
MED I C A L I MAG I N G

Liver tumor segmentation based on 3D convolutional neural
network with dual scale

Lu Meng | Yaoyu Tian | Sihang Bu

College of Information Science and

Engineering, Northeastern University,

ShenYang, China

Author to whom correspondence should be

addressed. Lu Meng

E‐mail: menglu1982@gmail.com.

Abstract

Purpose: Liver is one of the organs with a high incidence of tumors in the human

body. Malignant liver tumors seriously threaten human life and health. The difficul-

ties of liver tumor segmentation from computed tomography (CT) image are: (a) The

contrast between the liver tumors and healthy tissues in CT images is low and the

boundary is blurred; (b) The image of liver tumor is complex and diversified in size,

shape, and location.

Methods: To solve the above problems, this paper focused on the human liver and

liver tumor segmentation algorithm based on convolutional neural network (CNN),

and specially designed a three‐dimensional dual path multiscale convolutional neural

network (TDP‐CNN). To balance the performance of segmentation and requirement

of computational resources, the dual path was used in the network, then the feature

maps from both paths were fused at the end of the paths. To refine the segmenta-

tion results, we used conditional random fields (CRF) to eliminate the false segmen-

tation points in the segmentation results to improve the accuracy.

Results: In the experiment, we used the public dataset liver tumor segmentation

(LiTS) to analyze the segmentation results qualitatively and quantitatively. Ground

truth segmentation of liver and liver tumor was manually labeled by an experienced

radiologist. Quantitative metrics were Dice, Hausdorff distance, and average dis-

tance. For the segmentation results of liver tumor, Dice was 0.689, Hausdorff dis-

tance was 7.69, and the average distance was 1.07; for the segmentation results of

the liver, Dice was 0.965, Hausdorff distance was 29.162, and the average distance

was 0.197. Compared with other liver and liver tumor segmentation algorithms in

Medical Image Computing and Intervention (MICCAI) 2017 competition, our method

of liver segmentation ranked first, and liver tumor segmentation ranked second.

Conclusions: The experimental results showed that the proposed algorithm had

good performance in both liver and liver tumor segmentation.
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1 | INTRODUCTION

Liver is one of the largest and most important organs in the human

body, and the liver is also one of the organs with a high incidence of

malignant tumors. Liver cancer is a major threat to human health,

whose incidence is increasing every year worldwide.1 Accurate mea-

surement of liver tumor size from abdominal computed tomography

(CT) images, segmentation, and localization of tumor areas are helpful

for clinicians to make an accurate evaluation of liver tumors. Currently,

liver tumor segmentation is manually performed by radiologists on

hundreds of CT images slice by slice, which is very tedious and time‐
consuming, and the segmentation results depend on the clinical knowl-

edge and experience of the radiologists. Therefore, automatic liver and

liver tumor segmentation algorithm is essential and helpful for com-

puter‐aided diagnosis. The main difficulties of automatic liver and liver

tumor segmentation algorithm are: (a) liver is very close to adjacent

organs and their CT values are similar to each other; (b) the CT con-

trast between the liver tumor and healthy tissue is low, and the bound-

aries around liver tumor are blurring; (c) the shape, size, and location of

liver tumors are complex and variable.

The segmentation algorithms for liver and liver tumors were

mainly divided into four categories: regional growth,2,3 graph cut,4–6

level set,7,8 and deep learning.9–15 The segmentation algorithm in

this paper was based on deep learning, so we mainly reviewed sev-

eral classic liver and liver tumor segmentation algorithms based on

deep learning. Ben‐Cohen et al.15 used the VGG16 architecture of

the fully convolutional network (FCN) for liver segmentation and

liver lesion detection. They discarded the final classifier layer of

VGG16 and converted all fully connected layers into convolutional

layers. A two‐channel convolution was added to predict the probabil-

ity of lesions or the liver at each output location, and then the out-

put is up‐sampled to the original pixel for end‐to‐end learning using

a deconvolution layer. Sun et al.14 designed a multichannel FCN to

segment liver tumors from enhanced CT images. Because each stage

of the enhanced CT data provided unique information about the

pathological features, the method trained a network for each stage

and then fused their high‐level features. In the research of Qi

et al.,10 a three‐dimensional (3D) depth supervision network based

on FCN was proposed. The network had a full convolution architec-

ture, which was an end‐to‐end approach to learn and predict. The

most important innovation structure of this network was the depth

supervision of hidden layer, which can accelerate the speed of opti-

mization convergence and improve the prediction accuracy. Finally,

based on the high‐quality score map generated by the 3D depth

monitoring network, the contours were refined using the fully con-

nected conditional random field to obtain fine segmentation results.

Based on FCN, Ronneberger et al.12 proposed a U‐Net network

model. The entire neural network consisted of two main compo-

nents, namely the contraction path and the extension path. The con-

traction path was mainly used to capture the context information in

the picture, and the extension path was to accurately locate the part

of the image that needed to be segmented. Ronneberger et al. also

proposed the data enhancement method for training some data with

small samples, especially the data related to medicine, and proved

that U‐Net was very helpful for deep learning in medical images with

small samples. Therefore, the structure of U‐Net was widely used in

the research of medical image segmentation. Han et al.13 combined

U‐Net's long‐distance cascade connection with ResNet's short‐range
residual connection. The model had 32 layers, the input of the model

was composed of several adjacent axial CT image slices, and the out-

put was a two‐dimensional (2D) segmentation map corresponding to

the input center slice. Patrick et al.11 proposed a segmentation algo-

rithm using two cascaded U‐Net networks on CT slices. The first

network was only used to segment the liver, and the mask map of

the liver region generated by the first step was taken as the input of

the second network to train the second U‐Net network, and the sec-

ond network was only used to segment the tumor. Finally, the con-

ditional random field was applied to the full dataset to obtain the

relationship between the slices.

In MICCAI 2017 competition of liver and liver tumor, 20 liver

segmentation algorithms and 24 liver tumor segmentation algorithms

were proposed, and the ranking of these algorithms is shown in

Tables 6 and 7. Almost all the ranking top algorithms used U‐Net or

VGG‐Net, and the best one obtained 0.961 Dice for liver segmenta-

tion and 0.686 Dice for liver tumor segmentation. However, none of

these algorithms directly used 3D CT images in the whole neural

network, because training 3D image data in a complicated convolu-

tional neural network was time‐consuming and required high compu-

tational resources.

To solve the above‐mentioned problems, this paper proposed a

TDP‐CNN, which can fuse the local features with the global contextual

information from the background, and directly processed 3D medical

image data to obtain the 3D spatial information, and greatly speed up

the training procedure. Furthermore, a conditional random field was

combined in our algorithm to fine‐segment the results from TDP‐CNN.

2 | MATERIALS AND METHODS

2.A | Algorithm overall flow

The algorithm proposed in this paper was mainly based on a 3D con-

volutional neural network with the dual scale from two paths. Shown

in Fig. 1, the overall scheme of the algorithm was as follows:

1. Filtered and normalized the original CT images;

2. Segmented the 3D CT images into several sub‐image blocks, which

were used as the input of TDP‐CNN. The architecture of TDP‐
CNN was shown in Fig. 2. There were two paths in the TDP‐CNN,

and each path was composed of eight blocks, and all the blocks

had the same architecture, which included one convolutional layer,

one batch normalization layer, and one activation layer. The fea-

ture maps of two paths were fused, and input into the fully con-

nected layer, and then classified in the softmax layer.

3. The trained TDP‐CNN was used to segment the liver and liver

tumor, and generate probability maps of the segmentation

results;

MENG ET AL. | 145



4. Finally, the probability maps were post‐processed by a fully con-

nected conditional random field algorithm to obtain the final seg-

mentation results of liver and liver tumors.

2.B | Data preprocessing

Before liver tumor segmentation, we used Gaussian smoothing to fil-

ter the CT images to remove the noise caused by the equipment

and environment.

Hi;j ¼ 1
2πσ2

e�
ði�k�1Þ2þðj�k�1Þ2

2σ2 (1)

where k denotes the dimensional filtering kernel width and σ denotes

the standard deviation, and in this paper σ = 1. Then, the filtered CT

images were further normalized; each pixel was normalized to the

mean and standard deviation of the whole image, so that the pixel val-

ues of all CT images meet the standard normal distribution. Besides,

due to the computation limits of our workstation, the CT images were

subsampled from 512 × 512 to 256 × 256 to reduce the amount of

computation. Finally, data augmentation was used to deal with the

small dataset size, and we geometrically rotated, flipped, cropped, and

scaled the original CT images so that we can obtain more variant liver

and liver tumor types and enlarge our training dataset.

2.C | TDP‐CNN architecture

As it is known that there are limited computational resources in

computer system, such as CPU power, GPU power, memory size,

data transferring speed et al., and 3D medical image data take much

more memory than 2D image data, and all the 3D convolutional net-

work’s operations, such as convolution, pooling, activation et al. also

take much more computational time than 2D operations. Therefore,

complicated CNN, like U‐Net or VGG‐Net, always has a heavy com-

putational burden and maybe trained for weeks or even months, if

the 3D medical image data were directly loaded into CNN. But CNN

with simple architecture cannott have good performance of liver and

liver tumor segmentation results. To balance the computational per-

formance and the requirements of computational resources, three

improvements were made: (a) We did not load the whole 3D medical

image data from one subject into our CNN in one time, instead, we

segmented the whole 3D medical image data into small segments,

and only several segments were input into our CNN each time; (b)

To capture the 3D spatial features, we used multiscale small seg-

ments. Here, “multiscale” refers to two segments with the same cen-

ter, but one segment has a bigger image size and higher image

resolution, the other segment has a smaller image size and lower

image resolution. (c) To compute the multiscale segments together in

F I G . 1 . Flow chart of our method.
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our CNN, we specially designed a dual path neural network architec-

ture. Here, “dual path” refers to a local path and global path, respec-

tively, shown in Fig. 3. In the local path, segments with smaller

image sizes but higher image resolution were loaded, processed, and

trained to capture the image features of local details, such as con-

tour, texture, and so on. Similarly, in the global path, segments with

bigger size but lower image resolution were loaded, processed, and

trained to capture the image global features, such as background

and contextual information. Then the features maps from two paths

were fused at the end of the local and the global path, and trans-

ferred to the fully connected layer and a softmax layer.

According to the network architecture of our method, several

important parameters had to be determined first, such as the kernel

size of the 3D convolutional operations and the 3D size of the small

segments. To determine the optimal combination of these parame-

ters, we needed to repeat the experiments of selection many times.

In this selection process, we only needed to know which combina-

tion was the best. And this best combination of parameters always

remained the best one no matter in single‐path or two‐path convolu-

tional neural networks. Therefore, we only needed a simple one‐path
convolutional neural network to perform the experiments of

parameter combination selection, and the simple network structure

can save us a lot of time and resources. We referred AlexNet as this

simple one‐path convolutional neural network, which contained five

convolutional layers, three down‐sampling layers, and three fully

connected layers. We did not use pooling layers, because the pooling

operation will result in the loss of the exact location of the voxels,

which may harm the accuracy of the segmentation results.

For a 3D convolutional neural network, the calculation of 3D

convolutional operations costs much more computational resources

than 2D convolutional operations. Therefore, only the kernel sizes of

3 × 3 × 3 and 5 × 5 × 5 were under consideration, but 5 × 5 × 5

kernel had about 4.6 times more parameters than 3 × 3 × 3 kernel.

To build a deeper convolutional neural network, in this paper, we

chose 3 × 3 × 3 as the kernel size of our convolutional operations.

The size of the 3D image segment was another important param-

eter, and we can obtain it based on the size of the receptive field.

R x;y;zf g
l ¼ R x;y;zf g

l�1 þ k x;y;zf g
l � 1

� �
�
Yl�1

i¼1

s x;y;zf g
i (2)

Rl, kl, si were 3D vectors of {x, y, z}, Rl represented the size of the

receptive field in the l‐th layer, kl represented the size of the

F I G . 2 . Schematic of three‐dimensional dual path‐convolutional neural network (TDP‐CNN) model, there were two paths in the model, one
for local and the other for global, the architecture of both paths were totally the same. In each path, there were eight blocks, and all the
blocks had the same architecture, which was composed of a 3 × 3 × 3 3D convolution layer, a batch normalization layer, and a PReLu layer.
And residual connections were employed between block 2 and block 4, between block 4 and block 6, and between block 6 and block 8. And
the end of two paths, the feature maps were fused and input into the fully connected layers and softmax layers to get the final classification
results.

F I G . 3 . Simplified schematic three‐
dimensional dual path‐convolutional neural
network.
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convolution kernel, si indicated the stride size of the i‐th layer, and

the size of receptive field in the first layer was 1.

In our simple one‐path CNN, which was used to testify the com-

bination of parameters, l = {1,2,…,7,8}, i = {1,2,…,l‐1}, R0 = 1, kl = 3,

si = 1, according to formula (2), R8 = 17, and the size of the recep-

tive field of the last layer was 17 × 17 × 17. This result meant that

one voxel in the last layer represented the features of 17 × 17 × 17

voxels in the original 3D image, which indicated that the minimal

size of the 3D image segment was 17 × 17 × 17. We selected four

different sizes to train the simple one‐path CNN, which were

34 × 34 × 34, 37 × 37 × 37, 40 × 40 × 40, and 43 × 43 × 43, and

the segmentation results of these four trained model were compared

based on Dice and sensitivity, shown in Fig. 4. We found that as the

size of 3D image segments grew bigger, Dice and sensitivity also

increased, which meant that 3D CNN could benefit from the bigger

size of 3D image segments no matter one‐path or dual path architec-

ture. Therefore, we selected 43 × 43 × 43 as the size of 3D image

segments. More specifically, in the local path, we used 43 × 43 × 43

image segments as the input to the CNN (shown as the red rectan-

gle in Fig. 3), and in the global path, we cut 129 × 129 × 129 image

segment from original 3D image whose center was the same as the

43 × 43 × 43 segments (shown as the blue rectangle in Fig. 3), then

subsampled it to 43 × 43 × 43, and input it to the CNN.

We can learn more context information by processing large‐scale
image segments from the global path. Due to the high computational

cost of 3D networks, we subsampled the large‐scale image segments

from 129 × 129 × 129 to 43 × 43 × 43, shown as Fig. 5. Although

the input 3D image segments of the two paths had the same size,

they contained different 3D image information and features, more

details in the local path and more context information in the global

path.

After we determined the size of 3D kernel and the size of 3D

image segments, we needed to analyze the architecture of the 3D

CNN, shown as Fig. 2. There were two paths in the TDP‐CNN, one

was the local path, the other was the global path, and these two

paths had the same architecture. There were eight blocks in each

path, and every block was composed of one 3D convolutional layer

with kernel size 3 × 3 × 3, one batch normalization layer, and one

PReLu layer. Batch normalization was a technique for improving the

performance and stability of 2D CNN, and can also be used in 3D

CNN to normalize the input layer by adjusting and scaling the activa-

tions and mitigate the problem of internal covariate shift. In TDP‐
CNN, we used residual connections between block 2 and block 4,

block 4 and block 6, block 6 and block 8, to further illustrate the

residual connections, we took the residual connection between

blocks 2 and 4; for example, the outputs of block 2 were directly

transferred to the end of block 4, and the outputs of blocks 2 and 4

were added together. The residual connections can give later layers

direct access to feature maps of previous layers, which can improve

gradient propagation resulting in faster convergence during training

and better neural network performance. At the end of both paths,

the outputs from the local path and global path were added

together, to obtain the feature maps about the images' local details

and global spatial information. Then these feature maps were trans-

ferred to 3D fully connected layers and considering that the number

of feature maps was Q, the size of 3D feature maps was M × N × P.

In regular CNN, the operations of fully connected layers consisted of

two steps; firstly, the Q feature maps were convolved with a kernel,

whose size was also M × N × P, in order to transform one feature

map from 3D matrix to one element, so the number of parameters

can be greatly reduced, but the spatial information was lost, and sec-

ondly, the Q elements were connected to every neuron in the fully

connected layer. However, in our TDP‐CNN, the first step of fully

connected layer operation was different, that is, the Q feature maps

were convolved with a kernel, whose size was 1 × 1 × 1, in order to

keep the size of the feature maps unchanged, so our model had

more parameters in this layer, but it can maintain the 3D spatial

information, which was very important for 3D liver and liver tumor

segmentation. Finally, the outputs of fully connected layers were

input to softmax classifier to obtain the probability maps of liver and

liver tumor segmentation results. Until now, the whole architecture

of TDP‐CNN was depicted.

More specifically, the neural network parameters of each layer

are shown in Table 2, and other parameters in the training of TDP‐
CNN are shown in Table 3.

2.D | Data post‐processing

To remove the mis‐segmentation points, this paper used fully con-

nected CRFs (FC‐CRF).16,17 Considering that there were N pixels in

a CT image, each pixel corresponded to a CT value set I = {I1,I2,…,

IN} and a category label set L={l1,l2,…,lk}, k = 3 in this paper,

because there were three categories (liver, liver tumor, and back-

ground), and the set of category labels was X ¼ X1; :::;XNf g. Then
the conditional random field (I, X) can be represented by the Gibbs

distribution:

F I G . 4 . Influence of different three‐dimensional image block sizes
on local path segmentation performance. (a) Comparison of dice and
(b) comparison of sensitivity.
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PðXjIÞ ¼ 1
ZðIÞ expð�EðXjIÞÞ (3)

Z(I) was a constant, and E(X |I) represented the label distribution of

the CT image and the Gibbs energy function when the pixel points

were distributed as X and I. The conditional random field assigned a

label to each pixel by solving the maximum posterior probability of

the label x∈ LN:

x� ¼ argmax
x∈ LN

PðxjIÞ (4)

Therefore, the process of solving conditional random fields (CRF)

was the process of minimizing the Gibbs energy function. E(X|I) was

defined as shown in Eq. (7), where i and j took values from 1 to N:

EðXjIÞ ¼ ∑iΨμðxiÞ þ∑i<jΨpðxi; xjÞ (5)

ΨμðxiÞ was a one‐dimensional potential function, which was calcu-

lated by the classifier independently for each pixel, indicating that

the pixel i was divided into the energy of the label xi. In our method,

the one‐potential function was calculated by the probability map of

the liver and liver tumor generated by the TDP‐CNN model. The bin-

ary potential function Ψpðxi; xjÞ indicated that the pixels i, j were

simultaneously divided into the energy of the label xi and xj , and its

expression was:

Ψpðxi; xjÞ ¼ μðxi; xjÞ∑K
m¼1ω

ðmÞkðmÞðfi; fjÞ (6)

kðmÞ was a Gaussian kernel:

kðmÞðfi; fjÞ ¼ exp �1
2
ðfi; fjÞTΛðmÞðfi � fjÞ

� �
(7)

fi and fj were the eigenvectors of pixels i and j in the feature space,

respectively, ωðmÞ were linear combination weights, and μ was a label

compatibility function that satisfied the Potts model. Each kernel func-

tion kðmÞ had a symmetric, positive definite precision matrix ΛðmÞ. For

multiclass image segmentation, the potential function was defined by

the color Ii, Ij of the pixel i, j and the position Pi and Pj of pixel i, j:

kðfi; fjÞ ¼ ω 1ð Þ exp � pi � pj
�� ��2

2θ2α
� Ii � Ij
�� ��2
2θ2β

 !
þ ωð2Þ exp � pi � pj

�� ��2
2θ2γ

 !

(8)

Based on Eqs. (4), (5), and (8), our method used FC‐CRF to give

the same category labels to the pixels with large similarities, and give

different category label to the pixels with small similarities.

3 | EXPERIMENT

3.A | Experimental dataset and experimental
platform

All liver CT images used in this experiment were from liver tumor

segmentation (LiTS), which were from the MICCAI 2017 competi-

tion. LiTS was obtained from six different clinical sites, with pixel

distance from 0.55 to 1.0 mm and slice spacing from 0.45 to

6.0 mm. LiTS consisted of 131 enhanced CT image sequences. Each

CT sequence covered the entire abdomen and part of the chest cav-

ity, and the file format was Nifti. The number of axial slices was not

fixed, which ranged from 74 to 987, and the resolution of each CT

slice was 512 × 512. The dataset also provided the ground truth of

liver and liver tumors segmentation results, which were manually

labeled by medical clinicians. To train and test our method, we used

81 CT sequences as the training dataset, 25 CT sequences as the

testing dataset, and 25 CT sequences as the verification dataset. In

the LiTS dataset, the patients have different types of liver tumor dis-

eases, such as hepatocellular carcinoma and metastasis from other

organs (lung, breast, and so on). Hyper or hypo‐dense contrast is

used to enhance the image contrast. The number of tumors varies

between 0 and 75, and the size of tumors varies between 38 and

349 mm3, and the HU value differences between tumor and liver

vary between 0 and 98, whose mean is 31.94 and the standard devi-

ation is 20.21 Software and hardware configuration in our experi-

ments are shown in Table 1.

3.B | Segmentation performance quantitative
evaluation index

In medical image segmentation, true positive (TP) measures the pro-

portion of actual positives that are correctly identified, true negative

(TN) measures the proportion of actual negatives that are correctly

identified, false positive (FP) is an error in which a test result

F I G . 5 . Sampling method of three‐
dimensional image segment in the local
path and global path; the red region
represents the sample segment in the local
path and the blue region represents the
sample block in the global path.
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improperly indicates presence of a condition, false negative (FN) is

an error in which a test result improperly indicates no presence of a

condition. And we can obtain more indicators using TP, TN, FP,

FN18–20:

1. Dice

Dice ¼ 2TP
2TPþ FPþ FN

(9)

Dice is a commonly used indicator for evaluating the results of

medical image segmentation. Dice is 100% when the prediction

result is completely consistent with the real result.

2. Sensitivity

Sensitivity ¼ TP
TPþ FN

(10)

Sensitivity, also known as true‐positive rate or recall rate, is used

to measure the ability of the algorithm to identify positive data.

3. Specificity

Specificity ¼ TN
TNþ FP

(11)

Specificity is used to reflect the ability of the algorithm to iden-

tify negative data. Besides, the experiments in this paper also use

two distances between pixels to evaluate the segmentation results.

4. Hausdorff distance

Considering that all the voxels in ground truth images are repre-

sented by sg , and all the voxels in the predicted images are repre-

sented by sp, the Hausdorff distance can be given:

HDðsg; spÞ ¼ maxðhðsg; spÞ; hðsp; sgÞÞ (12)

In the formula, hðsg; spÞ is called the one‐way Hausdorff distance

and is given by:

hðsg; spÞ ¼ max
a∈ sg

min
b∈ sp

a� bk k (13)

where ||·|| denotes the Euclidean distance. The Hausdorff distance is

sensitive to outliers and is used to find the largest distance between

the ground image and the predicted image.

5. Average distance

The average distance, also known as the average symmetric sur-

face distance (ASSD), is given by:

ASSDðsg; spÞ ¼ dðsg; spÞ þ dðsp; sgÞ
N1 þ N2

(14)

where N1 and N2 represent the number of voxels in sg and sp,

respectively, dðsg; spÞ denotes the average shortest distance between

voxels from sg to sp, and dðsg; spÞ can be calculated by:

dðsg; spÞ ¼ 1
N
∑a∈ sg

min
b∈ sp

a� bk k (15)

ASSD is used to represent the overall difference between two

sets. For a completely correct segmentation result, ASSD value is 0,

which means that the predicted image completely coincides with the

real image.

3.C | TDP‐CNN parameter settings

conv represented the convolutional layer, the kernel represented the

size of convolution kernels in each layer, and the FMs represented

the number of feature maps in each layer.

In this experiment, the local path and global path of TDP‐CNN

had the same network architecture, as shown in Table 2. In the

training of TDP‐CNN, the initializing setting and parameters are

shown in Table 3.

3.D | TDP‐CNN training and testing results

During the training of TDP‐CNN, the ground truth of both liver and

liver tumors was loaded into the network, so TDP‐CNN can simulta-

neously segment liver and liver tumors. The final classifier layer of

the network divided the 3D CT images into three categories: liver,

liver tumor, and background. In the experiment, we used the cross‐

TAB L E 1 Experimental environment of our method.

Environment Configuration

GPU NVIDIA GeForce GTX 1080

Memory capacity 8 GB

CPU Intel Core i5‐7500 @3.4 GHz

Memory Capacity 16 GB

Hard drive capacity 1 TB

Operating system Ubuntu 16.04

Software tools Python 2.7; tensorflow 1.8; matlab 2015b

TAB L E 2 Network parameters of the local path and global path in three‐dimensional dual path‐convolutional neural network.

conv_1 conv_2 conv_3 conv_4

Kernel FMs Kernel FMs Kernel FMs Kernel FMs

3 × 3 × 3 30 3 × 3 × 3 30 3 × 3 × 3 40 3 × 3 × 3 40

conv_5 conv_6 conv_7 conv_8

Kernel FMs Kernel FMs Kernel FMs Kernel FMs

3 × 3 × 3 40 3 × 3 × 3 40 3 × 3 × 3 50 3 × 3 × 3 50
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entropy as a loss function and used the random gradient descent

algorithm to optimize the model. The loss function changed with the

number of epochs, shown in Fig. 6, which was stable after 2000

epochs. And we had to point out that it took about 96 h to train the

TDP‐CNN model for 2000 epochs.

During the testing, we evaluated three quantitative metrics,

including Dice, Hausdorff distance, and an average distance of the

algorithm's segmentation results on 25 samples from the test data-

set. Table 4 shows the mean value of quantitative metrics of liver

and liver tumor segmentation results about the 25 samples.

Liver and liver tumor segmentation results ares shown in Fig7.

Based on the size of liver tumor, it can be divided into three types: (a)

the size of liver tumors were small; (b) the liver tumors were relatively

large and connected; (c) the liver tumors medium and not connected.

As shown in Fig. 8, the size of liver tumors was extremely different

from each other. In Fig. 7, from the left column to the right column,

there were CT original images, the ground truth, the TDP‐CNN seg-

mentation result, the liver probability map, and the liver tumor proba-

bility map, respectively. Comparing the TDP‐CNN segmentation

results with ground truth, we can see that our method can successfully

detect small liver tumor regions, except the ones near the lower part

of the liver. It can be observed from Figs. 7(b) and 7(c) that our method

performed well in the segmentation of relatively large liver tumor no

matter the tumor was connected or unconnected.

However, we found that Hausdorff distances for liver and liver

tumor segmentation were large, which meant that there were some

false‐segmentation voxels. Therefore, we used FC‐CRF to refine the

segmentation results to improve the segmentation accuracy. Table 5

shows the mean value of quantitative metrics of liver and liver

tumor segmentation results about the 25 samples after using FC‐
CRF. Comparing with Table 4, the Hausdorff distance of the liver

segmentation result was reduced from 89.257 to 29.162, and the

Hausdorff distance of the liver tumor segmentation result was

reduced from 65.384 to 7.69.

To more clearly show the optimization effect of FC‐CRF on

TDP‐CNN, we compared Hausdorff distance for 25 samples in the

test dataset. As shown in Fig. 9, the black blocks represented the

Hausdorff distance of the liver and liver tumor segmentation result

using only TDP‐CNN, and the red blocks represented the Hausdorff

distance of the liver and liver tumor segmentation result using TDP‐
CNN and FC‐CRF. We can conclude that the segmentation results

of the liver and liver tumors were improved by FC‐CRF. The liver

and liver tumor segmentation results using TDP‐CNN and FC‐CRF
are shown in Fig. 10, and the image data were the same as the one

in Fig. 7. It can be seen that the application of FC‐CRF can effec-

tively remove false segmentation of liver and liver tumor. Finally, we

had to point out that the average time taken by our method for each

3D CT image data was 13.3 min.

3.E | Comparison between our method and others

Finally, we compared our method with all the submitted methods

of MICCAI 2017, including 20 liver segmentation methods and 24

liver tumor segmentation methods, all these methods used the

same liver CT image dataset, which was LiTS, and the comparison

results are shown in Tables 6 and 7. Limited by the length of this

paper, we can only discuss the top three algorithms reported in the

LiTS benchmark,21 whose authors are Li et al., respectively, and

more details about other algorithms can be obtained from Ref. [21].

Li’s algorithm, ranked first, received 0.686 Dice value for liver

tumor segmentation and 0.961 Dice value for liver segmentation. Li

used cascaded U‐Net architecture to segment the liver and liver

tumor, and weighted cross‐entropy was used as loss function dur-

ing the training; furthermore, Li used residual connections by imple-

menting a so‐called DenseNet architecture consisting of dense

blocks in which a feature map takes the outputs of all previous fea-

ture maps as an input via a residual connection giving another

boost to the information flow through the network and mitigating

the vanishing gradient problem. Chlebus's algorithm, ranked second,

received 0.676 Dice value for liver tumor segmentation and 0.96

Dice value for liver segmentation. Chlebus firstly used a small 3D

network as the final network in a cascaded infrastructure to fuse

the segmentation results of various previous networks into a final

segmentation mask, then he trained three different U‐Net derived

networks on resampled axial, sagittal, and coronal slices, respec-

tively, for liver segmentation and combines them via the aforemen-

tioned small 3D network. This allows each network to view tumors

and learn distinguishing features along a different coordinate axis

and then combine its knowledge with the other networks to yield a

more holistic multi‐axes aware classifier. Yuan’s algorithm, ranked

third, received 0.657 Dice value for liver tumor segmentation and

0.963 Dice value for liver segmentation. Yuan firstly augmented the

dataset by elastic deformation, and also used cascaded U‐Net archi-

tecture with stacks of image slices along the z‐axis as input, which

was called 2.5D architecture in the report, and Jaccard was used as

loss function during the training.

Compared with other liver and liver tumor segmentation algo-

rithms, the Dice of our method ranked first in terms of liver and liver

tumor segmentation; however, the Hausdorff distance of the

TAB L E 3 Parameters during the training of three‐dimensional dual
path‐convolutional neural network.

Parameter Set value

Input image block size 43 × 43 × 43

Global path downsampling factor 3

Initial learning rate 0.001

RMS_decay 0.9

RMS_momentum 0.6

RMS_epsilon 0.0001

L1 Regularization coefficient 0.00001

L2 Regularization coefficient 0.0001

Dropout 0.5

Batch_size 10

Epoch 2000
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segmentation results of our method was larger, indicating that there

were some mis‐segmentation voxels, which needed to be improved.

4 | DISCUSSION

In this paper, we used TDP‐CNN to automatically segment liver and

liver tumor from 3D abdominal CT images. Compared with previous

liver and liver tumor segmentation algorithms, the biggest differ-

ences of our method were that TDP‐CNN had dual path and each

path focused on individual image size and resolution and captured

global and local features, respectively.

It is essential to compare the performance of dual path multi-

scale CNN with that of single‐path CNN, to clearly show the advan-

tages of our method over the single‐path CNN. In the process of

comparison, we built a single‐path CNN, whose architecture was the

same as one of the two paths from TDP‐CNN, as shown in Table 2,

and we named this single‐path CNN as “Local.” It can be clearly seen

that the number of parameters from TDP‐CNN is two times more

than that of Local, therefore, to make the comparison fair, we built

another single‐path CNN, which also had eight layers and the same

kernel size as shown in Table 2, but the number of feature maps in

each layer was twice larger than that of Local, and we named this

single‐path CNN as “Local+.” We trained all the three CNN 700

epochs, and the training loss is shown in Fig. 11, which indicated

that our dual path multiscale CNN outperformed the other two sin-

gle‐path CNN. Although the number of parameters from Local+ was

two times more than that of Local, Local+ did not show an obvious

advantage over Local, which means that the enhancement of the

segmentation performance of our method benefits from the network

architecture, not from the number of parameters.

Looking through all the algorithms reported in the MICCAI 2017

LiTS benchmark,21 most of the liver and liver tumor segmentation

algorithms are based on deep learning, which benefits from vigorous

development of deep learning on medical image processing and com-

puter‐aided diagnosis in recent years. And U‐Net and VGG‐Net are

the most used network structures. However, no algorithms specially

designed a complete 3D convolution neural network or directly dealt

with 3D medical image data, because the 3D operations of convolu-

tion and pooling are time‐consuming on training and require high

resources from the computer station. Instead, some algorithms used

a small 3D network to optimize the results from the previous 2D

network or 2.5D network architecture to capture more characteris-

tics from liver and liver tumor. And these algorithms, which partially

used the 3D network, performed the top three in the liver and liver

tumor competition; this result may indicate the feasibility and useful-

ness of 3D network architecture. In our method, we further utilized

the 3D convolution neural network, and specially designed a com-

plete 3D network architecture. To balance the segmentation perfor-

mance and computational resource requirements, we used the dual

path multiscale 3D network architecture, in which one‐path captured

liver and liver tumor global features from bigger scale and smaller

resolution and the other path captured the local features from smal-

ler scale and bigger resolution, 3D medical image data were directly

input into the network for training and testing. Our network can

extract features from 3D images to the greatest extent, and reduce

the computational resource requirements as much as possible.

Both our method and other algorithms from MICCAI 2017 com-

petition had better liver segmentation results than liver tumor seg-

mentation, which may be caused that human liver always has a

relatively fixed shape but liver tumor's size and shape are diversified

in size and type. Therefore, it may be more effective than if we

F I G . 6 . Loss function in the training.

TAB L E 4 Quantitative metrics of liver and liver tumors
segmentation results.

Dice Hausdorff distance Average distance

Liver segmentation 0.946 89.257 0.81

Tumor segmentation 0.688 65.384 4.005
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specially design the liver tumor segmentation algorithm based on the

size and type of the tumor.

Our method can accurately segment large liver tumor, but per-

formed comparatively worse for small liver tumors, which is defined

as a 3D size less than 500 voxels. The diameter of small liver tumor

is only a few voxels, and the size of the whole liver image is

512 × 512; therefore, segmenting small structures in such a big

background is a very difficult task. Besides, image noise and artifacts

are also another influence on the task. This problem was also recog-

nized by the algorithms in MICCAI 2017 challenge; some

F I G . 8 . For all the 25 test samples, the percentage of liver voxels and liver tumor voxels in the whole computed tomography sequence, (a)
Percentage of liver voxel and (b) Percentage of tumor voxel.

TAB L E 5 After optimizing the segmentation result of three‐
dimensional dual path‐convolutional neural network using the fully
connected conditional random field, quantitative indicators statistics
of segmentation results of liver and liver tumors.

Dice Hausdorff distance Average distance

Liver

segmentation

0.965 29.162 0.197

Tumor

segmentation

0.689 7.69 1.982

F I G . 9 . After optimizing the segmentation result of three‐dimensional dual path‐convolutional neural network (TDP‐CNN) by the FC‐CRF,
the Hausdorff distance of liver and liver tumors is greatly reduced. Black bars mean using only TDP‐CNN to get the segmentation result, red
bars mean using TDP‐CNN and fully connected‐conditional random fields to get the segmentation result. (a) Comparison of Hausdorff Distance
for liver segmentation ad (b) Comparison of Hausdorff Distance for liver tumor segmentation.

F I G . 7 . Ternary and probabilistic images of three‐dimensional dual path‐convolutional neural network liver and liver tumor segmentation
results, crosshair indicated the 3D voxel in the liver. (a) Sample with small liver tumor, (b) Sample with a relatively large and connected liver
tumor, and (c) Sample with a medium and unconnected liver tumor.
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F I G . 10 . Segmentation results of liver and liver tumors using three‐dimensional dual path‐convolutional neural network (TDP‐CNN) and fully
connected‐conditional random fields. (a) Sample with a small region of tumor, (b) Sample with a big region of tumor, and (c) Sample with
multiple regions of tumor.
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corresponding methods were developed, but still cannot get high

Dice value. Therefore, more studies are needed in the future to

improve the small liver tumor segmentation.

5 | CONCLUSION

This paper proposed a TDP‐CNN architecture based on deep learn-

ing, which can be used to segment liver and liver tumor from the 3D

abdominal CT images. The special design for 3D medical image data

can make TDP‐CNN balance the segmentation performance and the

requirement of computational resources. Compared with other liver

and liver tumor segmentation algorithms, our method directly used

3D image data in the whole TDP‐CNN architecture, instead of 2.5D

image data or small 3D network. Experiments showed that our

method had Dice value 0.965 for liver segmentation and Dice value

0.689 for liver tumor segmentation. These quantitative metrics

TAB L E 6 Comparison of liver segmentation between our method
and others.

Group Dice Hausdorff distance ASSD

Our method 0.965 29.162 0.197

Yuan et al. 0.963 23.847 1.104

Li et al. 0.961 29.411 1.692

Chlebus et al. 0.96 24.499 1.15

Ben‐Cohen et 0.96 24.45 1.13

LP777 0.96 31.225 1.51

Wu et al. 0.959 28.229 1.311

jrwin 0.958 27.732 1.36

Wang et al. 0.958 32.933 1.367

MICDIIR 0.956 35.653 1.847

Vorontsov et al. 0.951 29.769 1.785

Kaluva et al. 0.95 32.71 1.88

Roth et al. 0.95 31.93 1.89

huni1115 0.946 31.84 1.869

Han 0.94 51.22 2.89

Lipkova et al. 0.94 186.25 3.54

mbb 0.938 90.245 2.9

Bi et al. 0.934 321.71 258.598

Micro 0.932 33.588 2.182

MIP HQU 0.93 29.27 2.16

szm0219 0.93 61.894 3.974

jinqi 0.924 123.332 5.104

mahendrakhened 0.912 45.928 6.465

jkan 0.906 63.232 3.367

Piraud et al. 0.767 326.334 37.45

QiaoTian 0.05 90.47 31.56

Ma et al. 0.041 8240.644 8231.318

TAB L E 7 Comparison of liver tumor segmentation between our
method and others.

Group Dice Hausdorff distance ASSD

Our method 0.689 7.69 1.07

Li et al. 0.686 6.055 1.073

Chlebus et al. 0.676 7.322 1.143

Vorontsov et al. 0.661 6.317 1.075

Yuan et al. 0.657 6.269 1.151

Ma et al. 0.655 9.363 1.607

Bi et al. 0.645 6.472 1.006

Kaluva et al. 0.64 7.25 1.04

Han 0.63 7.21 1.05

Wang et al. 0.625 6.983 1.26

Wu et al. 0.624 7.783 1.232

Ben‐Cohen et al. 0.62 8.06 1.29

LP777 0.62 6.716 1.388

Micro 0.613 10.087 1.759

Njrwin 0.613 7.649 1.164

mbb 0.586 8.079 1.649

szm0219 0.585 7.408 1.222

MICDIIR 0.582 7.723 1.588

Roth et al. 0.57 6.81 0.95

jkan 0.567 7.23 1.159

huni1115 0.496 9.03 1.342

mahendrakhened 0.492 7.515 1.441

Lipkova et al. 0.48 8.64 1.33

jinqi 0.471 14.588 2.465

MIP HQU 0.47 7.84 1.09

Piraud et al. 0.445 8.391 1.464

QiaoTian 0.25 11.72 1.62

F I G . 11 . The comparison of segmentation performance between
our dual path convolutional neural network (CNN) two sing‐path
CNN, which are Local and Local+.
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indicate that our method can accurately segment liver and liver

tumor from 3D abdominal CT images.
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