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ABSTRACT: The parameter design of profile control and oil
displacement (PCOD) scheme plays an important role in
improving waterflooding efficiency and increasing the oil field
production and recovery. In this paper, the parameter optimization
model and solution method of the PCOD scheme based on deep
deterministic policy gradient (DDPG) are constructed with the
half-year increased oil production (Qi) of injection well group as
the objective function and the parameter range of PCOD system
type, concentration, injection volume, and injection rate as
constraints. Using the historical data of PCOD and extreme
gradient boosting (XGBoost) method to construct a proxy model
of PCOD process as the environment, the change rate of Qi of well
groups before and after optimization is taken as the reward
function; the system type, concentration, injection volume, and injection rate are taken as the action; and the Gaussian strategy with
noise is taken as the action exploration strategy. Taking XX block of offshore oil field as an example, the parameters of the compound
slug PCOD process (pre-slug + main slug + protection slug) of the injection well group are analyzed, that is, parameters such as the
system type, concentration, injection volume, and injection rate of each slug system are optimized. The research shows that the
parameter optimization model of the PCOD scheme established based on DDPG can obtain higher oil production PCOD scheme
for well groups with different PCOD, and has strong optimization and generalization ability compared with the particle swarm
optimization (PSO) model.

■ INTRODUCTION
The parameter design of injection well profile control and oil
displacement (PCOD) scheme plays an important role in
improving the water drive effect and enhancing the oil field
production and recovery.1,2 The effect of PCOD is affected by
many factors. Injection rate is one of the important factors to
ensure the stable and balanced rise of block pressure. If the
injection rate is too low, the time for the oil field development
to reach the limit water cut will be increased, and the cost will
further increase. If the injection rate is too high, part of the
pores of the reservoir will be blocked, greatly reducing the
permeability of the reservoir and eventually leading to
difficulties in the injection of the PCOD system.3 At the
same time, the PCOD system can be used as a displacement
phase to improve the unfavorable mobility ratio, improve the
oil displacement efficiency, and finally achieve the goal of
improving waterflood recovery. Therefore, the viscosity of the
PCOD system directly affects the effect of the PCOD, and the
concentration of the PCOD system is an important factor
affecting its viscosity.4,5 The injection volume of the PCOD
system will also affect the PCOD effect. If the injection volume
is too small, it is difficult to achieve the purpose of plugging the
high permeability layer. If the injection volume is too large, the

cost will increase.6 Therefore, it is very important to optimize
reasonable PCOD parameters before taking measures.

At present, the optimization design methods of PCOD
schemes mainly include laboratory experiment and numerical
simulation. Jia et al.7 carried out microscopic tests of polymer
microspheres with different particle sizes and indoor experi-
ments of simulating core flow; optimized the particle sizes of
microspheres at low, medium, and high water cut stages; and
simulated and optimized the deep PCOD injection process
parameters of polymer microspheres at different water cut
stages. Although a large number of indoor experiments can
obtain more comprehensive PCOD results, it is expensive and
time-consuming. Therefore, numerical simulation is used to
optimize the PCOD parameters. Xiao et al.8 used numerical
simulation to optimize the polymer gel injection scheme and
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analyzed the PCOD mechanism of polymer gel in the WAG
process of fractured reservoirs. However, both the indoor
experiment and numerical simulation methods are based on
the orthogonal design to design the PCOD scheme. The
optimal parameter combination found is only the local optimal
solution in the designed PCOD scheme, not the global optimal
solution under specific reservoir geological conditions, which
cannot solve the parameter optimization problem quickly and
comprehensively. In recent years, machine learning methods
have received increasing attention due to their ability to extract
information from a large amount of available data and have
been widely applied in oil and gas development. Sun et al.9

proposed a machine-learning-assisted multiobjective optimiza-
tion protocol to design and optimize alkali−surfactant−
polymer flooding processes in the presence of multiple
technical and economic objective functions. Sun et al.10

proposed a method for screening and optimization of polymer
flooding projects using artificial neural network (ANN)-based
proxies, which can obtain quick techno-economical assess-
ments of polymer injection projects. Due to the reinforcement
learning (RL) method that carries out trial and error learning
through agent and environment interaction and explores the
optimal behavior of the system independently, it has the
advantage of not easily falling into the local optimal solution.
In this paper, the RL method is applied to optimize the
parameters of the PCOD scheme.

RL has strong exploration ability and self-learning ability, as
well as has outstanding advantages in solving complex and
high-dimensional problems, such as intelligent navigation
problem11 and commodity recommendation problem.12 In
recent years, RL has also been applied in the oil and natural gas
industry. The RL method can not only be used for decision-
making in the petroleum field but also for real-time adjustment
of field operation parameters. He et al.13 proposed using the
proximal policy optimization algorithm (PPO) to optimize the
number of wells. This method can learn the basic reservoir
engineering principles without prior knowledge, such as setting
wells at favorable positions with high porosity and perme-
ability, selecting a reasonable number of wells, and maintaining
a good well spacing. Shi et al.14 established an optimization
model based on deep reinforcement learning (DRL) and
selected the optimal artificial lifting method by using the
influence factors and effect evaluation function. The model has
fast convergence speed and high prediction accuracy. It is a
reliable, practical, and intelligent method. Talavera et al.15

established a predictive control model based on RL to control
oil production by optimizing injection volume. This method
supports some characteristics of the reservoir system, such as
strong nonlinearity, long delay of system response, and
multivariable characteristics. Miftakhov et al.16 established a
DRL model based on pixel data to maximize the net present
value (NPV) of water injection by changing the water injection
rate. Bhowmik et al.17 established the optimization design
method of submarine pipeline based on RL, which can
minimize the pipeline route length and costs related to pipeline
stability, and is an efficient and economic method. Pollock et
al.18 established an automatic drilling method based on RL,
which can optimize the rate of penetration, reduce the drilling
bending, reduce the number of personnel on board, and
improve the directional drilling efficiency. Saini et al.19

proposed a prediction and optimization method for hole
cleaning and stuck pipe prevention based on the combination
of digital twin and reinforcement learning, which can

automatically identify the status of the hole cleaning system
and determine the best hole cleaning action. The optimization
of PCOD is also a decision-making problem. Because there is a
mutual relationship between the injection rate, concentration,
and injection volume of the PCOD system, the level value of
each parameter cannot be determined relatively independently.
The optimization of PCOD parameters is a typical high-
dimensional and complex problem. RL algorithm is more
suitable to solve the optimization problem of PCOD
parameters because of its characteristics of indefinite step
search and multivariable synchronous optimization.

In this paper, the proxy model of PCOD scheme is
established as the environment, and DDPG is used to optimize
PCOD parameters. The optimization process of parameters is
modeled and analyzed by taking the half-year increased oil
production of well group (Qi) as the optimization goal. The
object of agent learning in DDPG is the environment action
mapping function, which can process continuous action and
state space without discretizing the control action. By
comparing with the classical intelligent algorithm particle
swarm optimization (PSO), the superiority of DDPG for
parameter optimization of PCOD schemes is verified, and it
has great application potential in solving complex problems.

■ PROXY MODEL OF PCOD SCHEME
Reservoir heterogeneity, petrophysical properties, and local
physicochemical environment are important factors affecting
the effect of PCOD. The pore structure of the reservoir plays a
great role in controlling its reservoir permeability performance.
When the PCOD system injects large pores with different pore
diameters or fractures with different fracture widths and
migrates for a long time, it is bound to be subject to different
degrees of shear action, affecting its PCOD effect. The larger
the permeability difference, the more uneven the remaining oil
saturation distribution. Alvaro et al.20 showed through
experimental research that the PCOD system also has a
certain impact on the nontarget layer, and the degree of impact
is related to the permeability difference of the reservoir.
Salinity is the sum of the amounts of various electrolytes in the
system. Electrolytes will affect the distribution of polymer
molecular groups. Too high salinity will make the molecular
groups curl and affect the performance of the PCOD system.
In a word, geological reservoir conditions are also important
factors affecting the effect of PCOD. Only by designing and
optimizing the optimal parameters of PCOD scheme for
specific geological reservoir conditions can the oil production
be increased and the reservoir potential be fully developed.

It is very difficult to build a mathematical model directly
between the operation parameters and the Qi because the
PCOD is a dynamic process and involves complex dynamics
involving nonlinear, high-order, time-varying, and potentially
highly heterogeneous reservoirs. In this paper, the proxy model
of PCOD scheme is established by using the PCOD history
database and four machine learning algorithms, including
linear regression (LR), random forest (RF), light gradient
boosting machine (LightGBM), and extreme gradient boosting
(XGBoost).

LR is a basic statistical learning method that predicts the
relationship between a response variable and one or more
explanatory variables by linearly fitting a dataset. RF is an
ensemble learning method consisting of multiple decision
trees. Each decision tree is trained using a randomly selected
subset of the data and features, which gives each tree some
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independence and reduces the risk of overfitting. XGBoost and
LightGBM are machine learning algorithms based on gradient
boosting decision trees. XGBoost is characterized by the use of
regularization methods and feature sub-sampling to avoid
overfitting and improve model generalization. LightGBM
algorithm speeds up the learning process of decision trees by
proposing a gradient-based method, while also introducing
feature parallelism to reduce training time. It also uses a depth-
first approach to grow trees, which can more quickly learn the
features and structural information of the data, while also
reducing training time.

The sample data in this paper comes from the XX block of
the offshore oil field, consisting of oil field data and numerical
simulation data from that block, with a total of 319 data. The
data distribution is shown in Table 1. Numerical simulation

data refers to the virtual samples of three kinds of PCOD
systems, which are established based on the geological model
of the target area using the CMG software. The input
parameters of proxy model include reserves of well group,
porosity, permeability, horizontal section length or vertical
depth of vertical well, permeability ratio, crude oil viscosity,
salinity of formation water, temperature, formation pressure,

water saturation, system type, system concentration, system
injection volume, and injection rate of the PCOD. The output
parameter is the half-year Qi.

During the training period, 90% of the data in the PCOD
database is used as the training set and 10% is used as the test
set. The hyperparameters for the RF, XGBoost, and LightGBM
models are shown in Tables 2−4, respectively. Each hyper-

parameter was determined through grid search, in which a
range of different parameter values were set and the best
parameters for the model were obtained using the Grid-
SearchCV method in the Sklearn module in Python library.
And uses two indicators to evaluate the performance of the
four proxy models of PCOD scheme. The two evaluation
indicators are the coefficient of determination (R2) and the
root-mean-square error (RMSE), as shown in Table 5.

The prediction effect of each model is shown in Figure 1,
and the comparison of the performances of four models is
shown in Figure 2. The LightGBM model and XGBoost model
both have good predictive performance, but the XGBoost
model has the smallest RMSE and the largest R2 on the test set,
which is better than the LightGBM model. Therefore, this
paper chooses the XGBoost algorithm as a supervised learning
algorithm to build a proxy model. After training and
debugging, the final RMSE value of the model is less than
110, and R2 is 0.94. In the future, with the accumulation of
production data of PCOD wells, the data volume of the
database will gradually increase, and the model parameters will
be adjusted to improve accuracy and adaptability.

■ OPTIMIZATION MODEL OF PCOD SCHEME BASED
ON DDPG

Taking XX block of offshore oil field as an example, the
injection method of PCOD in this block is compound slug
(pre-slug + main slug + protection slug). There are three types
of systems: polymer, gel, and particle. On this basis, the type,
concentration, injection volume, and injection rate of each slug
system are optimized.
Principle of DDPG Algorithm. The basic elements of RL

include state, action, policy, and reward function. Through the
communication and feedback between the agent and the
environment, the optimal policy is learned from random and
continuous attempts, and the machine learning method that
maximizes the long-term cumulative return is obtained. The
interaction process between the agent and the environment is
as follows: first, the agent obtains a state “s” of the environment
by sensing the environment; Second, the agent selects an
action “a” according to a decision rule; Finally, after the action
is executed, the environment state is changed. At the next
moment, the agent modifies its decision rules after obtaining a
reward “r” from the environment, as shown in Figure 3.

According to the action selection of agents, RL algorithms
can be divided into three categories: value-based, policy-based,

Table 1. Basic Dataa

parameter symbol unit minimum mean maximum

reserves of well group P0 m3 138.8 140.37 462.02
porosity P1 % 0.35 0.36 0.39
permeability P2 mD 2870 3007.98 4816.1
horizontal section

length or vertical
depth of vertical well

P3 m 11 21.11 22

permeability ratio P4 18.39 18.44 25.08
crude oil viscosity P5 mPa·s 74 120.22 263.3
salinity of formation

water
P6 g/L 3061 4494.11 5200

temperature P7 °C 60 62.99 63
formation pressure P8 MPa 10 14.96 15
water saturation P9 % 60 69.74 85
system type of pre-slug t1 1 1.99 3
system concentration of

pre-slug
c1 %

mg/L
0.05 0.28 0.8

system injection volume
of pre-slug

v1 m3 60 2207.45 4500

system type of main
slug system a

t2‑a 1 2.32 3

system concentration of
main slug system a

c2‑a %
mg/L

0 0.43 0.7

system injection volume
of main slug system a

v2‑a m3 2800 5858.49 12661.4

system type of main
slug system b

t2‑b 0 1 3

system concentration of
main slug system b

c2‑b %
mg/L

0 0.19 1

system injection volume
of main slug system b

v2‑b m3 0 1404.50 6000

system type of
protective slug system

t3 1 2.33 3

system concentration of
protective slug system

c3 %
mg/L

0.2 0.49 1

system injection volume
of protective slug
system

v3 m3 400 712.08 2772.2

Injection rate r m3/d 197.03 350.27 746.7
Qi Qi m3 0 676.01 3176.95
a0, 1, 2, and 3 in the system type, respectively, represent no system,
polymer system, gel system, and particle system.

Table 2. Hyperparameters of the RF Model

n_estimators n_jobs random_state min_samples_leaf

6 −1 50 5

Table 3. Hyperparameters of the XGBoost Model

booster learning_rate max_depth subsample colsample bytree

gbtree 0.05 5 0.7 0.8
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and actor-critic. The value-based RL algorithm implicitly
constructs the optimal policy by obtaining the optimal value
function and selecting the action corresponding to the

maximum value function.21 The value function in RL is used
to measure the expected cumulative reward of a state or a state-
action pair. There are typically two types of value functions:
state value function and action value function (also known as
Q function). The state value function measures the expected
cumulative reward that an agent can obtain in the current state,
such as the SARSA algorithm,22 while the action value function
measures the expected cumulative reward that can be obtained
by taking a certain action in the current state, such as the Q-
learning algorithm.23 The agent makes decisions based on the
estimated results of the value function to maximize the
expected cumulative reward. The value-based algorithm has
high sample utilization rate and small value function estimation
variance, so it is not easy to fall into local optimization.
However, this kind of algorithm selects actions by optimizing

Table 4. Hyperparameters of the LightGBM Model

boosting_type num_leaves min_data_in_leaf max_depth learning_rate feature_fraction lambda_l1

gbdt 20 20 6 0.3 0.8 0.1

Table 5. Regression Model Evaluation Indexa

evaluation
index calculation formula criteria

RMSE = = y yRMSE ( )
n i

n
i i

1
1

2
the smaller the RMSE, the

smaller the error, the larger
the RMSE, the larger the
error

R2 = =

=
R 1

y y

y y
2 ( )

( )
i
n

i i

i
n

i i

1
2

1
2

R2 is between 0 and 1; the
larger the value, the better
the model fitting

an represents the number of wells, yi is true value,ŷi is predicted value,
y̅i is the mean of true value.

Figure 1. Four models’ predictions for full sample.
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the Q value, and the agent needs to calculate the corresponding
Q value before selecting each action. It can only solve the
discrete action space problem, which is prone to overfitting,
and the complexity of the problem that can be handled is
limited. For the complex and high-dimensional problem of
parameter optimization in this paper, the value-based
algorithm is difficult to apply.24

The policy-based RL algorithm directly searches for the best
policy across the value function. Compared with value-based
algorithm, policy-based algorithm can deal with discrete and
continuous space problems and has better convergence.
However, the policy-based algorithm has low sampling
efficiency and requires a large amount of computing power
as support, which greatly limits the application of the
algorithm. At the same time, the trajectory variance of this
algorithm is large, the sample utilization rate is low, and it is
easy to fall into the dilemma of local optimization.

The actor-critic algorithm combines the value-based
(corresponding reviewer, critic) method with the policy-
based (corresponding performer, actor) method, and simulta-
neously learns the policy and value function. The actor trains
the value function according to the feedback of critic, while the
critic trains the value function and uses the temporal difference
(TD) method for one-step update.25 DDPG26 is a typical
actor-critic algorithm and an important milestone of the RL
algorithm. Among them, the application of deep neural
network enhances the feature extraction ability of the model
and provides a possibility for the application of RL in high-
dimensional continuous state space. At the same time, the
DDPG algorithm utilizes an experience replay mechanism to
store the agent’s interactions with the environment in a
memory buffer, enabling offline training from the memory to
improve sample efficiency and stability. By employing neural
networks as function approximators, DDPG can enhance its
capability by increasing the complexity and parameter count of
the networks, thereby adapting to more complex problems.
DDPG learns both an actor network to capture policies and a
critic network to estimate value functions, enabling the
algorithm to perform policy optimization and value estimation,

leading to enhanced stability and effectiveness. It is more
suitable for the parameter optimization of PCOD in this paper.

The DDPG algorithm is based on policy gradient and DQN
algorithm, which can solve the problem of continuous action
space, as shown in Figure 4. The DDPG algorithm consists of

four neural networks, namely, the actor network μ(s|θμ), the
target actor network μ(s|θμ d′), the critic network Q(s, a|θQ), and
the target critic network Q(s, a|θQd′). Here, θμ, θμ d′, θQ, and θQ d′

represent the internal parameters of these four neural
networks. The actor network is used to determine the action
at that the agent will take in the current state st. In order to
explore the action space and avoid getting stuck in local
optima, a noise function can be added to the actor network, as
shown in eq 1.

= | +a s N( )t t t (1)

where Nt refers to a noise function. The critic network is used
to estimate the state-action value Q(st, at). The target actor
network is used to generate the action at+1 that the agent
should take in the next state st+1. The target critic network is
used to calculate the state-action value Q(si+1, ai+1). The target
value for calculating Q(st, at) based on the Bellman equation is
as follows

= + | |+ +y r Q s s(( , ( ) )i i i i
Q

1 1 (2)

Figure 2. Comparison of the performances of four models.

Figure 3. Interaction process between agent and environment.

Figure 4. Principle of the DDPG algorithm.
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where yi is the target value of Q(st, at), γ is the discount factor,
and ri is the reward feedback from the environment.

The DDPG algorithm uses an experience replay mechanism
to break the correlation between interaction sequences τ,
storing state transitions (si, ai, ri, si+1) in an experience pool. A
certain number of state transitions are randomly selected from
the pool for training and the parameters of the 4 neural
networks are updated at the same time. The parameters of the
critic network are updated in the direction of minimizing the
loss function, which is as follows

= |L
N

i y Q s a1
( ( , ))i i i

Q 2
(3)

where Q(si, ai|θQ) represents the estimated value of Q(si, ai).
The actor network parameters are updated in the direction of
maximizing the cumulative reward.

| | | |= =J
N

Q s a s1
( , ) ( )

i
a

Q
s s a s s, ( )i i i

(4)

The target networks are used to improve the stability of the
algorithm. The update rule for the target network parameters is
shown in eqs 5 and 6.

+ (1 )Q Q Q (5)

+ (1 ) (6)

where τ is the update parameter, τ ≪ 1.
Optimization Model of PCOD Scheme Based on

DDPG Algorithm. In this paper, the optimization model of
PCOD scheme based on DDPG is established, and the
maximum Qi is achieved by automatically optimizing the type,
concentration, injection volume and injection rate of PCOD
system. The two key contents of RL are environment and
agent. In order to express the optimization problem of PCOD
scheme as an RL problem, the environment and agent need to
be defined first. In the optimization process of PCOD scheme
based on DDPG algorithm, the environment is a proxy model
formed by data-driven modeling of PCOD process. The agent
takes actions in this environment to try to maximize the best
possible reward in the environment. In this paper, the agent is
defined from the angle of injection well. Its possible action is to
change the type, concentration, injection volume and injection
rate of the PCOD system. According to the action selected by
the oil well, the observed states are Qi, type, concentration,
injection volume and injection rate of the PCOD system. The
elements in the DDPG method are shown in Table 6.

When the environment resets the first state, the agent selects
the action through the Gaussian policy, and the selected action

is transferred to the proxy model according to the parameters
of the PCOD operation. According to the comparison between
the output of the model and the optimization target, a reward
value is allocated for the action. This reward serves as a
feedback signal to let the agent know whether the action in a
given state is beneficial to the target so that the agent can
decide the next action. Table 7 shows the detailed optimization
process of the DDPG model.

DDPG-Environment. In this paper, the proxy model of
PCOD scheme is used as the environment of DDPG model.
During the interaction between agent and proxy model, agent
will provide the current state as input to proxy model, and then
the model will predict the next state and reward. Agents update
their policy network and Q network according to the
information provided by the proxy model. In this way, the
intelligent agent can take into account the dynamic changes in
environmental parameters during the trial and error process
and make corresponding adjustments.

Through data-driven modeling, there is no need to study the
mechanism reaction process of the object. It only needs to be
driven by data and build the prediction model through the
establishment of artificial intelligence algorithm. The real
function of the proxy model is to simulate the real environment
and provide corresponding feedback to the DDPG agent. The
DRL model with numerical simulation as the environment
needs to run numerical simulation during each optimization,
which is very time-consuming. The advantages of establishing
RL environment based on data-driven method are low cost,

Table 6. Elements of DDPG Algorithm

elements description

objective find the best combination of PCOD parameters for each well
to maximize Qi.

environment data-driven proxy model of PCOD scheme.
state current Qi, type, concentration, injection volume and

injection rate of PCOD system.
action change the values of the type, concentration, injection

volume and injection rate of PCOD system.
reward change of Qi after current optimization compared with that

before optimization.
behavior

policy
Gaussian policy.

Table 7. Procedures of the DDPG Algorithm for the PCOD
Process

DDPG algorithm for optimization process of PCOD scheme

environment: PCOD process
build a data-driven proxy model simulation environment
agent: DDPG
randomly initialize critic network Q(s, a|θQ) and actor μ(s|θμ) with weights θQ

and θμ.
initialize target network Q′ and μ′ with weights θQ′ ← θQ, θμ ← θμ.
initialize replay buffer R.
for episode = 1, M do

initialize a random process N for action exploration
receive initial observation state s1
for t = 1, T do

select action at = μ(st|θμ) + Nt according to the current policy
and exploration noise
execute action at and observe reward rt and observe new state
st+1

store transition (st, at, rt, st+1) in R
sample a random minibatch of N transitions (si, ai, ri, si+1) from
R
set yi = ri + γQ′ (si+1), μ′((si+1|θμ′)|θQ′)
update critic by minimizing the loss:

= |L y Q s a( ( , ))
N i i i i

Q1 2

update the actor policy using the sampled policy gradient:

| | | |= =J
N

Q s a s
1

( , ) ( )
i

a
Q

s s a s s, ( )i i i

Update the target networks:
θQ′ ← τθQ + (1 − τ)θQ′
θμ′ ← τθμ + (1 − τ)θμ′

end for
end for
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high efficiency, better adaptability to complex engineering
scenarios and high flexibility.
DDPG-State. The state space is 14, that S = [Qi, t1, c1, v1,

t2‑a, c2‑a, v2‑a, t2‑b, c2‑b, v2‑b, t3, c3, v3, r], Where t1 represents the
system type of pre-slug, c1 is system concentration of pre-slug,
v1 is system injection volume of pre-slug, t2‑a is system type of
main slug system a, c2‑a is system concentration of main slug
system a, v2‑a is system injection volume of main slug system a,
t2‑b is system type of main slug system b, c2‑b is system
concentration of main slug system b, v2‑b is system injection
volume of main slug system b, t3 is system type of protective
slug system, c3 is system concentration of protective slug
system, v3 is system injection volume of protective slug system,
and r is injection rate. In the training process, the agent
observes its current state, selects actions according to the
current policy, changes correspondingly after execution in the
environment, and then predicts the corresponding Qi, t1, c1, v1,
t2‑a, c2‑a, v2‑a, t2‑b, c2‑b, v2‑b, t3, c3, v3, r, thereby outputting a new
set of states.
DDPG-Action. The action space is 13, that A = [t1, c1, v1, t2‑a,

c2‑a, v2‑a, t2‑b, c2‑b, v2‑b, t3, c3, v3, r]. Due to operational
constraints, the variation range of action variables shall not
exceed its maximum and minimum values, The range of values
for each parameter variable is shown in Table 8.

The activation function of the last layer of the actor network
is the tanh function so that the action output of each layer is
controlled between [−1,1]. Then, according to eq 7, the
output of the neural network is scaled up in proportion to the
action boundary to make the action output of the actor
network meet the boundary value constraint.

= · +a
a a
b b

a b a( )max min

max min
min min

(7)

where a represents the value output by the tanh function of the
last layer in the actor network; bmax and bmin, respectively,
represent the maximum and minimum values of the output
value of the tanh function; a_ represents the value of the
operation after being scaled up in proportion to the operation
boundary; and amax and amin, respectively, represent the
maximum value and the minimum value of the actual action.

DDPG-Reward. In RL, the reward comes from the
environment. Facing different tasks, the reward function
needs to be carefully designed according to the characteristics
of the task and the state of the environment. In this paper, the
goal of the agent is to maximize the Qi. Therefore, this paper
gives rewards according to the change rate of the Qi after the
agent optimization compared with the initial Qi. The reward
function is shown in eq 8.

= _ _

_

s s

s
rewardt

Q Q

Q

i t i

i

0

0 (8)

where sQdi_t
represents the Qi obtained by the agent at time t and

sQdi_t‑0
represents the initial Qi. If the agent takes an action at

time t that reduces the Qi relative to the initial Qi, it will receive
a negative reward, and the greater the reduction, the larger the
absolute value of the negative reward. This shows the agent
that this strategy has a negative effect, so it should change its
strategy and try to obtain a positive reward. Conversely, the
greater the increase in Qi to the initial Qi after taking an action
at time t, the greater the positive reward, which will encourage
the agent to take such actions to increase the reward value.
DDPG-Action Exploration Policy. DDPG algorithm is a

deterministic policy algorithm. Although the algorithm
efficiency of deterministic policy is high, it also has the defect
of insufficient exploration ability. In order to explore potential
better policy, random noise is introduced into the decision-
making mechanism of action: the decision-making of action is
changed from a deterministic process to a random process, and
then the action is sampled from the random process and issued
to the environment for execution. This policy is called the
behavior policy. The behavior policy adopted in this paper is
Gaussian policy with noise. The behavior policy is shown in
Figure 5. Since the actor in the DDPG algorithm uses a certain
value in the Gaussian distribution to output, controlling the
variance of the Gaussian distribution can control the
proportion of ″exploration″ and ″utilization″ of the actor. In
this paper, the initial variance σ = 0.1. After the data in the
memory pool reaches the upper limit, learning begins.

Table 8. Value Range of Each Parameter Variable

symbol t1 c1 v1 t2‑a c2‑a v2‑a t2‑b c2‑b v2‑b t3 c3 v3 s

min 1 0.05 60 1 0.25 2800 0 0 0 1 0.2 400 197.0
max 3 0.8 4500 3 0.7 12661.4 3 1 6000 3 1 2772.2 746.7

Figure 5. Schematic diagram of behavior policy.

Table 9. Basic Data of Well_1 and Well_2

symbol P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 t1 c1

well_1 138.8 0.36 3000 11 18.39 76 4500 60 10 60 2 0.18
well_2 283.9 0.35 2980 12 18.39 263.3 4500 63 15 80 1 0.1
symbol v1 t2‑a c2‑a v2‑a t2‑b c2‑b v2‑b t3 c3 v3 s Q

well_1 1800 2 0.35 3600 0 0 0 2 0.42 2100 200 631.89
well_2 415 1 0.4 12661.4 0 0 0 1 0.2 747.1 746.7 1781.5
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Experimental Study. In this paper, the two wells with
different Qi in this block are selected for optimization. The
basic data is shown in Table 9. The purpose of well_1 PCOD
is to expand the swept volume of injected water, improve the
recovery degree of well group and improve the development
effect of water drive through PCOD of well-group_1 reservoir.
After PCOD, the Qi of well-group_1 is 631.89 m3, which has a
large optimization space. The well_2 has good connectivity
with other wells, and injection breakthrough is obvious. The
remaining recoverable reserves of the well group are large,
which has great potential for tapping. After the start of profile
control and flooding, well cluster 2 has achieved a certain effect
of precipitation and oil increase. The Qi of well-group_2 is
1781.5 m3, and the PCOD effect is very good.

The overall framework of parameter optimization of PCOD
scheme based on the DDPG algorithm is shown in Figure 4.
After repeated experimental debugging, the network parame-
ters were optimized based on the model convergence and
reward value curve, and the optimal network structure was
ultimately selected. Both actor network (main network and
target network) and critic network (main network and target
network) contain one hidden layer network, and the number of
neurons in each layer is 30 and 60, respectively. The activation
function of the last layer of the actor network is the tanh
function so that the action output of each layer is controlled
between [−1,1]. The critic network uses relu activation
function to evaluate the PCOD parameters obtained by actor
network. After repeated experiments and debugging, the actor
network learning rate is set to 0.001, the critic network learning
rate is set to 0.002, the training round is set to 500, and the
maximum time step number of each round is 200, which
means that the agent will conduct 200 steps of exploratory
learning in each round, and the maximum size of the memory
buffer is 10,000.

■ RESULTS AND DISCUSSION
The change curve of reward value during the training of the
DDPG optimization model of well_1 is shown in Figure 6,
which shows the change curve of the rewards obtained by the
agent in each episode. During the training process, the total
reward gradually increases and fluctuates within the equili-
brium range, which indicates that the DDPG agent can learn in

the process of interacting with the environment to select
actions with higher rewards. In the absence of any prior
knowledge given to the agent, the policy adopted by the agent
in the initial stages is difficult to improve the oil production,
and hence the reward value is relatively low. As the agent
learns, the oil production gradually increases, and the reward
value also increases accordingly. The total reward for well_1
stabilizes around the 50th iteration, and the model has
essentially learned the combination of variables to maximize
the overall reward of the system, with the stimulation scheme
parameters all within their parameter range. The fluctuation in
the curve in the later stages of training is due to the
introduction of the Gaussian policy in the action exploration
process, which allows the model to continuously explore
potential better policies. This also makes the model less likely
to fall into local optimal solutions. The environment in this
study is relatively complex and requires optimization of
multiple parameters, with a total training time of about 40
min and an average time of 4.8 s per iteration. Compared to
traditional numerical simulation methods, the computational
cost is significantly reduced.

Each iteration of the model includes two processes: sampling
and optimization. Sampling refers to sampling some
trajectories from the environment under the current policy
to update the value function and action policy of the policy.
Optimization refers to updating the parameters of the policy
based on the samples obtained from the sampling process. In
the optimization process, the gradient of the policy needs to be
computed, and the policy parameters are updated based on the
gradient. To ensure the correctness and efficiency of policy
updates, it is necessary to periodically test the performance of
the policy to identify and solve problems in a timely manner.
Through testing, the current policy reward performance
indicator can be obtained in the current environment, which
can be used to determine whether the current policy has been
improved and adjust the algorithm hyperparameters or
optimization methods in a timely manner to better improve
the algorithm performance. During the testing phase, there is
no need for the model to continue exploration because the
optimal action has been determined, and it is desired to see the
model execute the task with the optimal action. Therefore, no
noise is added during testing. This article tests once per
iteration and immediately after each sampling process.

The change curve of reward value during the testing of the
DDPG optimization model of well_1 is shown in Figure 7.
Since the model has been tested, there is no need to conduct
action exploration. The total reward value of the parameter
optimization model of PCOD scheme based on DDPG tends
to be stable after 220 episodes. It shows that when the DDPG
model is stable, the total reward value of the model is from
punishment to reward at the beginning, iterative training is
continued, and finally the optimal value is stable.

The change curve of various parameters during the testing of
the DDPG optimization model of well_1 is shown in Figure 8.
The initial Qi of well_1 was 631.89 m3. The intelligent agent
stabilized at the maximum incremental oil volume of 1840.09
m3 from the 200th round, which increased the oil volume by
1208.2 m3, a 191.2% improvement. The optimized parameters
are shown in Table 10. The type of segment plugging system
changed after optimization, indicating that the particle +
polymer composite injection system is suitable for this
geological condition, rather than the gel system. At the same
time, the injection volumes and rates of various segment

Figure 6. Change curve of reward value during the training of DDPG
optimization model of well_1.
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plugging systems have also changed after optimization,
indicating that the original PCOD parameters were not set
appropriately, resulting in the underutilization of the reservoir
potential.

The change curve of reward value during the training of the
DDPG optimization model of well_2 is shown in Figure 9. The
reward value of the model increases significantly around the
50th episode, which indicates that the model has begun to
learn how to take action to obtain greater rewards. The model
reward value is negative because the Qi after the PCOD
optimization for well_2 was 1781.5 m3, which is relatively
superior in the block. During the training process, the model
continuously tried and erred, making it difficult to surpass the
initial oil production increase.

The change curve of reward value during the testing of the
DDPG optimization model of well_2 is shown in Figure 10.
The total reward value of the DDPG optimization scheme
model starts to be positive at around 200 rounds and tends to
stabilize after 300 rounds.

Figure 7. Change curve of reward value during the testing of DDPG
optimization model of well_1.

Figure 8. Change curve of various parameters during the testing of the DDPG optimization model of well_1.
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The change curve of various parameters during the testing of
the DDPG optimization model of well_2 is shown in Figure
11, and the optimized parameters are shown in Table 11. The
optimized values of each parameter are within a reasonable
range, and the Qi has increased by 218.76 m3, an improvement
of 12.3%. The type of the reservoir system has changed after
optimization, indicating that the particle system is more
suitable for injection under geological conditions rather than
the polymer system. Although the water injection well_2 had
achieved good results before optimization, the DDPG model
optimization still significantly increased the Qi, demonstrating
that this model can optimize different PCOD effects of
injection wells and has strong generalization ability.

In order to test the performance of the model, PSO
algorithm, one of the most classical intelligent algorithms, is
selected to establish PSO models for wells_1 and well_2,
respectively, for case study. The essence of the PSO algorithm
is that a particle exchanges experience with other particles in
the population through memory, updates the existing memory,

and adjusts its traveling direction to gradually approach the
optimal position. It can provide a solution to the global
optimization problem.27

The XGBoost proxy model of the PCOD scheme was used
as the objective function of the PSO algorithm, which has both
controllable and uncontrollable input parameters. The PSO
algorithm was used to search for the maximum value of the
objective function (Qi) in order to infer the values of the
controllable parameters, namely, the parameters of PCOD
(system type, concentration, injection volume, and injection
rate). There are a total of 23 variables in the objective function,
including 10 uncontrollable variables and 13 controllable
variables. In the optimization process with oil production as
the objective function, the values of the uncontrollable
variables are fixed for each sample, and the values of the
controllable variables are inferred by optimizing the maximum
value of the objective function. The constraints of the objective
function are the construction intervals of the 13 controllable
variables.

The objective function can be expressed as

*u J ufind as arg max ( ) (9)

u u ui i,min ,max (10)

where u represents the parameters of the optimization plan.
The upper and lower limits of the variable u, ui,min and ui,max,
are obtained from the on-site construction constraints. The
objective function J is the predicted Qi by the XGBoost proxy
model.

The internal parameters of the optimal algorithm are set as
follows: the number of iterations is 500; the upper and lower
limits of the velocity weight are −0.2 and 0.2, respectively; the
population size is 5000; and the learning factors of the
individual and social particles are 1.6 and 2, respectively. To
dynamically change the movement speed of the particle swarm
according to the system environment and ensure that the
particle swarm can fully explore the global space in the early
stage of operation and meet the needs of searching for local
important areas in the later stage, a linearly decreasing inertia
factor ω28 is set in this study to modify the particle movement
speed.

The fitness value change curve and parameter change curve
of well_1 based on the PSO model are shown in Figures 12
and 13, respectively, and the fitness value change curve and
parameter change curve of well_2 based on the PSO model are
shown in Figures 14 and 15, respectively. The well_1 model
began to converge at around 400 iterations, while the well_2
model started to converge at around 20 iterations, with a faster
convergence rate. Compared to the DDPG optimization
model, the PSO model took only 30 min to complete the
optimization process, demonstrating a higher time efficiency.
Tables 12 and 13 show the optimized parameters for well_1
and well_2, respectively, which fall within reasonable ranges.
The well_1 was optimized using a particle system injection
scheme, which differed slightly from the results of the DDPG
model, but confirmed that the gel system is not suitable for this
well. Although the Qi of well_1 was improved, there is still

Table 10. Initial and Optimized Parameters of Well_1

symbol t1 c1 v1 t2‑a c2‑a v2‑a t2‑b c2‑b v2‑b t3 c3 v3 r Qi

initial 2 0.18 1800 2 0.35 3600 0 0 0 2 0.42 2100 200 631.89
optimized 3 0.05 60 3 0.7 2800 0 0 0 1 0.2 400 197.03 1840.09

Figure 9. Change curve of reward value during the training of the
DDPG optimization model of well_2.

Figure 10. Change curve of reward value during the testing of the
DDPG optimization model of well_2.
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some gap compared to the DDPG model. Meanwhile, Qi of
well_2 did not improve after optimization but rather decreased
compared to the pre-optimization result.

The aim of this study is to optimize the parameters for the
design of pre-construction schemes for water injection wells to
increase Q. While considering time efficiency, we focus more
on the optimization effect of the model. PSO algorithm is a
heuristic algorithm based on the concept of swarm intelligence,
where each particle updates its own state by interacting with
neighboring particles. However, particles can only consider
their own and neighboring particle situations when updating
their states, without considering the global optimal solution.29

Therefore, if the initial position is not good or the search space
is large, particles are prone to getting trapped in a local optimal
solution. Although the PSO model has a faster convergence

rate, the optimized effect is still inferior to the DDPG model in
this paper, indicating that due to the complexity of the
XGBoost proxy model, the search space is too large, leading to
the PSO algorithm only being able to converge to a local
optimal solution instead of a global optimal solution. At the
same time, this study verified the DDPG model’s ability to
solve high-dimensional optimization problems, which is
superior to the PSO model in optimizing different well
stimulation effects in stimulation wells.

■ CONCLUSIONS

(1) The parameter optimization model of PCOD scheme
established based on DDPG in this paper can greatly
increase the half-year increased oil production (Qi) of

Figure 11. Change curve of various parameters during the testing of the DDPG optimization model of well_2.

Table 11. Initial and Optimized Parameters of Well_2

symbol t1 c1 v1 t2‑a c2‑a v2‑a t2‑b c2‑b v2‑b t3 c3 v3 r Qi

initial 1 0.1 415 1 0.4 12661.4 0 0 0 1 0.2 17471.4 746.7 3563.0
optimized 3 0.05 60 3 0.61 2800 0 0 3 1 0.2 27709.18 197.03 6319.76
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Figure 12. Change curve of fitness value of PSO optimization model of well_1.

Figure 13. Change curve of parameters of PSO optimization model of well_1.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c02003
ACS Omega 2023, 8, 23739−23753

23750

https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c02003?fig=fig13&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c02003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Figure 14. Change curve of fitness value of PSO optimization model of well_2.

Figure 15. Change curve of parameters of PSO optimization model of well_2.
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injection well group by optimizing the parameters of the
PCOD scheme, which is of great significance for oil field
development. At the same time, the proxy model in this
paper is based on historical data and numerical
simulation data, which can automatically select the
optimal algorithm when applied in different blocks and
has certain flexibility.

(2) Compared with the PSO model, the parameter
optimization model of PCOD scheme established
based on DDPG in this paper can obtain the PCOD
schemes with higher Qi for well groups with different
PCOD effects and has strong optimization and general-
ization ability.

(3) The DDPG algorithm has more advantages for
continuous action problem. In the future, it may be
considered to further improve the model to realize the
monitoring and optimization of the operation parame-
ters such as the viscosity and displacement of the
injection system.
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