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Abstract

Background: Tracking of fatty acid (FA) contribution to plasma or serum lipids over time was shown in children and adults.
However, the potential role of FADS gene variants has not been investigated.

Methods and Principal Findings: Serum GP FA composition of 331 children aged 2 and 6 years, participating in an ongoing
birth cohort study, was analyzed. Correlation coefficients were estimated to describe FA tracking over 4 years and to assess
the influence of FADS variants on tracking. We found low to moderate tracking (r = 0.12–0.49) of FA compositions and
concentration between 2 and 6 years. Concentration changes of total monounsaturated FA and total saturated FA over time
correlated closely (r = 0.79) but percentage values were unrelated (r = 20.02). Tracking for n-6 long chain polyunsaturated
fatty acid (LC-PUFA) concentrations was lower in subjects homozygous for the major allele of FADS variants and higher in
carriers of at least one minor allele, whereas for total n-3 LC-PUFA concentrations and compositions this was vice versa. For
individual n-3 PUFA inconsistent results were found.

Conclusions and Significance: Serum GP FA composition shows low to moderate tracking over 4 years with a higher
tracking for LC-PUFA metabolites than for their precursor FA. Serum PUFA levels and their tracking seem to be more
influenced by lipid and lipoprotein metabolism than by FA specific pathways.
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Introduction

Biomarkers of fatty acid (FA) status are widely used in

observational studies. They reflect a combination of dietary intake

and metabolism. Associations of FA status with current and future

health indicators have been demonstrated [1–2]. Epidemiological

and clinical studies have revealed associations between FA and

cardiovascular diseases, diabetes, and certain types of cancer

[3–5].

The concentrations of individual FA in plasma and tissues do

not evolve independently, but rather mutually influence each

other. As individual FA are preferentially partitioned into specific

lipid pools [6], the percentage FA composition of specific com-

partments is widely used to describe FA status. Although analyses

of FA status are successfully applied for the evaluation of dietary

intake [7], FA status is influenced by both diet and endogenous

metabolism. In several studies strong associations were found

between variants in the human genes fatty acid desaturase 1 (FADS1)

and fatty acid desaturase 2 (FADS2) and blood levels of polyunsat-

urated fatty acids (PUFA) [8–13]. These associations clearly

indicate an influence of endogenous metabolism on the blood

levels of essential FA. The importance of endogenous metabolism

is even greater for long chain polyunsaturated fatty acids (LC-

PUFA) than for the saturated and monounsaturated FA which can

be synthesized de novo by human metabolism [14].

FA status and in particular the balance of n-3 and n-6 LC-

PUFA have been related to long term health [15–16]. LC-PUFA

have been demonstrated in all lipid compartments considered so

far as indicative of human FA status. Their concentrations are

highest in glycerophospholipids (GP), which suggests their

suitability for describing sensitively FA status including LC-PUFA

status. Due to the differences of LC-PUFA concentrations in
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different compartments (e.g. plasma lipid fractions), analysis of

defined, purified fractions is mandatory in order to avoid

misleading results.

Another important aspect when evaluating a biomarker is

temporal variability, which depends on the turnover of the com-

partment. The composition of plasma lipids varies within days or

weeks, whereas significant changes of FA composition in adipose

tissue are only observed after months [7]. As plasma lipid com-

position may change within short periods, an investigation of the

tracking of plasma lipid FA status over years yields information on

longer term changes of dietary habits and life style factors. In

adults it has been shown that FA composition of plasma cholesteryl

esters and phospholipids showed a high degree of tracking, with

coefficients of correlation between FA percentages up to 0.83 [17–

18]. Similar values were observed in total plasma phospholipids of

a small group of Portuguese children (n = 26). However, this

observation might be very much influenced by the given cultural

and socioeconomic conditions of this particular group of children

[19].

We aimed to reevaluate the findings of Guerra et al. [19] in a

larger, population-based sample of children. Furthermore, we

aimed to investigate the influence of polymorphisms in the FADS

gene cluster on FA tracking which has not been investigated so far.

According to current knowledge, the carriers of the major alleles

of the 5 studied SNPs (rs174545, rs174546, rs174556, rs174561,

rs3834458) should have a higher conversion of LA and ALA to

their corresponding derivates than carriers of at least one minor

allele [8,11–12]. We hypothesized that carriers of the major allele

would show a greater stability of LC-PUFA values over time and

therefore show a greater degree of LC-PUFA tracking than

carriers of at least one minor allele.

Methods

Ethics statement
For this study, approval by the respective local Ethics

Committees (Bavarian General Medical Council, University of

Leipzig, Medical Council of North-Rhine-Westphalia) and written

informed consent from the families (parents) of participants were

obtained.

Study design and population
The LISA study (‘‘Influences of Lifestyle related Factors on the

Immune System and the Development of Allergies in Childhood’’)

is an ongoing population-based birth cohort study of unselected

newborns. The design of this study has been described elsewhere

before [20–21]. Between November 1997 and January 1999, 3097

healthy full-term newborns were recruited in Munich (n = 1467),

Leipzig (n = 976), Wesel (n = 306), and Bad Honnef (n = 348).

Neonates were excluded if at least one of the following exclu-

sion criteria was present: preterm birth (maturity ,37 gestational

week), low birth weight (,2500 g), congenital malformation,

symptomatic neonatal infection, antibiotic medication, hospital-

isation or intensive medical care during neonatal period. In

addition to lack of consent to participate in this study, newborns

from mothers with immune-related diseases such as autoimmune

disorders, diabetes, hepatitis B, long-term medication or abuse of

drugs and alcohol, and newborns from parents with a nationality

other than German and parents who were not born in Germany

were excluded.

We collected questionnaire data on family history of atopy,

parental education and health problems during pregnancy,

smoking of the mother during pregnancy and mothers’ exposure

to environmental tobacco smoke during pregnancy at home. The

cohort was followed up at the ages of 6, 12 and 18 months, and 2,

4, 6 and 10 years. Blood samples were collected at birth (cord

blood) and from the children at 2, 6 and 10 years.

For the present analyses, only data from the 2- and 6-year

follow-up of study center Munich (n = 1331 and n = 1172, re-

spectively) were included. Serum samples both at the age of 2 and

6 years were available for analysis in 375 children (213 boys, 162

girls). Both genotyping data and fatty acid data were available for

331 children. Figure 1 shows the origin of the samples.

Fatty acid analysis
Venous blood samples were collected in serum separator tubes

and centrifuged. Serum was frozen in plastic vials and stored at

280uC until analysis. Glycerophospholipid FA were analyzed as

described earlier [22]. Briefly, 100 ml of internal standard (1,2-

dipentadecanoyl-sn-glycero-3-phosphocholine dissolved in metha-

nol) and 0.6 ml methanol were added to 100 ml of serum, and

samples were shaken for 30 s. After centrifugation the supernatant

was transferred into another glass tube. Twenty-five ml of sodium

methoxide solution were added and tubes were shaken for

synthesis of fatty acid methyl esters (FAME). The transesterifica-

tion was stopped after 3 min by adding 75 ml methanolic HCl.

FAME were extracted twice with 300 ml hexane each. Extracts

were combined and dried under nitrogen flow at room tem-

perature. The residue was taken up in 50 ml hexane (containing

2 g/l butylated hydroxy toluene) and analyzed by gas chroma-

tography (GC).

We used GC with flame ionization detection for quantifying the

FAME. Individual FAME were identified by comparison with

authentic standards (GLC-569B, Nu-Check Prep, Inc., Elysian,

MN, USA; cis-5,8,11-eicosatrienoic acid methyl ester, Sigma-

Aldrich, Taufkirchen, Germany; methyl vaccenate (11c), methyl

octadecatetraenoate (6c, 9c, 12c, 15c) and methyl brassidate (13tr),

Larodan Fine Chemicals AB, Malmö, Sweden). We used the

general designations C16:1t, C18:1t, C18:2tt and C22:1t in the

results section because we cannot exclude that different isomeric

trans FA coelute.

As external standard GLC-85 (Nu-Check Prep, Inc., Elysian,

MN, USA) was used for determining the response relative to

pentadecanoic acid methyl ester (internal standard). For peak

integration EZChrom Elite version 3.1.7 (Agilent, Waldbronn,

Germany) was used.

Genotyping
Genomic DNA was extracted from EDTA blood using standard

methods and amplified by using REPLI-g UltraFast technology

(QiagenTM). Five variants of the FADS1 FADS2 gene cluster

(rs174545, rs174546, rs174556, rs174561, rs3834458) were typed,

which have been previously shown to be in strong linkage

disequilibrium with each other [8,11]. SNPs were selected based

on previous publications [8,11–12]. Applying the tagger server

program (http://www.broadinstitute.org/mpg/tagger/) in combi-

nation with HapMap we found that with the 3 SNPs rs174545,

rs174546 and rs174556 27 SNPs between basepair positions

61234329 and 61372379 of FADS1 FADS2 could be tagged. The

efficiency was 10.7 fold even though the two further SNPs

rs174561 and rs3834458 could not be included as these are not

included in the HapMap database. Genotyping of SNPs was

realized with the iPLEX (Sequenom, San Diego, CA, USA)

method by means of matrix assisted laser desorption ionization-

time of flight mass spectrometry method (MALDI-TOF MS, Mass

Array; Sequenom) according to the manufacturer’s instructions.

Standard genotyping quality control included 10% duplicate and

negative samples. Genotyping discordance rate was below 0.3%.

Association of FADS Variants and FA Tracking
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Statistical analysis
For the studied subpopulation allele frequencies and Fisher’s

exact test of Hardy-Weinberg-Equilibrium were conducted with

procedure ‘‘proc allele’’ of the statistical software module SAS/

GENETICS of SAS version 9.1.3. Lewontin’s D’ and pairwise-

squared correlations r2 were calculated with the software JLIN

[23] to examine linkage disequilibrium.

FA data are presented as medians and interquartile ranges

(IQR, ranges from the 1st to the 3rd quartile), since FA with very

low concentrations showed skewed distributions.

Level of tracking between FA data obtained at the two time

points was estimated by Spearman correlation. This is the simplest

way for continuous outcome variables to asses tracking between

two measurements [24]. Furthermore, Spearman correlation

coefficients were calculated for the single SNPs applying an

additive model where homozygous minor allele carriers were

coded as 2, heterozygous coded as 1, and homozygous major allele

carriers coded as 0 ( = reference category). Spearman correlations

were performed using the statistical software PASW Statistics,

version 18.0.0.

Results

Baseline characteristics for the total study population and for the

studied subpopulation of the LISA Munich cohort are listed in

Table 1. Weight, height and BMI are comparable between the

total and the subpopulation. However, the percentage of boys,

fully breastfeeding and high maternal education is somewhat

higher and the proportion of maternal smoking during pregnancy

is slightly lower in the studied subpopulation.

Information regarding position, possible functional region,

genotyping frequencies and P-values of Fisher’s exact test for

violation of Hardy-Weinberg-Equilibrium for the five analyzed

SNPs of the FADS1 FADS2 gene cluster are given in Table 2. The

minimum P-value for any of the five analyzed SNPs was 0.69

(rs174556 and rs174561).

Lewontin’s D’ and pairwise-squared correlations r2 for the

studied subpopulation are shown in Figure 2. Lewontin’s D’

ranged between 0.97 and 1.0 and the pairwise-squared correla-

tions r2 ranged between 0.87 and 1.0, confirming that all five SNPs

are in high linkage disequilibrium.

Fatty acid composition of serum GP
Five FA, namely the saturated FA palmitic (C16:0) and stearic

acid (C18:0), the monounsaturated FA oleic acid (C18:1n-9) and

the two n-6 PUFA linoleic acid (LA, C18:2n-6) and arachidonic

acid (AA, C20:4n-6), showed the highest concentrations in serum

GP and accounted for more than 85% of total GP FA (Table S1).

Up to 45% of all serum GP FA were saturated, ,40% were

polyunsaturated, and ,15% were monounsaturated. Trans FA

were found in minor quantities, contributing less than 0.5% to

total GP FA. The abundance of n-6 PUFA was ,7 times higher

than that of n-3 PUFA in GP.

Concentrations of total saturated fatty acids (SFA), total

monounsaturated fatty acids (MUFA) and PUFA were higher at

6 years compared to 2 years, while the concentration of total trans

FA did not differ with time. Percentage values did not differ

significantly between both time points. However, the PUFA/SFA

ratio increased from 0.92 at 2 years to 0.96 at 6 years. N-6 PUFA

showed higher values at 6 years compared to 2 years, while n-3

PUFA values remained constant. The n6/n3 ratio increased from

7.5 to 8.2 over time.

Changes in concentrations of individual FA or groups of FA

were positively correlated with each other for most FA (data not

shown), e.g. changes of LA concentrations from 2 to 6 years were

highly correlated with changes of the concentrations of total SFA

(0.71***), total MUFA (0.49***), C18:3n-6 (0.30***), C20:3n-6

(0.25***), C20:4n-6 (0.41***) and C18:3n-3 (0.43***). For

Figure 1. Analyzed serum samples and genetic measurements from the Munich LISA cohort.
doi:10.1371/journal.pone.0021933.g001
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percentage values changes in LA were negatively correlated with

the changes in the percentage values of total SFA (20.50***), total

MUFA (20.40***), C20:3n-6 (20.45***), C20:4n-6 (20.34***),

C20:5n-3 (20.35***), and C22:6n-3 (20.37***). Besides the

correlation with LA, total SFA and total MUFA percentage

values were not correlated with other FA percentage values (data

not shown). The changes of total SFA concentrations over time

were highly correlated with the changes of total MUFA con-

centrations (r = 0.79***, Figure 3a), whereas no correlation was

observed between the changes of total SFA and total MUFA

percentages over the four year period (r = 20.02, Figure 3b).

Tracking
For most FA the percentage contributions and concentrations

(Table S1) at the age of 2 years were significantly correlated to

those at 6 years. FA concentrations were stronger correlated

between both time points than FA percentage contributions. The

highest correlations between both time points were observed for

the n-6 LC-PUFA dihomo-gamma-linolenic acid (DGLA, C20:3n-

6), AA and docosapentaenoic acid (DPA, C22:5n-6) for both,

concentrations and percentage values.

Moderate tracking (0.6.r.0.4) was observed for the percent-

age values of four FA (C17:0, C20:3n-6, C20:4n-6, and C22:5n-6)

and for the concentrations of six FA (C17:0, C18:0, C20:3n-6,

C20:4n-6, C22:5n-6, and C22:5n-3), respectively. The majority of

all analyzed FA showed low or no tracking (r,0.4).

Concentrations of SFA in serum GP showed a higher degree of

tracking than their corresponding percentage values. Interestingly,

total SFA percentage values showed no correlation whereas single

SFA showed low to moderate tracking. For n-6 PUFA moderate

correlations between both time points were observed, with the

highest correlations for DGLA, and weaker correlations for their

precursor FA LA and gamma-linoleic acid (GLA, C18:3n-6).

Tracking of n-3 PUFA was markedly lower than that of n-6

PUFA, with lower tracking rates for the precursor n-3 PUFA

compared to their longer chain derivates. Similar findings were

observed for n-9 FA. Percentage values of mead acid (20:3n-9)

were higher correlated between both time points (r = 0.39) than

those of oleic acid (r = 0.22), a precursor of mead acid. Trans FA

and MUFA had weak correlations.

The ratio of the n-6 PUFA AA/LA showed a moderate degree

of tracking (r = 0.41), and the ratio remained practically constant

over the 4 year period with 0.4260.13 at 2 years, and 0.4060.11

at 6 years, respectively. There was an increasing trend over time

for the n-3 PUFA ratios EPA/ALA (2 years: 2.3161.27; 6 years:

2.5061.51) and DHA/ALA (2 years: 12.7268.23; 6 years:

13.5868.34). Compared to the n-6 PUFA ratio of AA/LA

somewhat lower tracking levels were observed for the n-3 PUFA

ratios EPA/ALA (r = 0.20) and DHA/ALA (r = 0.20), respectively.

Influence of FADS polymorphisms on tracking
We found that tracking of n-6 LC-PUFA concentrations (except

for C22:4n-6) was higher for homozygous and heterozygous

carriers of minor alleles in the five analyzed SNPs than for

homozygous carriers of major alleles (Table S2). In contrast,

tracking of n-6 LC-PUFA compositions showed no clear trend.

For total n-3 LC-PUFA concentrations and compositions, minor

allele carriers had a lower tracking compared to homozygous

major allele carriers but individual n-3 LC-PUFA showed no

consistent trend. Tracking of C20:3n-3 and EPA was lower in

minor allele carriers than in carriers homozygous for the major

allele, whereas results for C22:5n-3 were inconsistent. For DHA

Table 1. Baseline characteristics of the total study population and the studied subpopulation of the LISA Munich cohort.

Total population Studied subpopulation

n mean or % SD n mean or % SD

% boys 1467 52.7 331 55.6

% girls 1467 47.3 331 44.4

birth weight (kg) 1466 3.4 0.4 331 3.4 0.4

birth length (cm) 1445 52.1 2.4 326 52.0 2.3

% fully breastfed for at least 4 months 1371 68.7 329 71.4

% high maternal education 1457 63.9 328 66.5

% maternal smoking during pregnancy 1458 14.2 328 11.0

doi:10.1371/journal.pone.0021933.t001

Table 2. Characteristics of the five analyzed variants in FADS1 FADS2 gene of the studied subpopulation (n = 331).

dbSNP Position
Possible functional region
(on chromosome 11)

Alleles (major/
minor) Number (%) of subjects with genotype

P-value (Fischer’s
exact test)

bp 1/2 11 12 22

rs174545 61325882 FADS1 UTR-3 C/G 157 (47.6) 139 (42.1) 34 (10.3) 0.70

rs174546 61326406 FADS1 UTR-3 C/T 158 (47.7) 139 (42.0) 34 (10.3) 0.70

rs174556 61337211 FADS1 intron 2 C/T 166 (50.5) 138 (41.9) 25 (7.6) 0.69

rs174561 61339284 FADS1 intron 1 T/C 166 (50.5) 138 (41.9) 25 (7.6) 0.69

rs3834458 61351497 FADS2 59 flanking T/Del 154 (47.1) 142 (43.4) 31 (9.5) 0.90

Note: Del indicates deletion; SNP build 131 accessed 27 April 2010, Map to Genom Build 36.3, 11 = homozygous major, 12 = heterozygous, 22 = homozygous minor.
doi:10.1371/journal.pone.0021933.t002
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tracking was comparable between the 3 groups in all analyzed

SNPs.

Discussion

Fatty acid status
We found increasing serum GP total FA concentrations over the

4-year follow-up. The children studied had higher serum PUFA

concentrations at the age of 6 than at 2 years, whereas SFA and

MUFA concentrations showed only a slight increase over time.

Hence, the PUFA/SFA ratio increased with age. These observa-

tions point towards a change in food habits with a shift to higher

proportions of polyunsaturated dietary fat. Our findings are in

accordance with observations from Guerra et al. [19] who found

an increase of plasma phospholipid PUFA/SFA ratio in 26

Portuguese children from 2 to 5 years of age.

Plasma GP n-6 PUFA concentrations increased during the

follow-up, which likely reflects a higher intake of foods providing

LA or AA (e.g. vegetable oils, eggs, meat and meat products) at

older age [25]. In contrast, plasma concentrations of n-3 PUFA

remained almost constant over time. This is presumably attri-

butable to a low consumption of n-3 PUFA in the diets of most

German children. The main dietary sources of n-3 LC-PUFA are

fish and other seafood. Children who like to eat fish and whose

parents pay attention to a regular fish intake are likely to maintain

such habits over time, and a relatively high n-3 LC-PUFA level

will persist; whereas children who tend not to eat fish retain a low

n-3 LC-PUFA level. Our findings suggest that only few children

change their food habits with regard to fish intake over time.

The strong positive correlation between the changes in the

concentrations of total MUFA and total SFA, points towards a

strong influence of lipid metabolism on FA concentrations. This

assumption is strengthened by the absence of a correlation be-

tween changes in the percentage values of total MUFA and total

SFA, as well as previous findings of Moilanen et al. [26] who

reported a significant association between serum cholesteryl ester

FA composition and various serum lipids.

LA values seem to have a strong influence on the percentage

composition of serum GP FA, whereas the impact of SFA and

MUFA on FA composition is very low. The correlations between

the changes in FA percentages over the 4-year period indicate that

the changes in LA mainly affected SFA and MUFA. We found

negative correlations of LA with C20:3n-6, C20:4n-6, C20:5n-3

and C22:6n-3, which was in accordance with previous findings

[27].

Tracking
Tracking of FA percentage values in plasma or serum

phospholipids and cholesteryl esters has previously been reported

in children and adults [17–19,27], but tracking of FA concentra-

tions has not been investigated before. Our results revealed

tracking rates of similar magnitude compared to findings of

Guerra et al. [19] for total SFA (0.02/20.02, our results/Guerra

et al.) and total MUFA (0.22/0.25), whereas n-6 LC-PUFA

(0.35/0.63) and n-3 LC-PUFA (0.23/0.31) showed a somewhat

lower tracking in our study. This might be explained by the

different study settings. Guerra et al. examined tracking of plasma

Figure 2. Pair wise linkage disequilibrium measured by Lewontin’s D’ and r2 for the common five single nucleotide polymorphisms
(SNP) in the studied subpopulation (n = 331) of the LISA Munich cohort.
doi:10.1371/journal.pone.0021933.g002
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phospholipid FA in 26 Portuguese children between the age of 2

and 5 years, whereas we examined tracking of FA in serum GP (a

subgroup of phospholipids) in a larger group of 331 German

children between the ages of 2 and 6 years. Previous publications

show that tracking of plasma cholesteryl ester FA is higher than

that of plasma phospholipid FA, and that FA tracking might be

higher in adults than in children [17–18,28]. However, indepen-

dent from the studied subjects and the analyzed lipid fraction, our

results are consistent with previously published data on FA

tracking in that n-6 LC-PUFA showed greater tracking than n-3

LC-PUFA, and that LA and ALA have a lower degree of tracking

than their LC-PUFA derivates.

We also determined tracking of FA concentrations, which

turned out to be somewhat greater than the tracking of FA

percentages, particularly for SFA. This further supports that lipid

metabolism might have a significant influence on serum GP FA

concentrations. The high tracking of C17:0, which reflects the

intake of dairy fats, might indicate a stable dietary milk and dairy

product intake. Patterson et al. [29] reported a tracking correlation

coefficient of 0.3 for dietary intakes of milk and yoghurt in Swedish

children over a period of 6 years.

Our hypothesis that carriers of the major allele show higher

tracking than carriers of at least one minor allele could be

confirmed only for serum GP total n-3 LC-PUFA levels. For

individual n-3 PUFA this trend is not consistent. In contrast to our

expectation, tracking of total n-6 LC-PUFA percentage and

concentration values was lower in subjects homozygous for the

major allele than in subjects carrying one minor allele. However,

tracking values were comparable between carriers homozygous for

the major allele and carriers homozygous for the minor allele,

except for SNP rs3834458, here tracking values of subjects homo-

zygous for the minor allele were comparable with theses of subjects

carrying one minor and one major allele.

We assume that the major portion of serum GP n-6 LC-PUFA

levels are contributed by endogenous synthesis via the desaturase/

elongase pathway, which was shown to be largely influenced by

genetic variants in the FADS1 FADS2 gene cluster [11]. Linoleic

acid, the n-6 LC-PUFA precursor, is the most abundant PUFA in

diet and serum lipids. Serum GP LA values are largely determined

by dietary intake. In our study we found an increase of LA levels

over time and only slight tracking for LA values. Thus, subjects

with higher LA conversion rates have a higher variability in n-6

Figure 3. Changes of total monounsaturated fatty acids between 2 and 6 years (delta MUFA, mg/l) show a high correlation (r = 0.79)
with changes of total saturated fatty acids (delta SFA, mg/l) (a), while changes of corresponding percentage values (%) are
unrelated (b, r = 20.02).
doi:10.1371/journal.pone.0021933.g003
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LC-PUFA levels depending on available LA and therefore tend to

show a lower tracking. The hypothesized association of higher

tracking with higher conversion intensity can only be observed for

very low precursor levels, as is the case for n-3 PUFA.

In conclusion, the present study documents low to moderate

tracking of serum GP FA composition over a period of 4-years.

The highest tracking was observed for n-6 LC-PUFA. Further-

more, LC-PUFA metabolites have a higher tracking than their

precursor FA. We found that FADS1 FADS2 gene variants

modulate tracking of serum GP PUFA levels. However, results

are inconsistent and the influence of general lipid and lipoprotein

metabolism seems to be more pronounced than the influence of

FA specific pathways. As a consequence FA concentrations show a

higher degree of tracking than FA percentage values.
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