys Acta Gen Subi 1999.172–85 https://doi.org/10.1016/S0304-
878		4165(99)00177-4
879	32	Caridi B Doncheva D Sivanrasad S Turowski P Galectins in the Pathogenesis of
880	52	Common Retinal Disease Front Pharmacol 2021:12:
881		https://doi.org/10.3389/fphar 2021 687495
882	33	García-Revilla I Boza-Serrano A Espinosa-Oliva AM Soto MS Dejerborg T Ruiz R et
883	55	al Galectin-3 a rising star in modulating microglia activation under conditions of
884		neurodegeneration Cell Death & Disease 2022 13:7 2022:13:1-11
885		https://doi.org/10.1038/s41419-022-05058-3
886	34	Henderson NC. Sethi T. The regulation of inflammation by galectin-3. <i>Immunol Rev</i>
887	51	2009: 230 :160–71 https://doi.org/10.1111/J.1600-065X.2009.00794 X
888	35	Priglinger CS Obermann I Szober CM Merl-Pham I Obmaver II Behler I <i>et al</i>
889	50	Enithelial-to-Mesenchymal Transition of RPE Cells In Vitro Confers Increased 81 6-N-
890		Glycosylation and Increased Suscentibility to Galectin-3 Binding <i>PLoS One</i> 2016:11:
891		https://doi.org/10.1371/IOURNAL PONE 0146887
892	36	Li Z-Y M Tso MO Wongf H Organisciak f DT Amelioration of photic injury in rat retina
893	50	by ascorbic acid: a historiathologic study <i>Invest Onbthalmol Vis Sci</i> 1985: 26 :1589–98
894	37	Organisciak DT Wong H-M Li Z-Y Tsof MOM The protective effect of ascorbate in
895	57	retinal light damage of rats Invest Onbthalmol Vis Sci 1985.26:1580-8
896	38	Zhang N. Zhang X. Girardot PF. Chrenek MA. Sellers IT. Li V. <i>et al.</i> Electrophysiologic
897	50	and Morphologic Strain Differences in a Low-Dose NaIO3-Induced Retinal Pigment
808		Enithelium Damage Model Transl Vis Sci Tachnol 2021:10:
800		https://doi.org/10.1167/TVST.10.8.10
000	30	Rostright IH Dolal N Chronek MA Gardner C Ziesel A Jiang V at al Methodologies
001	39	for analysis of patterning in the mouse PDE sheet Mol Vig 2015:21:40
901	40	Then a Chronolt MA Distin S. Doshid A. Eardous S. Donaldson KL at al Comparison
902 902	40	chistologic findings in age related macular degeneration with DDE flatmount images
303		Mol Vig 2010-25-70 8
304		<i>WOU VIS 2017,23.10</i> ⁻⁰ .

905 906	41	Sun N, Shibata B, Hess JF, Fitzgerald PG. An alternative means of retaining ocular structure and improving immunoreactivity for light microscopy studies. <i>Mol Vis</i> 2015 21, 420
907	40	2015; 21:428.
908	42	Sun N, Shibata B, Hess JF, Fitzgerald PG. An alternative means of retaining ocular
909 010		structure and improving immunoreactivity for light microscopy studies. <i>Mol Vis</i> 2015: 21 :428
911	43	Ferdous S Shelton DA Getz TE Chrenek MA L'Hernault N Sellers IT <i>et al</i> Deletion
Q12	Ъ	of histone demethylase I sd1 (Kdm1a) during retinal development leads to defects in
012		retinal function and structure. Front Call Naurosci 2023:17:1104592
913 91 <i>1</i>		https://doi.org/10.3380/ENCEL_2023.110/502/EULI
015	11	Huber G. Beck SC. Grimm C. Sababoglu-Tekgoz A. Paguet-Durand F. Wenzel A. at al
016		Spectral Domain Ontical Coherence Tomography in Mouse Models of Potinal
910		Decemention Invest Onlythalmal Via Soi 2000.50.5888 05
917		begeneration. Invest Optimutmol Vis Sci 2009, 50 . 5886–95.
910	15	Dilat MM Detricic Deceme S. Vincent AM Mess DU Avmerich MS Kunel DW
919	43	Bliak Mivi, Patricia Becerra S, Vincent AM, Moss BH, Aymericii MiS, Kunci KW.
920		Easter and Its Din time Siter an Mater Neuropean Learning of Neuropean 2002,22,0279
921		Factor and its Binding Sites on Motor Neurons. <i>Journal of Neuroscience</i> 2002;22:9378–
922	10	80. https://doi.org/10.1523/JNEUROSCI.22-21-093/8.2002.
923	46	Murakami Y, Ikeda Y, Yonemitsu Y, Onimaru M, Nakagawa K, Konno KI, <i>et al.</i> Inhibition
924		of Nuclear Translocation of Apoptosis-inducing Factor is an Essential Mechanism of the
925		Neuroprotective Activity of Pigment Epithelium-Derived Factor in a Rat Model of Retinal
926	47	Degeneration. Am J Pathol 2008; $1/3$:1326. https://doi.org/10.2353/AJPA1H.2008.080466.
927	47	Cao W, Tombran-Tink J, Elias R, Sezate S, McGinnis JF. Role of Pigment Epithelium-
928		Derived Factor (PEDF) in Photoreceptor Cell Protection. New Insights Into Retinal
929	10	Degenerative Diseases 2001:119–26. https://doi.org/10.100//9/8-1-4615-1355-1_14.
930	48	Rapp L, Williams T. A parametric study of retinal light damage in albino and pigmented
931		rats. The Effects of Constant Light on Visual Processes Plenum Press, New York
932	4.0	1980:133–59.
933	49	Organisciak DT, Vaughan DK. Retinal light damage: Mechanisms and protection. Prog
934		<i>Retin Eye Res</i> 2010:113–34. https://doi.org/10.1016/j.preteyeres.2009.11.004.
935	50	Gordan WC, Casey DM, Lukiw WJ, Bazan NG. DNA Damage and Repair in Light-
936		Induced Photoreceptor Degeneration. Invest Ophthalmol Vis Sci 2002:3511–21.
937	51	Chen Y, Yang J, Geng H, Li L, Li J, Cheng B, <i>et al.</i> Photoreceptor degeneration in
938		microphthalmia (Mitf) mice: partial rescue by pigment epithelium-derived factor. <i>Dis</i>
939		<i>Model Mech</i> 2019; 12 :. https://doi.org/10.1242/DMM.035642.
940	52	Sivakumar V, Zhang Y, Ling EA, Foulds WS, Kaur C. Insulin-like growth factors,
941		angiopoietin-2, and pigment epithelium–derived growth factor in the hypoxic retina. J
942		Neurosci Res 2008;86:702–11. https://doi.org/10.1002/JNR.21519.
943	53	Liao R, Yan F, Zeng Z, Wang H, Qiu K, Xu J, <i>et al.</i> Insulin-like growth factor-1 activates
944		PI3K/Akt signalling to protect human retinal pigment epithelial cells from amiodarone-
945		induced oxidative injury. Br J Pharmacol 2018;175:125.
946		https://doi.org/10.1111/BPH.14078.
947	54	Haurigot V, Villacampa P, Ribera A, Bosch A, Ramos D, Ruberte J, et al. Long-Term
948		Retinal PEDF Overexpression Prevents Neovascularization in a Murine Adult Model of
949		Retinopathy. PLoS One 2012;7:e41511.
950		https://doi.org/10.1371/JOURNAL.PONE.0041511.

Arroba AI, Campos-Caro A, Aguilar-Diosdado M, Valverde ÁM. IGF-1, Inflammation and

951

55

- 952 Retinal Degeneration: A Close Network. Front Aging Neurosci 2018;10:203. https://doi.org/10.3389/FNAGI.2018.00203. 953 954 56 Arroba AI, Álvarez-Lindo N, van Rooijen N, de la Rosa EJ. Microglia-mediated IGF-I 955 neuroprotection in the rd10 mouse model of retinitis pigmentosa. Invest Ophthalmol Vis 956 Sci 2011;52:9124–30. https://doi.org/10.1167/IOVS.11-7736. 957 Singh RB, Blanco T, Mittal SK, Alemi H, Chauhan SK, Chen Y, et al. Pigment 57 958 Epithelium–Derived Factor Enhances the Suppressive Phenotype of Regulatory T Cells in 959 a Murine Model of Dry Eye Disease. American Journal of Pathology 2021;191:720–9. 960 https://doi.org/10.1016/j.ajpath.2021.01.003. 961 58 Yamawaki T, Ito E, Mukai A, Ueno M, Yamada J, Sotozono C, et al. The ingenious 962 interactions between macrophages and functionally plastic retinal pigment epithelium cells. Invest Ophthalmol Vis Sci 2016;57:5945-53. https://doi.org/10.1167/iovs.16-20604. 963 964 59 Ueno S, Sudo T, Saya H, Sugihara E. Pigment epithelium-derived factor promotes 965 peritoneal dissemination of ovarian cancer through induction of immunosuppressive 966 macrophages. Communications Biology 2022 5:1 2022;5:1-16. 967 https://doi.org/10.1038/s42003-022-03837-4. 60 Takanohashi A, Yabe T, Schwartz JP. Pigment epithelium-derived factor induces the 968 969 production of chemokines by rat microglia. *Glia* 2005;**51**:266–78. 970 https://doi.org/10.1002/glia.20203. 971 61 Yamagishi S, Koga Y, Sotokawauchi A, Hashizume N, Fukahori S, Matsui T, et al. 972 Therapeutic Potential of Pigment Epithelium-derived Factor in Cancer. Curr Pharm Des 973 2019;25:313-24. https://doi.org/10.2174/1381612825666190319112106. 974 62 Bernardo-Colón A, Lerner M, Becerra SP. Pigment epithelium-derived factor is an 975 interleukin-6 antagonist in the RPE: Insight of structure-function relationships. Front 976 *Physiol* 2022;13:. https://doi.org/10.3389/FPHYS.2022.1045613. 977 O'Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R, et al. Microglial 63 978 Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and 979 Degeneration. Immunity 2019;50:723-737.e7. 980 https://doi.org/10.1016/j.immuni.2019.02.007. 981 64 Yu C, Lad EM, Mathew R, Littleton S, Chen Y, Schlepckow K, et al. Microglia at Sites of 982 Atrophy Restrict the Progression of Retinal Degeneration via Galectin-3 and Trem2 983 Interactions. *BioRxiv* 2023. https://doi.org/10.1101/2023.07.19.549403. 984 65 Pitts KM, Neeson CE, Hall NE, Lin JB, Falah HK, Wang SL, et al. Neurodegeneration 985 Markers Galectin-3 and Apolipoprotein E Are Elevated in the Aqueous Humor of Eyes With Glaucoma. Transl Vis Sci Technol 2022;11:. https://doi.org/10.1167/TVST.11.11.1. 986 987 66 Bauer PM, Zalis MC, Abdshill H, Deierborg T, Johansson F, Englund-Johansson U. 988 Inflamed In Vitro Retina: Cytotoxic Neuroinflammation and Galectin-3 Expression. PLoS 989 One 2016;11:. https://doi.org/10.1371/JOURNAL.PONE.0161723. 990 Hata-Mizuno M, Uchino Y, Uchino M, Shimmura S, Ogawa Y, Tsubota K, et al. Analysis 67
- Hata-Mizuno M, Uchino Y, Uchino M, Shimmura S, Ogawa Y, Isubota K, *et al.* Analysis
 of the Association between Galectin-3 Concentration in Tears and the Severity of Dry Eye
 Disease: A Case-Control Study. *Journal of Clinical Medicine 2022, Vol 11, Page 66*2021;11:66. https://doi.org/10.3390/JCM11010066.
- 68 Kumar S, Ranawat CS, Bhandiwad C, Arya H, Mali M, Singh CP, et al. Galectin-3 as a
- 995 Potential Biomarker of Microvascular Complications in Patients with Type 2 Diabetes.
- Indian J Endocrinol Metab 2022;26:490. https://doi.org/10.4103/IJEM.IJEM_270_22.

997	69	Zhou ZY, Chang TF, Lin Z Bin, Jing YT, Wen LS, Niu YL, et al. Microglial Galectin3
998		ennances endotnellal metabolism and promotes pathological angiogenesis via Notch
999		inhibition by competitively binding to Jag1. Cell Death & Disease 2023 14:6 2023;14:1–
1000		15. https://doi.org/10.1038/s41419-023-05897-8.
1001	70	Liu Y, Zhao C, Meng J, Li N, Xu Z, Liu X, et al. Galectin-3 regulates microglial activation
1002		and promotes inflammation through TLR4/MyD88/NF-kB in experimental autoimmune
1003		uveitis. Clinical Immunology 2022;236:108939.
1004		https://doi.org/10.1016/J.CLIM.2022.108939.
1005	71	Tabel M, Wolf A, Szczepan M, Xu H, Jägle H, Moehle C, et al. Genetic targeting or
1006		pharmacological inhibition of galectin-3 dampens microglia reactivity and delays retinal
1007		degeneration. J Neuroinflammation 2022:19:229. https://doi.org/10.1186/S12974-022-
1008		02589-6
1009	72	Cao W Tombran-Tink I Elias R Sezate S Mrazek D McGinnis IF In vivo protection of
1010	12	photorecentors from light damage by nigment enithelium-derived factor <i>Invest</i>
1010		Onbthalmol Vis Sai 2001: A2 :1646, 52
1011	72	Optimumor vis Sci 2001,42.1040-52.
1012	13	L'éner M. Dernel Come IM, et al. A Nevel In Vive Model of Feeel Light Emitting Diede
1013		Lopez M, Bernal-Garro JM, et al. A Novel III vivo Model of Focal Light Emitting Diode-
1014		DDNE DEDE ant ECE, DL & Out 2014.0
1015		BDNF, PEDF of bFGF. <i>PLoS One</i> 2014;9:.
1016	- 4	https://doi.org/10.13/1/JOURNAL.PONE.0113/98.
1017	74	MEDAWAR PB. Immunity to Homologous Grafted Skin. III. The Fate of Skin
1018		Homographs Transplanted to the Brain, to Subcutaneous Tissue, and to the Anterior
1019		Chamber of the Eye. Br J Exp Pathol 1948;29:58.
1020	75	Streilein JW, Ma N, Wenkel H, Fong Ng T, Zamiri P. Immunobiology and privilege of
1021		neuronal retina and pigment epithelium transplants. <i>Vision Res</i> 2002; 42 :487–95.
1022		https://doi.org/10.1016/S0042-6989(01)00185-7.
1023	76	Wayne J, Boston S. Immunological non-responsiveness and acquisition of tolerance in
1024		relation to immune privilege in the eye. Eye 1995 9:2 1995;9:236–40.
1025		https://doi.org/10.1038/eye.1995.46.
1026	77	Qiao H, Lucas K, Stein-Streilein J. Retinal Laser Burn Disrupts Immune Privilege in the
1027		Eye. Am J Pathol 2009;174:414. https://doi.org/10.2353/AJPATH.2009.080766.
1028	78	Lucas K, Karamichos D, Mathew R, Zieske JD, Stein-Streilein J. Retinal laser burn (RLB)
1029		induced neuropathy leads to substance P dependent loss of ocular immune privilege. J
1030		Immunol 2012;189:1237. https://doi.org/10.4049/JIMMUNOL.1103264.
1031	79	Taylor AW, Hsu S, Ng TF. The Role of Retinal Pigment Epithelial Cells in Regulation of
1032		Macrophages/Microglial Cells in Retinal Immunobiology. Front Immunol 2021:12:3256.
1033		https://doi.org/10.3389/FIMMU.2021.724601/BIBTEX.
1034	80	Taylor AW. Wayne Streilein J. Cousins SW. Alpha-melanocyte-stimulating hormone
1035	00	suppresses antigen-stimulated T cell production of gamma-interferon
1036		Neuroimmunomodulation 1994.1.188–94 https://doi.org/10.1159/000097167
1037	81	Benque II Xia P Shannon R Ng TF Taylor AW The Neuropentides of Ocular Immune
1037	01	Privilege a-MSH and NPV Suppress Phagosome Maturation in Macrophages
1030		Immunohorizons 2018.7.314_23 https://doi.org/10.4049/IMMI INOHORIZONS 1800040
1039	87	Kawanaka N. Taylor AW. Localized ratinal neuronantide regulation of macronhass and
1040	02	microglial cell functionality. I Neuroimmunol 2011, 323 , 17
1041		https://doi.org/10.1016/I.INIEUDOIM.2010.00.025
1042		nups://doi.org/10.1016/J.JNEUKOIWI.2010.09.025.

Phan TA, Taylor AW. The neuropeptides α-MSH and NPY modulate phagocytosis and

phagolysosome activation in RAW 264.7 cells. J Neuroimmunol 2013;260:9-16.

https://doi.org/10.1016/J.JNEUROIM.2013.04.019.

1046	84	Ma JYW, Greferath U, Wong JHC, Fothergill LJ, Jobling AI, Vessey KA, et al. Aging
1047		induces cell loss and a decline in phagosome processing in the mouse retinal pigment
1048		epithelium. <i>Neurobiol Aging</i> 2023; 128 :1–16.
1049		https://doi.org/10.1016/J.NEUROBIOLAGING.2023.03.003.
1050	85	Zhang SX, Wang JJ, Gao G, Shao C, Mott R, Ma J. Pigment epithelium-derived factor
1051		(PEDF) is an endogenous antiinflammatory factor. <i>The FASEB Journal</i> 2006; 20 :323–5.
1052		https://doi.org/10.1096/FJ.05-4313FJE.
1053	86	Kenealey J, Subramanian P, Comitato A, Bullock J, Keehan L, Polato F, et al. Small
1054		Retinoprotective Peptides Reveal a Receptor-binding Region on Pigment Epithelium-
1055		derived Factor *. Journal of Biological Chemistry 2015;290:25241-53.
1056		https://doi.org/10.1074/JBC.M115.645846.
1057	87	Sanchez A, Tripathy D, Yin X, Luo J, Martinez J, Grammas P. Pigment epithelium-derived
1058		factor (PEDF) protects cortical neurons in vitro from oxidant injury by activation of
1059		extracellular signal-regulated kinase (ERK) 1/2 and induction of Bcl-2. Neurosci Res
1060		2012;72:1. https://doi.org/10.1016/J.NEURES.2011.09.003.
1061	88	He T, Liu W, Shen CAA. Anti-inflammatory properties of pigment epithelium-derived
1062		factor. <i>Https://DoiOrg/101177/1721727X221138857</i> 2022; 20 :.
1063		https://doi.org/10.1177/1721727X221138857.
1064	89	Rebustini IT, Crawford SE, Becerra SP. PEDF Deletion Induces Senescence and Defects
1065		in Phagocytosis in the RPE. International Journal of Molecular Sciences 2022, Vol 23,
1066		Page 7745 2022;23:7745. https://doi.org/10.3390/IJMS23147745.
1067	90	Rajala A, Teel K, Bhat MA, Batushansky A, Griffin TM, Purcell L, et al. Insulin-like
1068		growth factor 1 receptor mediates photoreceptor neuroprotection. Cell Death Dis
1069		2022;13:. https://doi.org/10.1038/S41419-022-05074-3.
1070	91	Jones AL, Dhanapala L, Baldo TA, Sharafeldin M, Krause CE, Shen M, et al. Prostate
1071		Cancer Diagnosis in the Clinic Using an 8-Protein Biomarker Panel. Anal Chem
1072		2021; 93 :1059–67.
1073		https://doi.org/10.1021/ACS.ANALCHEM.0C04034/ASSET/IMAGES/LARGE/AC0C04
1074		034_0006.JPEG.
1075	92	O'Donnell SL, Frederick TJ, Krady JK, Vannucci SJ, Wood TL. IGF-I and
1076		microglia/macrophage proliferation in the ischemic mouse brain. <i>Glia</i> 2002; 39 :85–97.
1077		https://doi.org/10.1002/glia.10081.
1078	93	Bellver-Landete V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle M-E, et al.
1079		Microglia are an essential component of the neuroprotective scar that forms after spinal
1080		cord injury n.d. https://doi.org/10.1038/s41467-019-08446-0.
1081	94	Rodriguez-de la Rosa L, Fernandez-Sanchez L, Germain F, Murillo-Cuesta S, Varela-
1082		Nieto I, de la Villa P, et al. Age-related functional and structural retinal modifications in
1083		the Igf1–/– null mouse. <i>Neurobiol Dis</i> 2012; 46 :476–85.
1084		https://doi.org/10.1016/J.NBD.2012.02.013.
1085	95	Kermer P, Klöcker N, Labes M, Bähr M. Insulin-Like Growth Factor-I Protects
1086		Axotomized Rat Retinal Ganglion Cells from Secondary Death via PI3-K-Dependent Akt
1087		Phosphorylation and Inhibition of Caspase-3 In Vivo. Journal of Neuroscience
1088		2000; 20 :722–8. https://doi.org/10.1523/JNEUROSCI.20-02-00722.2000.

- Politi LE, Rotstein NP, Salvador G, Giusto NM, Fernanda Insua M. Insulin-like growth
 factor-I is a potential trophic factor for amacrine cells. *J Neurochem* 2001;**76**:1199–211.
 https://doi.org/10.1046/J.1471-4159.2001.00128.X.
- 1092 97 Lalancette-Hébert M, Swarup V, Beaulieu JM, Bohacek I, Abdelhamid E, Weng YC, *et al.*1093 Galectin-3 is required for resident microglia activation and proliferation in response to
 1094 ischemic injury. *Journal of Neuroscience* 2012;**32**:10383–95.
- 1095 https://doi.org/10.1523/JNEUROSCI.1498-12.2012.
- Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin C V., *et al.* IGF1
 shapes the macrophage activation in response to immunometabolic challenge. *Cell Rep*2017;19:225. https://doi.org/10.1016/J.CELREP.2017.03.046.
- 1099 99 Lee DC, Ruiz CR, Lebson L, Selenica MLB, Rizer J, Hunt JB, *et al.* Aging enhances classical activation but mitigates alternative activation in the CNS. *Neurobiol Aging* 2013;34:1610. https://doi.org/10.1016/J.NEUROBIOLAGING.2012.12.014.
- 100 Santos CL, Bobermin LD, Quincozes-Santos A. Aging changes the expression of
 adenosine receptors, insulin-like growth factor 1 (IGF1), and hypoxia-inducible factor 1α
 (HIF1α) in hypothalamic astrocyte cultures. *Aging Brain* 2024;**5**:100104.
 https://doi.org/10.1016/J.NBAS.2023.100104.
- 101 Toth L, Czigler A, Hegedus E, Komaromy H, Amrein K, Czeiter E, *et al.* Age-related
 107 decline in circulating IGF-1 associates with impaired neurovascular coupling responses in
 1108 older adults. *Geroscience* 2022;44:2771–83. https://doi.org/10.1007/S11357-022-006231109 2/FIGURES/5.
- 102 Holtman IR, Raj DD, Miller JA, Schaafsma W, Yin Z, Brouwer N, *et al.* Induction of a
 1111 common microglia gene expression signature by aging and neurodegenerative conditions:
 a co-expression meta-analysis. *Acta Neuropathol Commun* 2015;**3**:31.
 1113 https://doi.org/10.1186/s40478-015-0203-5.
- 1114 103 Siew JJ, Chen HM, Chen HY, Chen HL, Chen CM, Soong BW, *et al.* Galectin-3 is required for the microglia-mediated brain inflammation in a model of Huntington's disease. *Nature Communications 2019 10:1* 2019;10:1–18.
 1117 https://doi.org/10.1038/s41467-019-11441-0.
- 104 Rahimian R, Lively S, Abdelhamid E, Lalancette-Hebert M, Schlichter L, Sato S, *et al.*1119 Delayed Galectin-3-Mediated Reprogramming of Microglia After Stroke is Protective
 1120 2018. https://doi.org/10.1007/s12035-019-1527-0.
- 105 O'Koren EG, Yu C, Klingeborn M, Wong AYW, Prigge CL, Mathew R, *et al.* Microglial
 Function Is Distinct in Different Anatomical Locations during Retinal Homeostasis and
 Degeneration. *Immunity* 2019;**50**:723-737.e7.
- 1124 https://doi.org/10.1016/j.immuni.2019.02.007.
- 1125 106 Yu C, Saban DR. Identification of a Unique Subretinal Microglia Type in Retinal
- 1126Degeneration Using Single Cell RNA-Seq. Adv Exp Med Biol, vol. 1185. Springer; 2019.1127p. 181–6.
- https://doi.org/10.1021/PR060121J/ASSET/IMAGES/MEDIUM/PR060121JN00001.GIF.
 Ardeljan D, Chan CC. Aging is not a disease: distinguishing age-related macular
- degeneration from aging. *Prog Retin Eye Res* 2013;**37**:68–89.
- 1134 https://doi.org/10.1016/J.PRETEYERES.2013.07.003.

- 109 Fernandez CG, Hamby ME, McReynolds ML, Ray WJ. The role of apoE4 in disrupting
 the homeostatic functions of astrocytes and microglia in aging and Alzheimer's disease. *Front Aging Neurosci* 2019;**10**:14. https://doi.org/10.3389/fnagi.2019.00014.
- 1138 110 Ma W, Cojocaru R, Gotoh N, Gieser L, Villasmil R, Cogliati T, *et al.* Gene expression changes in aging retinal microglia: Relationship to microglial support functions and regulation of activation. *Neurobiol Aging* 2013;34:2310–21.
- 1141 https://doi.org/10.1016/j.neurobiolaging.2013.03.022.
- 1142 111 Chen M, Muckersie E, Forrester J V., Xu H. Immune Activation in Retinal Aging: A Gene
 1143 Expression Study. *Invest Ophthalmol Vis Sci* 2010;**51**:5888–96.
 1144 https://doi.org/10.1167/IOVS.09-5103.
- 1145 112 Xu H, Chen M, Forrester J V. Para-inflammation in the aging retina. *Prog Retin Eye Res* 1146 2009;**28**:348–68. https://doi.org/10.1016/J.PRETEYERES.2009.06.001.
- Miller EB, Zhang P, Ching K, Pugh EN, Burns ME. In vivo imaging reveals transient
 microglia recruitment and functional recovery of photoreceptor signaling after injury. *Proc* Natl Acad Sci U S A 2019;116:16603–12. https://doi.org/10.1073/pnas.1903336116.
- 1150 114 Karlen SJ, Miller EB, Wang X, Levine ES, Zawadzki RJ, Burns ME. Monocyte
 1151 infiltration rather than microglia proliferation dominates the early immune response to
 1152 rapid photoreceptor degeneration. *J Neuroinflammation* 2018;15:344.
 1153 https://doi.org/10.1186/s12974-018-1365-4.
- 1154 115 Ma B, Zhou Y, Liu R, Zhang K, Yang T, Hu C, *et al.* Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. *Ocul Surf* 2021;20:70–85. https://doi.org/10.1016/J.JTOS.2020.12.007.
- 1156 1157 1158 1159 1160 1161
- 1162

1163

1164

1165 1166

1167