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We investigate the transport of a solute past isolated
sinks in a bounded domain when advection is
dominant over diffusion, evaluating the effectiveness
of homogenization approximations when sinks are
distributed uniformly randomly in space. Corrections
to such approximations can be non-local, non-
smooth and non-Gaussian, depending on the physical
parameters (a Péclet number Pe, assumed large,
and a Damköhler number Da) and the compactness
of the sinks. In one spatial dimension, solute
distributions develop a staircase structure for large
Pe, with corrections being better described with
credible intervals than with traditional moments. In
two and three dimensions, solute distributions are
near-singular at each sink (and regularized by sink
size), but their moments can be smooth as a result
of ensemble averaging over variable sink locations.
We approximate corrections to a homogenization
approximation using a moment-expansion method,
replacing the Green’s function by its free-space form,
and test predictions against simulation. We show how,
in two or three dimensions, the leading-order impact
of disorder can be captured in a homogenization
approximation for the ensemble mean concentration
through a modification to Da that grows with
diminishing sink size.
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1. Introduction
Transport processes in many natural systems take place in spatially disordered domains. In
many instances, these processes can be adequately described by averaging procedures, Darcy’s
law describing flow in random porous media being a well-known example [1]. However, it is
important to understand the impact of disorder, particularly in instances where disorder has a
significant influence (for example, in explaining breakthrough effects, whereby solute is carried
rapidly along a small number of high-flow paths through a random porous medium [2]). The
present study contributes to this effort by characterizing the impact of spatial disorder on the
uptake of a solute that is advected past distributions of isolated sinks. This problem is loosely
motivated by transport of maternal blood in the intervillous space of the human placenta [3] but
is posed here in more general terms.

A common assumption that is exploited in order to describe transport in media with complex
microstructure is to assume periodicity at the microscale [4–7]. This allows an asymptotic two-
scale expansion to be developed, with a unit-cell problem (with periodic boundary conditions)
being solved in order to provide a description of slowly varying (homogenized) variables at the
macroscale. While this approach has been extended to accommodate slow spatial variation of the
microscale field [8–10] and developed for a variety of applications [11–16], it is less adaptable
to situations where the microscale exhibits appreciable spatial disorder. Approaches currently
adopted in such instances include formal methods of stochastic homogenization [17], spatial
averaging techniques [18] or simulations using random microstructures realized within periodic
unit cells [19].

A spatially disordered medium can be characterized as a random field with prescribed
statistical properties. The ‘forward’ problem that we address here seeks to understand how
these properties map to the statistical properties of the concentration field of a solute as it
passes through the medium. This map is mediated by physical processes embodied in a partial
differential equation (in the present instance, a linear advection-diffusion-reaction equation). The
primary question addressed by a homogenization approximation is how to translate the first
moment of the sink density to the first moment of the associated concentration field (where first
moments are ensemble averages). More refined questions address the impact of spatial disorder,
captured in the second moment (covariance) of the sink density, on the mean and covariance
of the concentration field. Provided solute fluctuations are bounded in an appropriate sense,
these corrections can be evaluated by perturbation around the leading-order homogenization
approximation, as we illustrate below, and as demonstrated previously by Dagan [20], Cushman
et al. [21], Chernyavsky et al. [3], Russell et al. [22] and Russell & Jensen [23]. If fluctuations become
sufficiently large, or if distributions become strongly non-Gaussian, higher moments (or even full
probability distributions) of the solute field may need to be evaluated.

Homogenization approximations exploit the separation of lengthscales between the microscale
and the macroscale. However, when considering solute uptake at isolated sinks, a further
lengthscale needs consideration. The microscale involves two lengthscales, an intersink distance
ρ (assumed small compared with the overall size of the domain) and a sink size ς . As ς becomes
vanishingly small with respect to ρ, over the shortest lengthscales, diffusion can be expected to
dominate advection in the neighbourhood of sinks, and the concentration field can be expected
to be described locally by the solution of a diffusion equation in the neighbourhood of a point
source. In one dimension, this leads to a concentration field with a staircase structure, with a thin
diffusive boundary layer forming upstream of each sink [23]. In two and three spatial dimensions,
large solute gradients surround the sink, and the concentration field grows in magnitude
proportionally to log(ρ/ς ) and ρ/ς , respectively. This effect amplifies fluctuations, as we
demonstrate below, and is known to restrict the applicability of homogenization approximations
in two and three dimensions [14].

The present study develops an approach initiated by Russell & Jensen [23], who used an
iterative method to approximate the effects of disorder in a linear transport problem involving
advection, diffusion and solute uptake via first-order kinetics. They considered a spatially
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one-dimensional problem with uptake taking place at isolated point sinks. They considered
parameter ranges for which a steady concentration field can be constructed via a smooth
(homogenized) leading-order solution, to which corrections are added that account for the
discreteness and disorder of the sink distribution. Corrections are non-local and were evaluated
using a Green’s function, sidestepping the assumption of unit-cell periodicity that underlies
traditional two-scale homogenization. Russell & Jensen [23] considered a parameter regime in
which diffusion was dominant at the intersink distance ρ, allowing the use of Riemann sums to
approximate certain sums as integrals. Their approach was constructive: rather than seeking to
prove formal convergence, explicit evaluation of the magnitude of corrections allowed domains
of validity to be established, and simulation was used to evaluate accuracy. Russell & Jensen
[23] demonstrated improved accuracy of corrections to a leading-order homogenization solution
evaluated using a Green’s function approach in comparison with classical two-scale asymptotics
assuming microscale periodicity. They also compared the magnitude of corrections with solute
fields for periodic, normally perturbed and uniformly random sink distributions, each showing
distinct dependence on the underlying physical parameters.

Here, we extend this work in four directions, while adopting the same constructive approach:
(i) the problem is reformulated to focus on the mapping from statistical moments of the sink
distribution to statistical moments of the solute distribution, allowing sink distributions to be
represented (for example) as a Gaussian process; (ii) a parameter regime is considered for which
advection dominates diffusion over intersink lengthscales, leading to non-smooth concentration
profiles; (iii) the study is extended to two and three dimensions, for which the point-sink
approximation must be relaxed to allow sinks to have finite size, so that fluctuations remain
bounded; (iv) although corrections to a naive homogenization approximation are generally non-
local, we show that an essentially local correction to the mean concentration field can be identified
when the sink correlation length is sufficiently small, and we evaluate this correction explicitly
for sinks distributed uniformly randomly in a two- or three-dimensional domain.

To set the scene, figure 1 shows a set of realizations of a one-dimensional advection-uptake
process (with no solute diffusion). In this example, 19 point sinks are distributed randomly in
the domain (0, 1), each removing a fixed proportion of the oncoming concentration (which takes
the value 1 at the inlet at x = 0 and is swept uniformly in the positive x direction). An individual
realization (magenta) reveals the staircase structure of a typical one-dimensional concentration
field and shows how it deviates appreciably from the discontinuous sample median (green) and
the smooth sample mean (red). This example illustrates how the concentration distribution can be
non-Gaussian, with credible intervals (cyan) deviating from the equivalent intervals defined by
the sample variance (blue) near the source (where concentrations cannot exceed unity) and near
the sink (where concentrations cannot fall below 1.05−19 ≈ 0.396). This example illustrates how
averaging leads to non-smooth concentration fields having smooth statistical moments, even if
these must be interpreted cautiously in some circumstances. Expressions for the moments and
credible intervals of this simple example are derived in appendix A.

While it is relatively straightforward to make use of an exact Green’s function for a one-
dimensional transport problem (satisfying appropriate inlet and outlet boundary conditions), this
is less true in two and three dimensions, and the high-dimensional integrals needed to evaluate
higher moments quickly become computationally costly. However, when advection dominates
diffusion, the free-space Green’s function provides a potentially useful simplification. The Green’s
function for advection/diffusion/uptake has a discontinuity in one dimension, a log r singularity
in two dimensions and a 1/r singularity in three dimensions, making homogenization feasible for
point sinks in one dimension [24] but more challenging in higher dimensions [14]. Accordingly,
we consider below isolated sinks of finite width ς , taking them to be distributed uniformly
randomly in space. We formulate a transport problem in a domain that is bounded in the
advective direction x1, assuming a spatially uniform inlet flux at x1 = 0, and assume that sink
distributions are statistically uniform over a region that is bounded in the transverse direction.
Despite individual realizations having a complex spatial structure, moments typically depend
on x1 alone, and become smooth as a result of averaging. In the present study, we assume that
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Figure 1. Nineteen point sinks are distributed uniformly randomly along the unit interval, with concentration C(x) falling by
a factor 1/(1 + S1) at each one, where S1 = 0.05. From 104 realizations of this process, we show: a single realization (solid
magenta); the full ensemble of 104 concentration profiles (grey); their expectation (E[C(x)], A3, dashed red); Gaussian-based
95% credible intervals (E[C(x)] ± 1.96

√
Var[C(x)], solid blue, using (A 4)); median (CI(x; 0.5), dashed green, using (A 8) with

r = 1/2); cdf 95% credible intervals (CI(x; 0.5 ± 0.475), solid cyan, A8). (Online version in colour.)

advection is uniform, ignoring heterogeneity of the flow field or of diffusivity, allowing us to
exploit a tractable free-space Green’s function.

In order to capture the effect of disorder within a homogenization approximation, we also
adopt a device described by Noetinger et al. [25] and exploit the limit in which the correlation
length of the covariance of the sink distribution is very small. In the present example, we show
that this length is provided by the sink size ς for sinks distributed uniformly randomly in two
or three dimensions. This allows us to evaluate an effective uptake parameter Daeff: replacing
the dimensionless Damköhler number in the naive homogenized solution with Daeff, we obtain
a direct approximation for the mean concentration that quantifies how disorder reduces uptake
when sinks are distributed uniformly randomly in two or three dimensions.

The model that we investigate is outlined in §2a, with example simulations presented in §2b.
The moments-based expansion is presented in §2c, revealing the critical roles of the Green’s
function (§2d) and its singularities in the evaluation of high-dimensional integrals (§2e). The
derivation of Daeff is given in §2f. Predictions are evaluated against simulations in §3.

2. Model and methods

(a) The model problem
We formulate the model in three dimensions, adopting analogues in one and two dimensions
when required. Let D3 be a domain of thickness L defined such that x∗ = (x∗

1, x∗
2, x∗

3) ∈D3 when x∗
1 ∈

[0, L] and x∗
2, x∗

3 ∈ R. C∗(x∗;ω), U, D and S represent the (dimensional) solute concentration field,
uniform advective velocity in the x∗

1 direction, diffusion coefficient and uptake rate, respectively.
Uptake is mediated by a distributed sink function satisfying 1 + ĝ∗(x∗;ω) ≥ 0, where ĝ∗ has zero
spatial average. ω denotes that ĝ∗(x∗;ω) is a realization drawn from a prescribed distribution,
making C∗(x∗;ω) a random variable.

We prescribe a solute flux q on the plane x∗
1 = 0, with zero diffusive flux on x∗

1 = L
and as x∗

2, x∗
3 → ±∞. Defining x = x∗/L, ĝ(x;ω) = ĝ∗(x∗;ω) and C(x;ω) = C∗(x∗;ω)/(q/U), the

dimensionless concentration satisfies the advection–diffusion-uptake equation

∇2
three−dimensionalC − Pe ∂x1 C − Da C(1 + ĝ(x;ω)) = 0, (2.1a)

and boundary conditions

(1 − Pe −1 ∂x1 )C|x1=0 = 1, ∂x1 C|x1=1 = 0, ∂x2 C|x2→±∞ → 0, ∂x3 C|x3→±∞ → 0, (2.1b)
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where x1 ∈ [0, 1], x2, x3 ∈ R and ∇2
three−dimensional ≡ ∂x2

1
+ ∂x2

2
+ ∂x2

3
. The Péclet number Pe = UL/D

represents the strength of advection to diffusion; the Damköhler number Da = SL2/D relates the
rate of uptake to diffusion. We focus here on the strong-advection regime Pe � max(1,

√
Da); of

particular interest is the distinguished limit in which Pe /Da = U/SL = O(1), implying a balance
between advection and uptake across the whole domain.

Isolated sinks are taken to be of finite size and to occupy a subdomain Ds
3 of D3 in

which x1 ∈ [0, 1] and x2, x3 ∈ [−Ls, Ls]. Let ρ = 1/N be the average inter-sink distance in any
direction, where N ∈ Z

+ represents the number of sinks per unit length. Let the midpoint of sink
locations be represented by ξ i3

= (ξi, ξj, ξk), where i3 ∈ {i, j, k}, i = 1, . . . , N and j, k = −M, . . . , M with
M = �LsN
 ∈ Z. Thus there are (2M + 1)2/ρ sinks in Ds

3 with an average density per unit volume
given by ρ−3. We define ĝ(x;ω) to be

ĝ(x;ω) = ρ3∑
i3

F(3)
ς (x − ξ i3

) − 1, (2.2)

where
∑

i3
≡∑N

i=1
∑M

j=−M
∑M

k=−M and F(3)
ς (x − ξ i3

) is a regularized uptake function with width
ς � 1 such that ∫

Ds
3

F(3)
ς (x − ξ i3

) dξ i3
= 1. (2.3)

This choice of F(3)
ς ensures ĝ(x;ω) has a spatially averaged density of zero within Ds

3. We assume
throughout that isolated sinks have multivariate uniform distribution, such that ξi ∼ U[0, 1] and
ξj, ξk ∼ U[−Ls, Ls]. Similar definitions of the sink function can be made for a one-dimensional [two-

dimensional] domain D1 [D2], where F(3)
ς is replaced by F(1)

ς [F(2)
ς ], volumes (ρ3) are replaced by

distances (ρ) [areas (ρ2)] and triple-sums over i3 ∈ {i, j, k} are replaced by single- [double-] sums
over i1 = i [i2 ∈ {i, j}]. We adopt the Gaussian sink structure function

F(n)
ς (x − xin ) = 1

(2πς2)n/2 exp
(

− 1
2ς2 |x − xin |2

)
, (2.4)

where ς remains sufficiently small to satisfy (2.3) and prevent sinks from overlapping, to
exponential accuracy. This function is chosen for convenience but could be replaced to model
specific applications.

It will be helpful to represent distributions of isolated sinks in terms of their first two statistical
moments. As shown in appendix B, uniformly random sinks with Gaussian structure function
(2.4) have ensemble mean and covariance

E[ĝ] = 0, Kĝ[x, y] = ρnF(n)√
2ς

(x − y) − ρ

(2M + 1)n−1 , (2.5)

where Kf [x, y] ≡K[f (x;ω), f (y;ω)] and K represents covariance. An important distinction between
one-dimensional and higher-dimensional cases is evident. For n = 1, Kĝ has a non-local
contribution (with N sinks in a one-dimensional domain, finding one sink at a location reduces
slightly the chance of finding another elsewhere). However, for n> 1, with M → ∞, the non-local
term vanishes (because the sinks can occupy an arbitrarily wide area or volume within D2 or D3).
The sink density in this case resembles a Gaussian process with square-exponential covariance
σ 2 exp(−|x − y|2/	2), having variance and correlation length given respectively by

σ 2 =
(

ρ

2
√
πς

)n
, 	= 2ς . (2.6)

(b) Two-dimensional simulations
Realizations of concentration fields were calculated numerically using a second-order-accurate
finite-difference scheme. Representative simulations in two dimensions are shown in figure 2.
While an individual realization shows strong disorder, with clear evidence of left-to-right
advection (figure 2a), the mean concentration field and its variance become smooth and
independent of x2 when sufficiently far from the boundaries of Ds

2 at x2 = ±2.5 (figure 2b,c). This
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Figure 2. Two-dimensional solute concentration satisfying (2.1) for sinks located uniformly randomly in the domain Ds
2 =

[0, 1] × [−2.5, 2.5] for ρ = 0.2, (Pe, Da)= (20, 10) and ς = 0.01: (a) a single realization; (b) sample expectation and (c)
sample variance, calculated from 104 realizations. (Online version in colour.)

arises through a combination of averaging effects and strong advection, which limits the degree of
lateral diffusive spread downstream of each sink. We seek approximations of these smooth one-
dimensional functions in terms of the sink density ρ, sink width ς and the physical parameters
Pe and Da.

(c) A moments-based expansion
The volume- or ensemble-averaged sink density in (2.1a) is unity, making it natural to propose
the leading-order homogenized linear and boundary operators associated with (2.1) as L3 ≡
∇2

three−dimensional − Pe ∂x1 − Da and

B3 =
{(

1 −
(

1
Pe

)
∂x1

)
(·)|x1=0, ∂x1 (·)|x1=1, ∂x2 (·)|x2→−∞, ∂x2 (·)|x2→∞, ∂x3 (·)|x3→−∞, ∂x3 (·)|x3→∞

}
,

respectively. The leading-order homogenized solution CH(x) associated with (2.1) can be found
by solving

L3CH(x) = 0, B3CH(x) = {1, 0, 0, 0, 0, 0}. (2.7)

It is evident that CH(x) depends only on x1, being

CH(x1) = Pe
ψ(1)

(
(2φ − Pe) eφ(x1−1) + (2φ + Pe) eφ(1−x1)

)
e(Pe /2)x1 , (2.8)

where φ ≡
√

Pe 2 /4 + Da and ψ(x1) ≡ (2 Peφ + Pe 2 +2 Da) eφx1 + (2 Peφ − Pe 2 −2 Da) e−φx1 . In

the limit Pe � max(1,
√

Da) of interest here, CH ≈ exp[− Da x1/Pe], showing how the
concentration decays over a lengthscale defined by a balance between uptake and advection.
Writing the concentration as

C(x;ω) = CH(x1) + Da Ĉ1(x;ω) + Da2 Ĉ2(x;ω) + . . . , (2.9)
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we construct a solution of (2.1), to be validated a posteriori, using the ansatz

L3Ĉ1(x;ω) = ĝ(x;ω)CH(x1), B3Ĉ1(x;ω) = {0, . . . , 0} (2.10a)

and
L3Ĉ2(x;ω) = ĝ(x;ω)Ĉ1(x;ω), B3Ĉ2(x;ω) = {0, . . . , 0}, (2.10b)

etc. To invert the linear operators in (2.10), we define G3(x, x′) to be the associated three-
dimensional Green’s function satisfying

L3G3(x, x′) = δ(x − x′), where B3G3(x, x′) = {0, . . . , 0}. (2.11)

Applying homogeneous boundary conditions in the x2- and x3-directions is appropriate as the
source term is compact. The Green’s function can then be used to give the corrections

Ĉ1(x;ω) =
∫
D3

G3(x, x′)CH(x′
1)ĝ(x′;ω) dx′ (2.12a)

and

Ĉ2(x;ω) =
∫
D3

∫
D3

G3(x, x′)G3(x′, x′′)CH(x′′
1)ĝ(x′;ω)ĝ(x′′;ω) dx′ dx′′. (2.12b)

We characterize the corrections in terms of their moments evaluated over realizations, specifically

E[Ĉ1(x;ω)] =
∫
D3

G3(x, x′)CH(x′
1)E[ĝ(x′;ω)] dx′, (2.13a)

KĈ1
[x, y] =

∫
D3

∫
D3

G3(x, x′)CH(x′
1)Kĝ[x′, y′]G3(y, y′)CH(y′

1) dx′ dy′ (2.13b)

and E[Ĉ2(x;ω)] =
∫
D3

∫
D3

G3(x, x′)G3(x′, x′′)CH(x′′
1)E[ĝ(x′;ω)ĝ(x′′;ω)] dx′ dx′′. (2.13c)

This approach extends to n = 1, 2 dimensions, replacing D3 and G3(x, x′) with Dn and Gn(x, x′),
respectively, generalizing the one-dimensional formulation in Russell & Jensen [23]. In higher
dimensions, complications emerge due to singularities of G2 and G3 as x → x′ and the high
dimensionality of the quadrature.

(d) The free-space Green’s function
While the Green’s function in one dimension is straightforward to evaluate (appendix C), it is
convenient to instead use the free-space Green’s function Gn(x − x′) for computations in higher
dimensions. In three dimensions, this satisfies L3G3(x − x′) = δ(x − x′) and G3(x) → 0 as |x| → ∞.
Gn is given by (C 3): it shares with Gn the log(φ|x − x′|) singularity in two dimensions and
1/|x − x′| singularity in three dimensions. Gn offers a close approximation of Gn in the limit
Pe � max(1,

√
Da), as illustrated for n = 1 in figure 3a,b. This shows a discrepancy between

G1(x1, x′
1) and G1(x1 − x′

1) only within a 1/Pe distance of the outlet in x1 and the inlet in x′
1. The

identity ∫ ∞

−∞

∫ ∞

−∞
G3(x) dx2 dx3 =

∫ ∞

−∞
G2(x) dx2 = G1(x1) (2.14)

will allow us to make use of G1 later on.
G(x − x′) denotes the field in the x plane generated by a point sink at x′. In two dimensions

[three dimensions], concentration contours have an approximately elliptical [ellipsoidal] shape,
with dimensions illustrated in figure 3c when Pe � max(1,

√
Da), as explained in appendix C. We

can use this structure to identify the asymptotic region of influence associated with a point x,
within which sources at x′ will contribute appreciably to the concentration field at x, as illustrated
in figure 3d. Strong advection implies that the region of influence is largely upstream of x, while
strong uptake ensures that the region is narrow in the direction transverse to the flow. This allows
quadrature to be restricted to physically relevant domains.
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(e) Evaluation of moments
Adopting the free-space Green’s function approximation and incorporating the sink moments
(2.5), (2.13) becomes

E[Ĉ1(x;ω)] = 0, (2.15a)

KĈ1
[x, y] =

∫
Dn

∫
Dn

Gn(x − x′)CH(x′
1)Gn(y − y′)CH(y′

1)

×
(
ρnF(n)√

2ς
(x′ − y′) − ρ

(2M + 1)n−1

)
dx′ dy′ (2.15b)

and E[Ĉ2(x;ω)] =
∫
Dn

∫
Dn

Gn(x − x′)Gn(x′ − x′′)CH(x′′
1)

×
(
ρnF(n)√

2ς
(x′ − x′′) − ρ

(2M + 1)n−1

)
dx′ dx′′. (2.15c)

We now consider approximations when the domain width is large (Ls � ρ) and the sink width
small (ς → 0). To approximate the variance of Ĉ1 in this limit, we can replace F(n)√

2ς
in (2.15a) with

an n-dimensional δ-function and note that the second integral in (2.15b) can be reduced using
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(2.14), giving

Varς→0[Ĉ1(x,ω)] = ρn
∫
Dn

(Gn(x − x′)CH(x′
1))2 dx′

− ρ

(2M + 1)n−1

(∫
D1

G1(x1 − x′
1)CH(x′

1) dx′
1

)2
. (2.16)

This reduces the 2n-dimensional integral (2.15b) to a cheaper n-dimensional integral (2.16),
although some loss of accuracy is anticipated by ignoring the finite sink size.

While (2.14) can also be used to reduce the second integral in (2.15c) to one dimension, a
δ-function approximation cannot be used for the first integral in E[Ĉ2] because of singularities
in G2 and G3. Instead, we exploit the fact that F(n)√

2ς
(x′ − x′′) is asymptotically small when ς � 1

unless x′ is within an O(ς ) distance of x′′. CH(x′′
1) ≈ CH(x′

1) over this region while Gn(x′ − x′′) can
be approximated by its leading-order singular form. We summarize the results of this calculation
(see appendix D), as ς → 0 in n dimensions, as

E[Ĉ2(x;ω)] ≈ −ρnβn

∫
D1

G1(x1 − x′
1)CH(x′

1) dx′
1

− ρ

(2M + 1)n−1

∫
D1

∫
D1

G1(x1 − x′
1)G1(x′

1 − x′′
1)CH(x′′

1) dx′
1 dx′′

1, (2.17a)

where

β1 = 1
2φ

, β2 = 1
4π

(γ − 2 log(2φς )) and β3 = 1
4π3/2ς

(2.17b)

and γ is the Euler–Mascheroni constant. The correction in one dimension is independent of the
sink size ς as ς → 0, whereas in two and three dimensions the correction grows in magnitude as
ς becomes asymptotically small. In two and three dimensions, when Ls � ρ, the final terms of
O(ρ/Mn−1) may be neglected and moments become independent of x2 and x3 when suitably far
from boundaries, as illustrated in figure 2b,c.

Having replaced the exact Green’s function by its free-space form, a further approximation
can be obtained by neglecting boundary layers of thickness O(1/Pe) upstream of sinks, evident
in figure 3. In one dimension, we adopt the leading-order expressions CH ≈ e−(Da /Pe)x1 , G1(x1 −
x′

1) ≈ −(1/Pe)e−(Da /Pe)(x1−x′
1)H(x1 − x′

1) for Pe � 1, accounting only for the downstream influence
of one sink on another. Direct evaluation of (2.16) and (2.17a) gives

Var[Ĉ1(x1,ω)] ≈ ρ

Pe2 (x1 − x2
1)e−(2 Da/Pe)x1 , E[Ĉ2(x1,ω)] ≈ ρ

Pe2 (x1 − 1
2 x2

1)e−(Da /Pe)x1 . (2.18)

In two dimensions, downstream influence can again be captured approximately by using the far-
field approximation (C 7) of G2 in the first integrals of (2.16) and (2.17a) (taking Pe � max(1,

√
Da),

ς � 1/Pe and M → ∞) to give

Var[Ĉ1(x1,ω)] ≈ ρ2
√

x1

8 Pe3 π
e−(2 Da /Pe)x1 , E[Ĉ2(x1,ω)] ≈ ρ2 log(1/(Pe ς ))

2πPe
x1e−(Da /Pe)x1 . (2.19)

In three dimensions, the same approach using (C 10) yields

Var[Ĉ1(x1,ω)] ≈ ρ3

8π Pe
log(x1λPe)e−2(Da /Pe)x1 , E[Ĉ2(x,ω)] ≈ ρ3

4π3/2ς Pe
x1e−(Da /Pe)x1 , (2.20)

where λ= O(1) is a constant that is not determined to this order and the variance expression is
not valid near the inlet, when x1 Pe = O(1).

Integrals (2.15)–(2.17) were determined numerically using the solver given in Hosea [26],
using adaptive quadrature functions in MATLAB. The domain [0, 1] × [−3, 3] was discretized
with 251 × 1501 points. In one dimension, approximations using the free-space Green’s function
were reduced to forms shown in appendix C. The asymptotic region of influence of the two-
dimensional Green’s functions (figure 3d) was used to identify sufficient domains of integration
to ensure convergence.
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(f) Defining the effective Damköhler number
In addition to calculating the mean correction directly via (2.15c), we consider how the
homogenization problem can be adjusted to capture the leading-order effect of disorder. We seek
the constant Daeff such that the solution of

∇2
three−dimensionalC − Pe Cx1 − Daeff C = 0, B3C = {1, 0, 0, 0, 0, 0} (2.21)

approximates E[C(x;ω)] to a suitable degree of accuracy. The exact solution of (2.21) is identical to
the leading-order homogenized solution given in (2.8) but with Da replaced with Daeff, namely

CUR
H (x) = CUR

H (x1) = Pe
Ψ (1)

(
(2Φ − Pe) eΦ(x1−1) + (2Φ + Pe) eΦ(1−x1)

)
e(Pe /2)x1 , (2.22)

where Φ ≡
√

Pe2 /4 + Daeff and Ψ (x1) ≡ (2 PeΦ + Pe2 +2 Daeff) eΦx1 + (2 PeΦ − Pe2 −2 Daeff)
e−Φx1 . Writing C(x;ω) = CH(x1) + Ĉ(x;ω), (2.21) can be rearranged to give L3Ĉ(x;ω) =
(Daeff − Da) × (CH(x1) + Ĉ(x;ω)). Assuming the correction Ĉ(x;ω) is small compared with CH, the
linear operator can be inverted to give

Ĉ(x) = (Daeff − Da)
∫
D3

G3(x − x′)CH(x′
1) dx′ + . . . , (2.23)

where the ω notation is dropped as the leading-order correction is deterministic. We then rewrite
(2.15c) as

E[Ĉ(x;ω)] = Da2
∫
D3

∫
D3

G3(x − x′)G3(x′ − x′′)Kĝ(x′, x′′)CH(x′′
1) dx′ dx′′ + . . . . (2.24)

Comparing this with (2.23) gives the approximate relation

(Daeff − Da)
∫

R3
G3(x − x′)CH(x′

1) dx′

≈ Da2
∫

R3

∫
R3

G3(x − x′)G3K̂ĝ(x′ − x′′)CH(x′′
1) dx′ dx′′, (2.25)

where G3K̂ĝ(x′ − x′′) ≡ G3(x′ − x′′)K̂ĝ(x′ − x′′). In (2.25), we have expanded the domain D3 to R
3, a

reasonable assumption when sufficiently far from boundaries and the decay lengthscale of G3K̂ĝ
is sufficiently short.

Exploiting the fact that Kĝ(x, y) = K̂ĝ(x − y) depends on x′ − x′′ rather than x′ and x′′
independently, we can rewrite (2.25) as

(Daeff − Da)G3 ∗ CH ≈ Da2 G3 ∗ (G3K̂ĝ) ∗ CH, (2.26)

where ∗ denotes convolution. If the decay lengthscale in K̂ĝ is sufficiently short, then G3K̂ĝ
resembles a δ-function with the appropriate weight and is given by [25]

G3K̂ĝ(y) ≈ δ(y)
∫

R3
G3K̂ĝ(x) dx. (2.27)

Fourier transforming (2.26), dividing by the non-zero Fourier transform of CH and applying the
inverse transform, we obtain

Daeff ≈ Da
(

1 + Da
∫

R3
G3K̂ĝ(x) dx

)
. (2.28)

As the Green’s function and covariance function are always negative and positive, respectively,
Daeff is smaller than Da, implying that disorder in the sink distributions reduces solute uptake.
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For a sink covariance function of the form σ 2 exp(−|x − y|2/	2), taking 	→ 0 and accounting
for the singularity in G2 and G3, we evaluate (2.28) using methods given in appendix E to give

Daeff ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Da
(
1 − √

π Da σ 2	/(2φ)
)

(one-dimensional)

Da(1 − 1
4 Da σ 2	2(γ − 2 log(φ	))) (two-dimensional)

Da(1 − 1
2 Da σ 2	2), (three-dimensional)

(2.29)

where we have included the corresponding one-dimensional approximation using (2.28). Recall

that φ =
√

Pe2 /4 + Da. The correction to Da in (2.29) is proportional to 	 (one-dimensional),
	2 log 	 (two-dimensional) and 	2 (three-dimensional), showing how the difference between Da
and Daeff decreases with dimension for fixed variance and fixed correlation length. In one and
two dimensions the correction is proportional to 1/φ and log(φ), respectively, whereas in three
dimensions φ does not appear in the correction, demonstrating how the impact of advection on
the effective uptake decreases as the dimension size increases.

For uniformly random sinks in two and three dimensions letting Ls → ∞, we can now use
(2.6), noting that the variance depends on sink size, to obtain

Daeff ≈

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Da

(
1 − ρ2 Da

4π
(γ − 2 log(2φς ))

)
(two-dimensional)

Da

(
1 − ρ3 Da

4π3/2ς

)
(three-dimensional).

(2.30)

Used in combination with (2.22), CUR
H offers a direct estimate for the mean concentration field

E[C] for uniformly random sink locations in two and three dimensions, as we illustrate below.

3. Results
The variance of the concentration field in one and two dimensions is illustrated in figure 4. The
variance is smooth in both cases, due to strong mixing of sink locations over realizations. In one
dimension, because exactly N sinks are encountered along the domain, the concentration at the
outlet is strongly constrained (as it was in figure 1), and the variance falls close to zero at the
outlet. In two dimensions, this constraint is weaker (N sinks are encountered on average between
x1 = 0 and x1 = 1), so that the variance remains large at the outlet; (2.19a), for example, predicts
that the two-dimensional variance is largest at the outlet for 4 Da< Pe. The cloud plot in figure 4b
demonstrates the magnitude of the sampling error from 104 two-dimensional simulations, and
the independence of the transverse coordinate x2 (figure 2c).

Figure 4a shows how the variance in one dimension predicted by (2.13b) matches closely with
the sample variance taken from Monte Carlo simulations. In one dimension, the limit ς → 0 can
be taken straightforwardly, using (2.16), and it provides a good approximation to the sample
variance and the full integral (2.15b), while overpredicting the predicted variance uniformly.
The approximation (2.18a), using the leading-order approximation of the free-space Green’s
function for Pe � 1, captures the shape of the variance well but overestimating its maximum
(predicting 0.0081 at x1 ≈ 0.38 for the chosen parameter values, capturing its x1-location well
but overestimating its value 0.0063 by almost 30%). In two dimensions, numerical evaluation
of (2.15b) is expensive so we show only the simplified approximation (2.16), which overestimates
the sample variance by approximately 10% (due to neglect of finite sink size) but captures the
overall features reasonably well. The cruder prediction (2.19a) is also effective: it predicts the

maximum variance at x1 = Pe /(4 Da) (for Pe< 4 Da) with value ρ2 Da2 /
√

16 Pe3 πe; the prediction
(0.5, 0.0038) underestimates the sample variance 0.0045 by about 15%.

Predictions of the ensemble mean concentration field are illustrated in figure 5a. E[Ĉ2(x,ω)]
is a smooth function of x1, given by (2.17a), and agrees well with the sample mean in one and
two dimensions (stochastic simulations in three dimensions were not undertaken). The correction
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Figure 4. Variance of the concentration forρ = 0.2, (Pe, Da)= (20, 10). (a) One-dimensional: Var[C(x1;ω)] (solid) represents
the sample variance from 106 Monte Carlo realizations, Var[̂C(x1;ω)] (dotted) is calculated using (2.15b) with ς = 0.01;
Varς→0[̂C(x1;ω)] (dot-dashed) is calculated using (2.16). (b) Two-dimensional: the cloud plot (grey) shows the sample variance
for x2 = −2,−1.996, . . . , 2 from figure 2c, the average of these variances over x2 [〈Var[C(x;ω)]〉x2 , solid] and the δ-function
approximation of the variance from (2.16) [Varς→0[̂C1(x1, 0;ω)], dot-dashed]. Sample variances are calculated from 104 Monte
Carlo realizations. (Online version in colour.)
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Figure 5. Expected concentrations. Circles, squares and diamonds represent one-dimensional (1D), two-dimensional
(2D) and three-dimensional (3D) domains, respectively. (a) Dashed and dotted lines represent the leading-order
homogenized solution CH(x1) plus the approximation Da2E[̂C2(x;ω)] using (2.17a). Solid lines represent the sample
expectation, using 106 realizations (one-dimensional) [E[̂C2(x1;ω)]] and 104 realizations (two-dimensional) with
Ds

2 = [0, 1] × [−2.5, 2.5], averaging over x2 = −2,−1.996, . . . , 2 [〈E[̂C2(x1, x2;ω)]〉x2 ], for ρ = 0.2, ς = 0.01
and (Pe, Da)= (20, 10). (b) As in (a), with two- and three-dimensional effective uptake approximations in magenta and black,
respectively. CURH was calculated using (2.30) and (2.22). (Online version in colour.)

compensates for the leading-order homogenized solution over-predicting uptake. The corrections
grow with dimension, particularly through the factors βn from (2.17b) as ς → 0. In two and
three dimensions when taking the limit M � ρ (i.e. Ls is asymptotically large), E[Ĉ2(x;ω)] can
be simplified as the second integral becomes asymptotically small. Therefore, the computational
expense of calculating the correction is further reduced to solving one simple one-dimensional
integral. The simpler estimate (2.18b) places the maximum one-dimensional correction within
the domain (but downstream of the maximum variance), of O(ρDa2/Pe2). The two- and three-
dimensional estimates (2.19b,c) place the maximum correction within the domain for Da> Pe, but
at the outlet otherwise (as in figure 5), although they do not capture the weak boundary layer near
x1 = 1 evident in the figure.
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The mean concentration in two and three dimensions predicted using the Daeff approximation
(2.30) is shown in figure 5b. The correction to CH grows with dimension, as expected, due to
the increasingly large concentration fluctuations near each (regularized) sink. The approximation
provides close agreement to Monte Carlo sampling in two dimensions, and to the prediction
(2.17a) in two and three dimensions. (Monte Carlo simulations in three dimensions were not
attempted.)

4. Discussion
This study has characterized the impact of spatial disorder on a transport process described
by a linear advection/diffusion/uptake equation, assuming a uniformly random distribution
of isolated sinks. Using a leading-order homogenization approximation (2.7), (2.8) as a starting
point, corrections were computed that describe the likely size of solute fluctuations around a
mean field in a particular realization, and the correction due to disorder when evaluating the
ensemble mean concentration. Bearing in mind the limitations of using statistical moments to
characterize non-Gaussian concentration fields (figure 1), we used a moments-based expansion
to relate the mean and covariance of the sink distribution to the mean and covariance of the solute
field (2.13). The first two moments of the sink distribution, when sinks are distributed uniformly
randomly (2.5), show an important distinction between one dimension and higher dimensions,
namely that in a sufficiently wide domain in two and three dimensions the correlation length
of the sink covariance is set by the sink width (2.6). Simulations (figure 2) reveal the multi-
scale nature of the problem: despite large concentration fluctuations in the neighbourhood of
individual sinks in an individual realization, ensemble averaging leads to smooth moments of the
solute distribution with primary dependence only on a single spatial coordinate. Nevertheless,
moments demand calculation of high-dimensional integrals, which we simplified by replacing
the exact Green’s function with its (explicit) free-space form, confining quadrature to appropriate
regions of influence (figure 3d), replacing the regularized sink distribution (where possible) with
its δ-function approximation, and integrating over lateral dimensions using identities such as
(2.14). This allowed accurate predictions of concentration means (figure 5a) in one and two
dimensions, and of variance in one dimension (figure 4); the over-prediction of solute variance
in two dimensions would likely be corrected by use of the regularized sink distribution, albeit
using more expensive quadrature. Cruder analytical estimates (2.18), (2.19), (2.20) were achieved
by neglecting any upstream influence of one sink on another.

For vanishingly small sinks (the limit ς → 0), concentration fields are discontinuous in one
dimension (figure 1), and have log(1/ς ) and 1/ς singularities in two and three dimensions,
respectively. These appear both in corrections to the ensemble-averaged mean concentration (2.17)
and in the effective Damköhler number (2.30) that can be used in a modified homogenization
approximation in two and three dimensions. The latter approximation cannot be applied for
uniformly random sinks in one dimension, because the sink locations are correlated over the
whole domain; however it can be applied when sinks are described by a Gaussian process with
sufficiently short correlation length (2.29). For sink distributions of fixed variance, the impact
of disorder falls as the sink correlation length vanishes (2.29); however, for uniformly random
sinks in two and three dimensions the variance of the equivalent Gaussian process rises as ς
falls (2.6), contributing to the reduction in uptake captured in (2.30). As reported by Russell &
Jensen [23] and Price [27], mean correctors derived assuming periodic sink distributions show
different dependence on parameters to those reported in (2.18b)–(2.20b). For example, considering
the expansion (2.9), the dominant corrector in the deterministic periodic problem appears at
O(Da) and shares the wavelength of the microstructure, whereas the dominant correction in the
uniformly random case is stochastic with smooth variance ((2.18a)–(2.20a), figure 4) with the mean
correction appearing at O(Da2) (figure 5).

This study has a number of obvious extensions, prominent among which is consideration
of other types of spatial disorder. For flow in porous media, one expects the flow field to
have disorder that correlates appreciably with the disorder in the sink distribution [28]. The
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present perturbative approach provides a route for understanding the contributions of flow, sinks
and their combination to solute distributions, and it will be interesting to evaluate the present
approach against predictions of existing studies of reactive transport in porous media relying
either on periodicity assumptions [4,6,7] or averaging procedures [18]. Other obvious factors to
consider include unsteady effects, variability in sink strength (considered in one dimension by
[22]) and the impact of a nonlinear uptake kinetics (considered by Dalwadi & King [12] using
two-scale homogenization). As demonstrated by Chernyavsky et al. [3] and others, the statistical
properties of the underlying spatial disorder interact with the physical lengthscales associated
with transport processes to give a range of possible outcomes. The present study illustrates
some of the challenges in stepping away from traditional two-scale approaches towards non-local
calculations, drawing attention to the need for efficient schemes for high-dimensional quadrature
in order to characterize uncertainty.

We can revisit the expansion (2.9) and use evidence that terms Da Ĉ1 or Da2 Ĉ2 become
comparable in magnitude with CH as evidence of the breakdown of a homogenization
approximation. In one dimension, based on the estimates in (2.18), the restriction Pe �
max(1,

√
Da) must be extended to Pe � max(1,

√
Da, ρ1/2 Da), which holds along the

distinguished limit Pe ∼ Da for arbitrarily large Pe. The parameter Da2 ρ/Pe, measuring the
magnitude (relative to CH) of the fluctuation variance and the correction to the mean, takes
the value 0.05 in figure 1 (with Pe → ∞, but with Da ρ1/2/Pe = S1/ρ

1/2; see appendix A) and
figures 4a and 5a. In these examples, fluctuations with standard deviation of order 20% dominate
the correction to the mean, of order 5%. In two and three dimensions, however, the range
of validity of the approximation is reduced and the correction to the mean (that grows with
diminishing sink size) overtakes the fluctuations as the dominant correction. In three dimensions,
we require Pe � max(1,

√
Da, Da2 ρ3/ς ) (for ρ3 � ς � ρ� 1), which confines the distinguished

limit to 1 � Pe ∼ Da � ς/ρ3. The example shown in figure 5 has ς/ρ3 = 1.25: as the figure
indicates, the predicted correction to the mean is sufficiently large to call into question the
validity of the homogenization approximation in this case. In two dimensions, the constraint
on the distinguished limit is 1 � Pe ∼ Da � 1/(ρ2 log(ρ2/ς )): the example in figures 2, 4b and
5a with ρ−2 = 25 therefore sits at this upper threshold, although the predicted corrections are still
effective.
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Appendix A. One-dimensional concentration profiles with zero diffusion
Let ξi (i = 1, . . . , N) denote point sink locations, distributed as order statistics Uj:N taken from a
uniform distribution U ∼ U(0, 1) with probability density function (pdf) πU(x) = 1 for 0 ≤ x ≤ 1
and zero otherwise. Each sink location follows a Beta distribution [29] such that ξj ∼ β(j, N − j +
1), where j = 1, . . . , N. Here β(x, y) ≡ tx−1(1 − t)y−1/B(x, y), where B(x, y) ≡ Γ (x)Γ (y)/Γ (x + y). The
cumulative distribution function (cdf) Fξj (x) = P(ξj ≤ x) is given by the regularized incomplete
beta function

Fξj (x) = Ix(j, N − j + 1) =
∫ x

0 tj−1(1 − t)N−jdt
B(j, N − j + 1)

. (A 1)

https://doi.org/10.6084/m9.figshare.19706515
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The one-dimensional concentration distribution that falls by a factor 1/(1 + S1) at each sink
from its inlet value C0 = 1 (figure 1) satisfies

C(x) = C0 − S1

N∑
j=1

CjH(x − ξj), Cj ≡ (1 + S1)−jC0. (A 2)

(This problem can be defined as a limit of the one-dimensional form of (2.1), with Pe → ∞ taking
S1 = Da ρ/Pe with Da /Pe = O(1).) The probability of being at concentration Cj for some given
x is P(Cj; x) = P(ξj < x< ξj+1) = Fξj (x) − Fξj+1 (x) for j = 1, . . . , N − 1, with P(C0; x) = P(ξ1 > x) =
1 − Fξ1 (x), P(CN; x) = P(ξN < x) = FξN (x). Therefore, the expectation E[C(x)] = C0P(C0; x) + · · · +
CNP(CN; x) becomes

E[C(x)] = C0(1 − Fξ1 (x)) +
N−1∑
j=1

Cj(Fξj (x) − Fξj+1 (x)) + CNFξN (x),

= C0 +
N∑

j=1

(Cj − Cj−1)Fξj (x) = 1 − S1

N∑
j=1

Ix(j, N − j + 1)
(1 + S1)j

. (A 3)

The variance Var[C(x)] =∑N
i=0 C2

i P(Ci; x) − (
∑N

i=0 CiP(Ci; x))2 satisfies

Var[C(x)] = (C0)2 +
N∑

j=1

((Cj)
2 − (Cj−1)2)Fξj (x) −

⎛⎝C0 +
N∑

j=1

(Cj − Cj−1)Fξj (x)

⎞⎠2

=
N∑

j=1

(
Cj + Cj−1 − 2C0 −

N∑
i=1

(Ci − Ci−1)Fξi (x)

)
(Cj − Cj−1)Fξj (x) (A 4)

= S1

N∑
j=1

(
2 − (2 + S1)

(1 + S1)j
− S1

N∑
i=1

Ix(i, N − i + 1)
(1 + S1)i

)
Iεx(j, N − j + 1)

(1 + S1)j
. (A 5)

E[C(x)] and Var[C(x)] are plotted in figure 1 using (A 1).
The cdf of the concentration Cj is given by

FCj (C) = P(Cj ≤ C(x); x) = P(ξj > x) = 1 − Fξj (x) (j = 1, . . . , N). (A 6)

Let the cdf take a value FCj (C) = r. Then (A 6) can be inverted to give the corresponding sink
locations as

ξ̆j = F−1
ξj

(1 − r) = ε−1I−1
r (j, N − j + 1) (j = 1, . . . , N). (A 7)

We can therefore use (A 2) to find the cdf credible intervals as

CI(x; r) = C0 − S1C0

N∑
j=1

H(x − I−1
r (j, N − j + 1))
(1 + S1)j

. (A 8)

Credible intervals that ensure 95% of concentration profiles are contained between the two
bounds are shown in figure 1 using r = 0.025 and r = 0.975 in (A 8); the median is evaluated using
r = 0.5. Credible intervals respect the requirement that the concentration is bounded between CN

at the outlet and C0 at the inlet, demonstrating that the solute distribution is non-Gaussian.

Appendix B. Moments of the sink distribution
Let sink locations in three dimensions be prescribed by a multivariate uniform distribution, with
position vectors ξ i3

= (ξi, ξj, ξk) such that ξi ∼ U[0, 1] and ξj, ξk ∼ U[−Ls, Ls] for i = 1, . . . , N and
j, k = −M, . . . , M. Each continuous uniformly random variable ξ i3

is independently and identically
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distributed with a pdf given by

πξ i3
(xi3 ) =

⎧⎨⎩
1

(2Ls)2 = 1
ρ2(2M + 1)2 for xi3 ∈Ds

3,

0 otherwise.
(B 1)

Using the definition of the sink function given in (2.2), the expectation of ĝ(x;ω) is given by

E[ĝ(x;ω)] =
∫
D3

∫
D3

. . .

⎛⎝ρ3
∑

i3

F(3)
ς (x − xi3 ) − 1

⎞⎠πξ 1,ξ 2,...(x1, x2, . . .) dx1dx2 . . .

= ρ3
∑

i3

∫
D3

F(3)
ς (x − xi3 )πξ i3

(xi3 ) dxi3 − 1 = 0. (B 2)

To calculate the covariance Kĝ(x, y) = E[ĝ(x;ω)ĝ(y;ω)], we can again use (B 1) to obtain

Kĝ(x, y) = ρ6
∑

i3

∑
j3

i3 �=j3

∫
D3

∫
D3

F(3)
ς (x − xi3 )F(3)

ς (y − xj3
)πξ i3

,ξ j3
(xi3 , xj3

) dxi3 dxj3

+ ρ6
∑

i3

∫
D3

F(3)
ς (x − xi3 )F(3)

ς (y − xi3 )πξ i3
(xi3 ) dxi3

− ρ3
∑

i3

∫
D3

F(3)
ς (x − xi3 )πξ i3

(xi3 ) dxi3 − ρ3
∑

j3

∫
D3

F(3)
ς (y − xj3

)πξ j3
(xj3

) dxj3
+ 1,

which gives

Kĝ(x, y) = ρ3F (3)
ς (x, y) − ρ

(2M + 1)2 , where F (3)
ς (x, y) ≡

∫
D3

F(3)
ς (x − x̂)F(3)

ς (y − x̂) dx̂. (B 3)

The function F (3)
ς measures the overlap of the two functions F(3)

ς (x − x̂) and F(3)
ς (y − x̂) and is zero

when x is sufficiently far from y. When F(3)
ς has a Gaussian structure (2.4), we find that

F (3)
ς (x, y) = I2(x1, y1; ς , ς )I2(x2, y2; ς , ς )I2(x3, y3; ς , ς ) = F(3)√

2ς
(x − y),

where

I2(x, y; σx, σy) ≡ 1
2πσxσy

∫ ∞

−∞
exp

(
− 1

2σ 2
x

(x̂ − x)2 − 1

2σ 2
y

(x̂ − y)2

)
dx̂. (B 4)

This in turn gives the covariance of ĝ as in (2.5) for n = 3; we can extend these results using similar
calculations for n = 1 and 2 dimensions, noting that the number of sinks (2M + 1)2/ρ becomes
(2M + 1)n−1/ρ.

Appendix C. Green’s functions
The exact Green’s function in one-dimensional G(x1, x′

1) satisfies LG = δ(x1 − x′
1), B1G = {0, 0},

where L= (∂x1 )2 − Pe ∂x1 − Da and B1 = {(1 − (1/Pe)∂x1 )(·)|x1=0, ∂x1 (·)|x1=1}. We define G−(x1, x′
1)

and G+(x1, x′
1) such that

G(x1, x′
1) =

{
G−(x1, x′

1) if 0 ≤ x1 ≤ x′
1 ≤ 1

G+(x1, x′
1) if 0 ≤ x′

1 ≤ x1 ≤ 1,
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where

G±(x1, x′
1) = −

(
1

4φψ(1)

)
e(Pe/2)(x1−x′

1)

(
(2φ + Pe)2 eφ(±(x′

1−x1)+1)

+ (2φ − Pe)2 e−φ(±(x′
1−x1)+1) + 4 Da(eφ(x1+x′

1−1) + e−φ(x1+x′
1−1))

)
. (C 1)

It is convenient to re-express this to allow numerical evaluation when Pe2 � Da. We expand
exponential terms to obtain

φ ≈ Pe
2

+ Da
Pe

− Da2

Pe3 , exp(±φx1) ≈
(

1 ∓ Da2

Pe3 x1

)
exp

(
±
(

Pe
2

+ Da
Pe

)
x1

)
and

ψ(x1) ≈ 2 Pe2
(

1 + Da

Pe2

(
2 − Da

Pe
x1

))
exp

((
Pe
2

+ Da
Pe

)
x1

)
,

giving

G̃−(x1, x′
1) ≈ − 1

Pe
e(Pe +(Da/Pe))(x1−x′

1)

+ Da

Pe3

((
2 + Da

Pe
(x1 − x′

1)
)

e(Pe +(Da/Pe))(x1−x′
1)

− ePe(x1−1)+(Da/Pe)(x1+x′
1−2) − e− Pe x′

1−(Da/Pe)(x1+x′
1)

)

and G̃+(x1, x′
1) ≈ − 1

Pe
e(Da/Pe)(x′

1−x1)

+ Da

Pe3

((
2 + Da

Pe
(x′

1 − x1)
)

e(Da/Pe)(x′
1−x1)

− ePe(x1−1)+(Da/Pe)(x1+x′
1−2) − e− Pe x′

1−(Da/Pe)(x1+x′
1)

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 2)

From the first term in G̃− (G̃+), we see a boundary layer of width approximately 1/Pe (Da /Pe)
exists upstream (downstream) of x1 = x′

1 (figure 3a). The final two terms in G̃− and G̃+ account
for the boundary conditions, which gives a boundary layer of width approximately 1/Pe at the
x1-outlet and x′

1-inlet.
The n-dimensional free-space Green’s function Gn(x − x′) associated with (2.1) satisfies LnGn =

δ(x − x′) and decays in the far field. Seeking a solution of the form Gn(x) = eλx1 f (r) where r = |x|
and setting λ= Pe /2 leads to

Gn(x − x′) = −(2π )−n/2
(

φ

|x − x′|
)n/2−1

Kn/2−1(φ|x − x′|) exp
(

Pe
2

(x1 − x′
1)
)

, (C 3)

where φ ≡
√

Pe2 /4 + Da and Kν represents the modified Bessel function of the second kind [30].
The free-space Green’s function in one dimension is readily evaluated, noting that K±1/2(z) =√
π/(2z) exp(−z), as

G1(x1 − x′
1) = − 1

2φ
exp

(
Pe
2

(x1 − x′
1) − φ|x1 − x′

1|
)

. (C 4)

As illustrated in figure 3a,b, for Pe � max(1,
√

Da), G1 decays on a short lengthscale 1/Pe
upstream of x1 = x′

1, and on a long lengthscale Pe /Da downstream, but fails to capture additional
boundary layers of width 1/Pe in G+ at the edges of the domain.
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From (C 3), the two-dimensional free-space Green’s function is

G2(x − x′) = − 1
2π

K0(φ|x − x′|) exp
(

Pe
2

(x1 − x′
1)
)

. (C 5)

Thus

G2(x − x′) ≈

⎧⎪⎨⎪⎩
1

2π
log(φ|x − x′|) φ|x − x′| � 1,

−1
2

√
1

2πφ|x − x′| exp
(

Pe
2

(x1 − x′
1) − φ|x − x′|

)
φ|x − x′| � 1.

(C 6)

Along x2 = x′
2, when Pe � max(1, Da), G2 decays over the same lengthscales as G1. Along x1 = x′

1,
G2 decays over a distance 1/Pe in the x2 direction. The asymptotic shape of the wake in the far field
is revealed by rescaling using x1 − x′

1 = (Pe/Da)X1 and x2 − x′
2 = (1/

√
Da)X2 for X1, X2 =O(1). We

can then approximate (C 6b) as

G2(x − x′) ≈ − 1
2 Pe

√
Da
πX1

exp

(
−X1 − X2

2
4X1

+ . . .

)
, (C 7)

for Pe � √
Da. The argument of the exponential identifies the approximately elliptical shape of

concentration contours, as sketched in figure 3c.
The three-dimensional free-space Green’s function is

G3(x − x′) = − 1
4π |x − x′| exp

(
Pe
2

(x1 − x′
1) − φ|x − x′|

)
. (C 8)

This has near-field form

G3(x − x′) ≈ − 1
4πr

, as r = |x − x′| → 0 (C 9)

while the far-field structure for Pe � max(1,
√

Da) can be written

G3(x − x′) ≈ − 1
4π (x1 − x′

1)
exp

[
−Da

Pe
(x1 − x′

1) − Pe
(x2 − x′

2)2 + (x3 − x′
3)2)

4(x1 − x′
1)

]
, (C 10)

with lengthscales resembling those illustrated in figure 3c.

Appendix D. Evaluating integrals
In one dimension, (C 4) with x′′

1 = x′
1 + ςu gives G1(x′

1 − x′′
1) = −(1/(2φ)) exp(− 1

2 Pe ςu − φς |u|).
Therefore, ∫

D1

G1(x′
1 − x′′

1)CH(x′′
1)F(1)√

2ς
(x′

1 − x′′
1) dx′′

1

≈ − 1
4
√
πφ

CH(x′
1)
∫ ∞

−∞
exp

(
−u2

4
− Pe

2
ςu − φς |u|

)
du.

The integral asymptotes to 2
√
π as ς → 0, and we obtain β1 = 1/(2φ) in (2.17). In two dimensions,

(C 6a) with x′′ = x′ + ςu and r̂ = |u| gives G2(x′ − x′′) = G2(−ςu) ≈ (1/(2π )) log(φς r̂) when ς �
1/φ� 1. Therefore,∫

D2

G2(x′ − x′′)CH(x′′
1)F(2)√

2ς
(x′ − x′′) dx′′ ≈ 1

4π
CH(x′′

1)
∫ ∞

0
r̂ log(φς r̂) exp(− r̂2

4
) dr̂.

The integral is evaluated using the identity∫ ∞

0
x log(bx) exp(−ax2)dx = 1

2a
log
(

b√
a

)
+ γ

4a
(D 1)

(using Van Heemert [31], where γ ≈ 0.577 is the Euler–Mascheroni constant), to obtain β2 = (γ −
2 log(2φς ))/(4π ) in (2.17). In three dimensions, (C 9) with x′′ = x′ + ςu and r̂ = |u| gives G3(x′ −
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x′′) = G3(−ςu) ≈ −1/(4πς r̂) when ς � 1/φ� 1. Therefore,∫
D3

G3(x′ − x′′)CH(x′′
1)F(3)√

2ς
(x′ − x′′) dx′′ ≈ − 1

(4π )3/2ς
CH(x′′

1)
∫ ∞

0
r̂ exp(− r̂2

4
) dr̂,

giving β3 = 1/4π3/2ς in (2.17).
Integrals involving the one-dimensional Green’s function convolved with CH can be evaluated

exactly when the free-space function G1 is used. These can be simplified by eliminating terms that
are exponentially small throughout the domain, when Pe � 1. The resulting expressions are∫

D1

G1(x1 − x′
1)CH(x′

1) dx′
1 ≈ Pe e(Pe/2)x1

4φ2ψ̂(1)

(
2 Pe eφ(x1−1) − (2φ + Pe)(1 + 2φx1)eφ(1−x1)

)
, (D 2)

∫
D1

∫
D1

G1(x1 − x′
1)G1(x′

1 − x′′
1)CH(x′′

1) dx′
1 dx′′

1

≈ Pe e(Pe/2)x1

8φ4ψ̂(1)

(
(2φ + Pe)(1 + φx1)2 eφ(1−x1) +

(
−5 Pe

2
− φ(1 + Pe +2φ)

)
eφ(x1−1)

)
(D 3)

and ∫
D1

[G1(x1 − x′
1)CH(x′

1)]2 dx′
1

≈
(

Pe2

16φ3ψ̂(1)2

)
ePe x1 ((2φ + Pe)2(4φx1 + 1) e2φ(1−x1)

+ 4(4φ2 − Pe2)(2 − e−2φx1 ) − 4(4φ2 + 2φ Pe − Pe2) e2φ(x1−1)), (D 4)

with ψ̂ being the approximation of ψ near x1 = 1, which is given by ψ̂(x1) = (2 Peφ +
Pe2 +2 Da) eφx1 .

Appendix E. Integrals for effective uptake
Consider a Gaussian covariance function of the form K̂(x − y) = σ 2 exp(−|x − y|2/	2). Then (2.27)
gives

G2K̂(0) ≈ − σ
2

2π

∫
R2

exp

(
Pe
2

x1 − |x|2
	2

)
K0(φ|x|) dx.

By converting to polar coordinates where x1 = r cos θ and x2 = r sin θ , we can solve the θ integral
by using ∫ 2π

0
exp(z cos θ ) dθ = 2π I0(z), (E 1)

where Iν is a modified Bessel function of the first kind [32], to give

G2K̂(0) ≈ −σ 2
∫ ∞

0
exp

(
− r2

	2

)
I0

(
Pe
2

r
)

K0(φr)r dr.

We set r = 	R and approximate the Bessel functions using

I0

((
Pe
2

)
	R
)

≈ 1 + O(l2 Pe2 R2), K0(φ	R) ≈ − log(φ	R) = − log(φ	) − log(R) as 	→ 0, (E 2)

to give

G2K̂(0) ≈ σ 2	2
(

log(φ	)
∫ ∞

0
R exp(−R2) dR +

∫ ∞

0
R log R exp(−R2) dR

)
,
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for suitably small 	. Using (D 1), we obtain G2K̂(0) ≈ − 1
4σ

2	2(γ − 2 log(φ	)), hence yielding the
two-dimensional result in (2.29). The analogous integral in three dimensions reduces to

G3K̂(0) ≈ −σ
2

2

∫ π

0

∫ ∞

0
exp

(
−φr − r2

	2

)
I0

(
Pe
2

r sin θ
)

r sin θ dr dθ .

Again for small 	, we use (E 2) to evaluate the integral for r = O(	), leading to G3K̂(0) ≈ − 1
2σ

2	2,
the three-dimensional limit in (2.29).
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