
Research Article
An Efficient Cancer Classification Model Using Microarray and
High-Dimensional Data

Hanaa Fathi ,1 Hussain AlSalman ,2 Abdu Gumaei ,3 Ibrahim I. M. Manhrawy ,4

Abdelazim G. Hussien ,5,6 and Passent El-Kafrawy 1,7

1Mathematics and Computer Science Department, Faculty of Science, Menoufia University, Al Minufya, Egypt
2Department of Computer Science, College of Computer and Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia
3Computer Science Department, Faculty of Applied Science, Taiz University, Taiz, Yemen
4Department of Basic Science, Modern Academy, Cairo, Egypt
5Department of Computer and Information Science, Linköping University, Linköping, Sweden
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Cancer can be considered as one of the leading causes of death widely. One of the most effective tools to be able to handle cancer
diagnosis, prognosis, and treatment is by using expression profiling technique which is based on microarray gene. For each data
point (sample), gene data expression usually receives tens of thousands of genes. As a result, this data is large-scale, high-
dimensional, and highly redundant. -e classification of gene expression profiles is considered to be a (NP)-Hard problem.
Feature (gene) selection is one of the most effective methods to handle this problem. A hybrid cancer classification approach is
presented in this paper, and several machine learning techniques were used in the hybrid model: Pearson’s correlation coefficient
as a correlation-based feature selector and reducer, a Decision Tree classifier that is easy to interpret and does not require a
parameter, and Grid Search CV (cross-validation) to optimize the maximum depth hyperparameter. Seven standard microarray
cancer datasets are used to evaluate our model. To identify which features are the most informative and relative using the proposed
model, various performance measurements are employed, including classification accuracy, specificity, sensitivity, F1-score, and
AUC. -e suggested strategy greatly decreases the number of genes required for classification, selects the most informative
features, and increases classification accuracy, according to the results.

1. Introduction

Cancer can be considered as one of the leading death causes
[1], and gene expression profiles derived from microarray
data have been identified as promising cancer diagnostic
indices [2].

Microarrays are used to measure thousands of genes
interactions at the same time and create a cellular function
global picture [3, 4].

-e classification of microarray data is one of the most
common and important applications of functional genomics

microarray data which means classifying patients samples to
many classes based on their gene expression profiles [5, 48].
In literature, there are many machine learning methods
which have been used in the application of microarray data
classification [7, 8]. However, the classification process of
microarray data is still challenging and difficult due to the
small samples numbers and its high dimensionality [9].
Microarray gene expression experiments often generate a lot
of features for a small patients number which leads to a high-
dimension dataset with a small samples number. Gene
expression data is very challenging and complex; genes are
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correlated with one another directly or indirectly which
make classification process a very hard and difficult mission
which generally requires using an accurate and powerful
feature selection technique.

-e main phase in categorization systems is feature
selection. To improve classification performance, feature
selection-based classification approaches have been inves-
tigated. Any statistical technique’s [10] success is contingent
on the predetermination of independent properties. As a
result, identification is kept to a minimum, but the purpose
of feature selection is to find the most informative subset of
characteristics and/or reduce the number of dimensions.

In order to be able to select an informative genes subset
while eliminating/declining redundant or irrelevant genes and
to be able to improve the performance of microarray high-
dimension data classification, this research study introduces a
hybrid feature selection approach, called PCC-DTCV, which
combines different methods, Pearson’s correlation coefficients
(PCC) and Decision Tree (DT) [11] as classification approach
and feature selection [12–17] andGrid Search CVwhich can be
employed as an optimization technique [13, 14, 18–20, 42–47],
to optimize the tuning parameters of DT (max-depth) to be
able to get the optimal feature subset.

In order to evaluate the suggested PCC-DTCV model, 7
popular datasets from the most well-known used microarray
datasets for different cancer types are used. -e proposed
model evaluation was carried out using classification accu-
racy, k-fold cross-validation, sensitivity, and specificity values.

-e proposed method, according to the experimental
methods, reduces dimensionality and selects the most impor-
tant and informative features (genes) and improves the iden-
tification of cancer tissues from benign tissues. Furthermore,
PCC-DTCV improves the accuracy classification performance.

2. Background and Related Work

Recently, there have been several major research efforts to
study the classification and diagnosis of cancer microarray
data. As a framework for the study presented in the re-
mainder of the article, we offer an outline of some of this
analysis and the applied techniques in Table 1.

3. Preliminaries

3.1. DNA Microarray. One of the main tools employed in
molecular biology and genetics to track gene expression is
the DNA microarray, which refers to the degree of devel-
opment of genome-determined protein molecules. Although
the protein structure varies from the mRNA measurement
gene instead of protein structure, it is a popular method for
calculating gene expression, so thousands of proteins would
be difficult to analyse, and mRNA sequences [39] are hy-
bridized with their additional DNA or RNA sequences,
although proteins do not have these properties. Figure 1
shows experimental microarray steps that include the ex-
traction of mRNA from a cell or tissue. -e structure of the
DNAmicroarray matrix is shown in Figure 2, described byN
(gene measurement)×M (a sample or condition involved in
a specific microarray experiment).

-e data on gene expression given by microarray ex-
periments are processed as the broad matrix, where the
samples are defined by the columns S S1, . . . , Sm􏼈 􏼉 and xij

measured the expression strength of the i-th gene
(i � 1, . . . , n, and n is the genes number) in the j-th sample
(j � 1, . . . , m andm characterize the samples or experi-
mental conditions). -e row of genes represents G
(gene1, . . . , genen). In this study, we concentrate on solving
two problems: the analysis and understanding of microarray
data which have faced several challenges:

(1) High dimensionality and noise
(2) Increasing the accuracy performance taking into

consideration interpretations that are biologically
significant in gene expression when analysing
microarray data

3.2. Decision Tree (DT). Decision Tree learning can be
considered as one of the most practical and commonly used
methods for inductive inference.

It is a technique used for approximating discrete-valued
functions that can learn disjunctive expressions and is re-
silient to noisy data [21]. -ese inductive inference algo-
rithms are among the most common, and they have been
successfully employed for a wide range of tasks, from
learning up to diagnosis of the medical cases to learn to
assess the loan applicants credit risk. Decision Tree learning
is a nonbacktracking, one-step lookahead (hill-climbing)
quest through the space of all possible Decision Trees using a
heuristic. Decision Trees are commonly used in bio-
informatics, especially in decision analysis to help identify a
type of disease that is more likely to produce a specific
symptom. A tree-based classifier was used in our proposed
model PCC-DTCV for its basic properties, explicit context,
and fast transformation to if-then law.-e Decision Tree is a
device for decision support which uses a dendritic graph and
its potential problems, including unintended incident ef-
fects, resource costs, and utility. In bioinformatics, Decision
Trees are widely used, especially in decision analysis to help
classify a type of disease more likely to achieve a certain
symptom. As a descriptive means for manipulating condi-
tional probabilities, the Decision Tree may be used. -is
works to isolate and conquer [22] methods for creating a
Decision Tree. As shown in equations (1)–(5), Entropy
controls how a Decision Tree determines to divide the data.
It influences how the borders are drawn by a Decision Tree.
-e Gini (Gini impurity) index measures the degree of
probability of a feature that is incorrectly labelled to be
randomly selected. -e mistakes are in classification. -e
gain ratio is the parameter of the Decision Tree for mea-
suring output and it is defined as

Entropy (t) � − 􏽘
n

i�1
P(i|t)log2 P(i|t), (1)

Gini(t) � 1 − 􏽘

n

i�1
[P(i|t)]

2
, (2)

Classification error(t) � 1 − max i[p(i|t)], (3)
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Figure 1: Experiment steps of microarray.

Table 1: Review of previous studies on the feature selection, optimization, and classification methods.

Author Datasets Method Remark

[29] Shukla and
Tripathi (2020) DLBCL (JMI) Joint mutual information

(mRMR) information gain (IG)

-is research introduced modern filter-based gene
selection technique for detecting biomarkers from

microarray data.

[30] Kilicarslan
et al. (2020)

Ovarian, leukemia, and
Central Nervous system

(CNS)

Relief-F of support vector machines
(SVM), coevolutionary neural

networks (CNN)

-is research introduced a hybrid approach based on
Relief-F and CNN for cancer diagnosis and

classification.

[31] Pashaei et al.
(2016)

Colon tumor ALL, AML,
4 (CNS) MLL

Binary black hole algorithm (BBHA)
and random forest ranking (RFR)

-e authors introduced gene selection and
classification techniques to microarray data based on

RFR and BBHA.

[32] Pradana and
Aditsania Breast cancer Binary particle swarm optimization

(BPSO) and Decision Tree C4.5

-is research introduced binary PSO and DT for
cancer detection based on microarray data

classification.

[33] Mantovani
et al. UCI J48 DTs

-ey presented induction algorithm and introduced
hyperparameter tuning of a Decision Tree induction

algorithm.

[34] Abbas et al.
(2021) Breast cancer

Whale optimization algorithm
(WOA), extremely randomized tree

BCD-WERT

-is research introduced a novel model for breast
cancer detection using WOA optimization based on
extremely randomized tree algorithm and efficient

features.

[35] Reddy et al. Srivastava, G. (2020) UCI heart disease
-is research presented an adaptive genetic fuzzy
logic algorithm and introduced a hybrid GA and a
fuzzy logic classifier for heart diagnosis and disease.

[36] Qaraad et al.
(2020)

Colon cancer, breast
cancer, prostate cancer Elastic NET PSO algorithm

-is research introduced parameters optimization of
Elastic NET using PSO algorithm for high-

dimensional data.

[37] El Kafrawy
et al. (2020)

De novo acute myeloid
leukemia

Recursive feature elimination (RFE),
tree-based feature selection (TBFS)

-is research introduced multifeature selection with
machine learning for de novo acute myeloid

leukemia in Egypt.
[38] Turgut et al.
(2020) Breast cancer AdaBoost and Gradient Boosting

random forest, logistic regression
-is research introduced classification for microarray
breast cancer data using machine learning methods.
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where n is the number of classes and 0 log_20� 0 in entropy
calculations:

Gain Ratio �
Gain(p)

SplitInfo(P)
, (4)

and the function SplitInfo is defined as follows:

Split Info(P, test) � 􏽘

n

i�1
P

i

p
􏼠 􏼡log P

i

p
􏼠 􏼡􏼠 􏼡, (5)

where p gives the probability distribution of the data sample
and “bit” due to calculating statistics. Equation (5) is used
with log function with basis 2.-e relation between Entropy,
misclassification error, and Gini impurity is seen in Figure 3.

3.3. Correlation Coefficients. -e Correlation-based Feature
Selection algorithm computes the correlation coefficient
using a correlation-based heuristic evaluation function
(CFS). It gets over the limitation of univariate filter ap-
proaches which do not take into account feature interaction
[23, 24]. -e process of correlation [25] can be used to
measure the relationship between variables (genes). -e
linear relationship between 2 variables can be described
using Pearson’s correlation coefficients or correlation co-
efficients in statistics. -e well-known similarity measure
between two features is defined as correlation. If two features
depend on each other linearly then their coefficient of
correlation is ±1. -e correlation coefficient is 0 if the
features are uncorrelated. For a pair of variables (X, Y), the
coefficient of linear correlation r is given by the following
equation [26]:

r �
􏽐 Xi − Xi( 􏼁 Yi − Yi( 􏼁

�����������

􏽐 Xi − Xi( 􏼁
2

􏽱 �����������

􏽐 Yi − Yi( 􏼁
2

􏽱 . (6)

In our model, we used Pearson’s correlation coefficient
(PCC) as feature selection [38]. -is is a mathematical
strength measure of a paired data linear relationship. It is
defined by r and is limited as follows:

−1≤ r≤ 1 , in which positive values mean that the linear
correlation is positive, negative values imply that the linear
correlation is negative, zero value means there is a nonlinear

correlation, and the closer the value is to −1 or 1, the stronger
the linear correlation exists.

-e proposed model used Pearson’s correlation to cal-
culate the correlation between the features. Also using
symmetric uncertainty measures, the class feature is cal-
culated. If the value is higher than the threshold value (0.5),
then the feature will be chosen. -e selection ends when the
number of features equals n log n. According to the de-
creasing order, each selected feature is ranked. To remove
the redundant feature, the feature-feature correlation is
done.-reshold values (0.4, 0.5, and 0.6) were used and their
results were compared with the Decision Tree before and
after the optimization of its maximum depth (max-depth).

3.4. Grid Search Cross-Validation. A Grid Search is a pa-
rameter tuning method which builds and evaluates a model
methodically for each algorithm parameters combination
specified in a grid. -e well-known terms that should be
addressed while using Grid Search CV are discussed as
follows [27].

(A) Estimator. -is term is used in order to implement
the estimator interface in scikit-learn. -is param-
eter receives the classifier to be trained [28].

(B) Parameter Grid. It is a Python key-value dictionary
with pairs of parameter names and parameter set-
tings. All combinations of these parameters are
tested to ensure the highest level of accuracy.

(C) Cross-Validation. -is determines the strategy for
cross-validation splitting. Cross-validation is a
technique to resample available data to evaluate
machine learning models. -e main goal of this is to
evaluate the performance of machine learning
models on previously unseen data. -e main ad-
vantage of using this is that it produces less biased or
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Figure 3: -e relation between Gini impurity, Entropy, and
misclassification error. [22].
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optimistic results compared to a simple train-test
split. -e way it works is that it first shuffles the
dataset randomly. -e entire dataset is then divided
into k groups. Each group is used as test data, while
the others are used as training data. -e evaluation
band related to each group is saved to be summa-
rized at the end to be able to check the performance
of the model. Importantly, each sample appears
once in the testing data and is used to train k − 1
times. Figure 4 explains the Grid Search cross-val-
idation process in detail.
During the training step, hyperparameters that are
optimizer variables are executed to get optimal average
values after several trial-and-error processes. -e tree
maximum depth (max-depth) is the most critical
hyperparameter that influences the difficulty of the
Decision Tree model [6], whereas the maximum depth
is the length of the longest distance from the tree root
to a node. -e root node is 0.0 in depth. -e higher
overall depth value induces overfitting, and the lower
value results in underfitting. In the proposed hybrid
model PCC-DTCV, Grid Search cross-validation is
used to overcome the overfitting constraint with the
regular Grid Search. To obtain better parameters, Grid
Search cross-validation is used to optimize the tree
maximum depth hyperparameter to get optimal
hyperparameter value.

4. Proposed Model PCC-DTCV

-e proposed hybrid model PCC-DTCV for classifying and
diagnosing cancer microarray data (as shown in Figure 5) will
be clarified in detail. Key model phases are as follows: (1) -e
datasets (cancer microarray) are preprocessed. -is stage is
essential to (a) avoid features in wide digital ranges domi-
nating fewer ranges, (b) avoid numeric complexities through
calculation, and (c) adjust each feature to the range [0,1]. (2)
PCC is applied for finding the association between the
continuous features and the class feature, evaluation to genes
is based on how it is related to targeting the features that have
a high correlation with the target class having a correlation
value near to 1, and the genes with the correlation coefficient
≥ 0.5 are removed and the output subsets are informative and
important genes (features). (3)-e sample data output subset
is the partition used to train data to match the model and test
data used to validate the model as soon as a model is fully
trained (trained DT). (4) Grid Search CV with 10-fold cross-
validation is used to obtain the optimal parameters (max-
depth) of the tree on the training set. (5) Model accuracy is
evaluated, using 10-fold cross-validation, and our dataset is
10-fold split, using train split to train the classifier, and
prediction quality on unseen data is estimated (test split). -e
confusion matrix is measured for test split. -e AUC,
specificity, and sensitivity in addition to accuracy are com-
puted. (6) If the termination conditions are not met, the
process from three to six is repeated until the termination
criteria are satisfied. If the termination is fulfilled (max folds,
number� 10), the result will be a subset of optimal genes
(features) with the most important and informative genes.

5. Results and Discussion

In the following section, the findings of numerous studies
that have been performed to determine the efficacy of the
proposed hybrid model PCC-DTCV are discussed. A PC
with the following properties is the platform used to test the
proposed model: RAM 4GB and 32-bit OS (Windows 7),
Intel(R) Core (TM) i5-7500CPU, as well as frameworks such
as Pandas, NumPy, Keras, SciPy, and Matplotlib and the
Python programming language. -e datasets for human
cancer research included the following: breast cancer,
prostate, colon tumor, lung cancer, and leukemia were
applied to 7 different microarray datasets with a limited
sample and high-dimensional and binary class. Also, all
datasets have two types, and Table 2 lists the definitions of all
datasets.

In all studies, 10-fold cross-validation techniques
were applied. -e data were randomly divided into 10
different subsets (with the same size in 10-fold cross-
validation), and the experiment was conducted 10 times.
One subset was used as a test set for each run, and one
was used as a validation set, and the other sets were used
as a training set (Figure 5). To obtain a single estimate,
the mean of the k results from the folds can then be
determined. To approximate the model, 10-fold cross-
validation was used in our experiments, and the results
obtained are illustrated in the form of mean ± standard
deviation. Also, in both analyses, the number of itera-
tions was 50. -e value of the tree (max-depth) hyper-
parameter is [3, 30]. Our evaluation included the four
following measurements:

(1) Accuracy (ACC): it is the most used evaluation
standard for the proportion of correctly predicted
pairs, but using it alone is usually insufficient. Ac-
curacy (ACC) � ((TP + TN)/(TP + TN + FP
+FN)).

(2) Sensitivity (Sen.): a diseased person is likely to be
recognized as diseased through the test.
S � (TP/(TP + TN)), where TN is the true negatives
number and TP is the true positives number.

(3) Specificity (Spec.): the likelihood is that a person
without the illness is defined by the test as non-
diseased (or healthy). It is described as
TRN � (TN/(TP + TN)), where FP implies the
number of false positives and TN is the number of
true negatives.

(4) -e AUC shows the area under the receiver oper-
ating characteristics (ROC) curve, and it is calculated
as AUC � (1 + TPR − FPR)/2.

TP is true positive, FP is false positive, TN is true
negative, and FN is false negative. Based on the confusion
matrix, we evaluated the performance of the proposed
method and rival gene selection. To assess the output of our
model, a statistical test method called Chi-Square test [21] is
used to check how well the observed values for a given
distribution fit the distribution when the variables are
independent.

Computational Intelligence and Neuroscience 5



6. Experimental Results

-e experimental results are discussed in this section to
validate the performance of the our model PCC-DTCV. -e
classification accuracy performance and the selected feature
(genes) numbers of the PCC-DTCV method with PCC (0.4,
0.5, and 0.6) for all microarray datasets, respectively, are
summarized in Tables 3–8 and Figures 6–9. -e statistical
model is described in Table 9. Six different performance
metrics were chosen for result estimation: AUC, ACC,
specificity, sensitivity, recall, and F1-score [10, 22]. To reduce
the high dimensionality, improve the classification perfor-
mance of the problem at hand, and select the most infor-
mative genes, we run PCC-DTCV using all datasets and get
the informative selected features (genes) number. It can be
noted that PCC-DTCV gives the genes (features) ordered list
according to the highest correlation informative, impor-
tance, and relevant genes. It is obvious that PCC-DTCV
achieves the highest level of dimensional reduction by
choosing smallest number of informative genes and the
biggest dimensional dataset is Chowdary for breast cancer
with 22283 features (genes) and 104 samples, as seen in
Tables 3 and 4. -e highly correlated subset selected genes
with the target class by the PCC-DTCVwith PPC ≥� 0.4 are
410 features (genes) from 22283. PCC-DTCV compared the
performance of DT classifier without any optimization
method and optimized DT as given in Tables 3 and 4, re-
spectively, as well as the accuracy of the highest-dimensional
dataset with PPC ≥� 0.4 with optimized DT classifier and
DTclassifier. With accuracy of (0.92 ± 0.09), the optimized
DT classifier shows better accuracy than DT classifier with
accuracy of (0.90 ± 0.09).

Tables 5 and 6 show that the number of selected (fea-
tures) genes with PPC ≥ 0.5 is lower than the number of
selected (features) genes with PPC ≥ 0.4 for all datasets; it
means that the PCC-DTCV achieved higher-dimensional

reduction with PPC ≥ 0.5 than with PPC ≥ 0.4. In terms of
ACC, AUC, sensitivity, and specificity, the PCC-DTCV
achieved higher results compared to those achieved with
PPC ≥ 0.4 with both optimized DT classifier and DT clas-
sifier; for example, the number of selected (features) genes of
Gordon dataset for lung cancer is 274 compared with 743 for
PPC ≥ 0.4, in addition to the values of 94%, 88%, 97%, and
79% for terms ACC, AUC, sensitivity, and specificity with
DT classifier and 94%, 90%, 97%, and 87% with optimized
DTclassifier. From Tables 7 and 8, we can see that the PCC-
DTCV with PPC ≥ 0.6 has the best ACC, AUC, sensitivity,
specificity, recall, and F1-score compared to PPC ≥ 0.4 and
0.5, which means that the classification performance of
PCC-DTCV is best with PPC ≥ 0.6 and the selected genes
(features) are the most relevant, important, and informative
genes.

Figures 6–9 represent the classification performance
obtained using PPC ≥ 0.4, 0.5, and 0.6 and DTclassifier with
the PCC-DTCV model for prostate cancer, colon cancer,
leukemia, lung cancer, and breast cancer datasets. From
Figure 6, the achieved results show that the suggested PCC-
DTCV model gives better accuracy for breast cancer, lung
cancer, and leukemia datasets and can obtain the highest
accuracy with PPC ≥ 0.6 in the Chowdary dataset for breast
cancer, 96%. From Figure 7, the AUC metric obtains more
than 90% for both Chowdary and Singh datasets and more
than 80% for all datasets except Alon dataset for colon
cancer, obtaining 71% for PPC ≥ 0.6. From Figure 8, the
sensitivity metric obtains more than 90 with Gordon,
Chowdary, and Golub datasets for lung cancer, breast
cancer, and Leukemia, respectively, with PPC ≥ 0.4, 0.5, and
0.6. Specificity metric shown in Figure 9 achieves 96% for
Chowdary dataset with PPC ≥ 0.6.

Figures 10–13 represent the classification performance
obtained using optimized DT classifier and PPC with PCC-
DTCV model for prostate cancer, colon cancer, leukemia,
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Figure 4: Working of Grid Search cross-validation [26].
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Table 2: Characterization of the dataset.

Disease Dataset No. of samples No. of features
Prostate cancer D1, Singh [21] 102 12600
Lung cancer D2, Gordon [22] 181 12533
Breast cancer D3, Chowdary [23] 104 22283
Colon cancer D4, Alon [24] 62 2000
Breast cancer D5, Chin [25] 118 22215
Breast cancer D6, West [26] 49 7129
Leukemia D7, Golub [27] 72 7129

Computational Intelligence and Neuroscience 7



lung cancer, and breast cancer datasets. In Figure 10, ac-
curacy metric can obtain more than 90% for Gordon,
Chowdary, and Golub datasets for lung cancer, breast
cancer, and leukemia, respectively, with PPC ≥ 0.6. From
Figure 11, the AUC metric obtains more than 80% for all

datasets except Alon dataset for colon cancer, obtaining 76%
for PPC ≥ 0.6. From Figure 12, the sensitivity metric obtains
more than 90% with Gordon, Chowdary, and Golub datasets
for lung cancer, breast cancer, and leukemia, respectively,
with PPC ≥ 0.4, 0.5, and 0.6. Specificity metric shown in

Table 4: PCC-DTCV model with optimized DT and PPC ≥ 0.4.

Dataset Features Selected features
PCC-DTCV model with optimized DT and PPC ≥0.5

Accuracy AUC Sensitivity Specificity
Recall F1-score

0 1 0 1
Singh 12600 299 0.76 ± 0.12 0.76 ± 0.12 0.74 ± 0.16 0.78 ± 0.21 0.80 0.81 0.80 0.81
Gordon 12533 743 0.93 ± 0.05 0.87 ± 0.11 0.97 ± 0.04 0.76 ± 0.23 0.97 0.84 0.97 0.84
Chowdary 22283 410 0.92 ± 0.09 0.92 ± 0.09 0.94 ± 0.12 0.90 ± 0.12 0.94 0.88 0.93 0.83
Alon 2000 61 0.82 ± 0.13 0.80 ± 0.14 0.73 ± 0.23 0.88 ± 0.17 0.73 0.82 0.71 0.84
Chin 22215 1211 0.79 ± 0.09 0.78 ± 0.10 0.74 ± 0.17 0.81 ± 0.12 0.72 0.85 0.73 0.85
West 7129 28 0.86 ± 0.13 0.87 ± 0.13 0.87 ± 0.21 0.87 ± 0.16 0.84 0.83 0.84 0.83
Golub 7129 465 0.86 ± 0.09 0.83 ± 0.12 0.92 ± 0.10 0.75 ± 0.21 0.94 0.80 0.92 0.83

Table 5: PCC-DTCV model with DT and PPC ≥ 0.5.

Dataset Features Selected features
PCC-DTCV model with optimized DT and PPC ≥0.5

Accuracy AUC Sensitivity Specificity
Recall F1-score

0 1 0 1
Singh 12600 58 0.82 ± 0.11 0.82 ± 0.10 0.88 ± 0.13 0.77 ± 0.20 0.88 0.77 0.83 0.82
Gordon 12533 274 0.94 ± 0.05 0.88 ± 0.11 0.97 ± 0.05 0.79 ± 0.24 0.97 0.81 0.97 0.83
Chowdary 22283 39 0.91 ± 0.15 0.90 ± 0.15 0.94 ± 0.12 0.86 ± 0.19 0.95 0.90 0.94 0.92
Alon 2000 9 0.73 ± 0.18 0.70 ± 0.17 0.63 ± 0.24 0.78 ± 0.21 0.59 0.80 0.60 0.79
Chin 22215 305 0.81 ± 0.09 0.80 ± 0.08 0.75 ± 0.10 0.85 ± 0.14 0.72 0.85 0.73 0.85
West 7129 5 0.90 ± 0.13 0.91 ± 0.13 0.92 ± 0.17 0.90 ± 0.15 0.92 0.88 0.83 0.82
Golub 7129 133 0.87 ± 0.08 0.85 ± 0.10 0.94 ± 0.09 0.77 ± 0.20 0.91 0.80 0.91 0.82

Table 6: PCC-DTCV model with optimized DT and PPC ≥ 0.5.

Dataset Features Selected features
PCC-DTCV model with optimized DT and PPC ≥0.5

Accuracy AUC Sensitivity Specificity
Recall F1-score

0 1 0 1
Singh 12600 58 0.78 ± 0.15 0.78 ± 0.15 0.78 ± 0.19 0.78 ± 0.23 0.78 0.83 0.80 0.81
Gordon 12533 274 0.94 ± 0.04 0.90 ± 0.08 0.97 ± 0.04 0.84 ± 0.16 0.95 0.77 0.95 0.77
Chowdary 22283 39 0.94 ± 0.08 0.94 ± 0.08 0.95 ± 0.09 0.93 ± 0.11 0.95 0.90 0.94 0.92
Alon 2000 9 0.78 ± 0.19 0.75 ± 0.19 0.68 ± 0.26 0.82 ± 0.23 0.68 0.80 0.67 0.81
Chin 22215 305 0.82 ± 0.09 0.80 ± 0.09 0.77 ± 0.15 0.84 ± 0.12 0.74 0.85 0.74 0.85
West 7129 5 0.83 ± 0.18 0.83 ± 0.18 0.80 ± 0.24 0.87 ± 0.16 0.84 0.83 0.84 0.83
Golub 7129 133 0.89 ± 0.06 0.89 ± 0.07 0.92 ± 0.10 0.85 ± 0.19 0.87 0.76 0.87 0.76

Table 3: PCC-DTCV model with DT and PPC ≥ 0.4.

Dataset Features Selected features
PCC-DTCV model with DT and PPC ≥0.5

Accuracy AUC Sensitivity Specificity
Recall F1-score

0 1 0 1
Singh 12600 299 0.77 ± 0.16 0.78 ± 0.16 0.78 ± 0.19 0.77 ± 0.20 0.80 0.79 0.79 0.80
Gordon 12533 743 0.93 ± 0.06 0.88 ± 0.11 0.97 ± 0.06 0.79 ± 0.24 0.95 0.71 0.95 0.73
Chowdary 22283 410 0.90 ± 0.09 0.89 ± 0.08 0.90 ± 0.15 0.88 ± 0.12 0.94 0.88 0.93 0.89
Alon 2000 61 0.79 ± 0.20 0.075 ± 0.22 0.62 ± 0.37 0.88 ± 0.20 0.64 0.82 0.65 0.81
Chin 22215 1211 0.81 ± 0.12 0.80 ± 0.11 0.78 ± 0.13 0.82 ± 0.17 0.79 0.85 0.77 0.86
West 7129 28 0.83 ± 0.15 0.84 ± 0.16 0.82 ± 0.23 0.87 ± 0.16 0.84 0.83 0.84 0.83
Golub 7129 465 0.89 ± 0.11 0.87 ± 0.13 0.93 ± 0.10 0.80 ± 0.21 0.89 0.76 0.88 0.78
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Figure 13 obtains more than 80% for all datasets with PPC ≥
0.6. Finally, the proposed model gives the best classification
performance with PPC ≥ 0.6 for both optimized DT clas-
sifier and DTclassifier and the selected features (genes) have
minimum redundancy and are maximally relevant and in-
formative with high correlation with target class.

-ese results clarify that the proposed models follow a
normal distribution as the value in both Kolmogor-
ov–Smirnov and Shapiro–Wilk Sig. 0.02 ≥ .05 shown in
Table 9. -e first condition is fulfilled by following a normal

distribution. -e second condition is that there are no
outliers and anomalies, as well as applying regression
analysis to use the Manhattan distance method, which
calculates the outlier values. In addition, the emergence of a
new variable and the largest value in Manhattan distance is
compared and it is less valuable than the number of existing
variables using the Chi-Square. -e value of Manhattan
distance� 18.466 compared to using the Chi-Square. -e
critical value of the Chi-Square distribution will be applied at
df� 6 and the p value of 0.001 is found to be at 0.999

Table 7: PCC-DTCV model with DT and PPC ≥ 0.5.

Dataset Features Selected features
PCC-DTCV model with optimized DT and PPC ≥0.5

Accuracy AUC Sensitivity Specificity
Recall F1-score

0 1 0 1
Singh 12600 10 0.90 ± 0.08 0.90 ± 0.08 0.90 ± 0.10 0.90 ± 0.10 0.90 0.88 0.89 0.89
Gordon 12533 98 0.95 ± 0.05 0.89 ± 0.11 0.98 ± 0.04 0.81 ± 0.22 0.99 0.74 0.97 0.84
Chowdary 22283 5 0.96 ± 0.06 0.96 ± 0.06 0.97 ± 0.06 0.96 ± 0.12 0.95 0.93 0.95 0.93
Alon 2000 1 0.72 ± 0.18 0.71 ± 0.19 0.67 ± 0.32 0.75 ± 0.22 0.68 0.75 0.64 0.78
Chin 22215 54 0.85 ± 0.07 0.84 ± 0.08 0.82 ± 0.17 0.87 ± 0.11 0.72 0.88 0.75 0.86
West 7129 2 0.82 ± 0.19 0.82 ± 0.21 0.87 ± 0.32 0.85 ± 0.19 0.80 0.83 0.82 0.82
Golub 7129 36 0.85 ± 0.10 0.82 ± 0.12 0.89 ± 0.11 0.75 ± 0.21 0.94 0.80 0.92 0.83

Table 8: PCC-DTCV model with optimized DT and PPC ≥ 0.6.

Dataset Features Selected features
PCC-DTCV model with optimized DT and PPC ≥0.5

Accuracy AUC Sensitivity Specificity
Recall F1-score

0 1 0 1
Singh 12600 10 0.89 ± 0.05 0.89 ± 0.05 0.88 ± 0.10 0.90 ± 0.13 0.88 0.94 0.91 0.92
Gordon 12533 98 0.95 ± 0.04 0.87 ± 0.11 0.99 ± 0.03 0.75 ± 0.23 0.99 0.77 0.97 0.84
Chowdary 22283 5 0.93 ± 0.06 0.93 ± 0.07 0.95 ± 0.07 0.91 ± 0.14 0.97 0.90 0.95 0.93
Alon 2000 1 0.79 ± 0.18 0.76 ± 0.17 0.67 ± 0.22 0.85 ± 0.25 0.64 0.88 0.68 0.84
Chin 22215 54 0.84 ± 0.11 0.83 ± 0.12 0.78 ± 0.20 0.88 ± 0.09 0.79 0.83 0.76 0.85
West 7129 2 0.83 ± 0.15 0.83 ± 0.17 0.78 ± 0.32 0.88 ± 0.18 0.80 0.83 0.82 0.82
Golub 7129 36 0.90 ± 0.09 0.88 ± 0.12 0.96 ± 0.08 0.80 ± 0.21 0.91 0.80 0.91 0.80
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Figure 7: AUC obtained for PCC-DTCV model using the DT
classifier with PPC ≥ 0.4, 0.5, and 0.6 for all datasets.
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Figure 6: Accuracy obtained for PCC-DTCV model using the DT
classifier with PPC ≥ 0.4, 0.5, and 0.6 for all datasets.
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Figure 9: Specificity obtained for PCC-DTCV model using the DT classifier with PPC ≥ 0.4, 0.5, and 6 for all datasets.
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Figure 8: Sensitivity obtained for PCC-DTCV model using the DT classifier with PPC ≥ 0.4, 0.5, and 0.6 for all datasets.

Table 9: Tests of normality.

Kolmogorov–Smirnova Shapiro−Wilk
PCR Statistic Sig. Statistic

Spec. DT OPT
≥ 0.4 0.158 0.200∗ 0.983 0.971
≥ 0.5 0.166 0.200∗ 0.943 0.668
≥ 0.6 0.257 0.178 0.940 0.639

AUC DT OPT
≥ 0.4 0.161 0.200∗ 0.981 0.965
≥ 0.5 0.190 0.200∗ 0.956 0.190
≥ 0.6 0.205 0.200∗ 0.892 0.285

Sen. DT OPT
≥ 0.4 0.137 0.200∗ 0.962 0.832
≥ 0.5 0.163 0.200∗ 0.926 0.517
≥ 0.6 0.245 0.200∗ 0.884 0.245
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Table 9: Continued.

Kolmogorov–Smirnova Shapiro−Wilk
PCR Statistic Sig. Statistic

Sen. DT
≥ 0.4 0.205 0.200∗ 0.871 0.189
≥ 0.5 0.241 0.200∗ 0.873 0.197
≥ 0.6 0.275 0.117 0.905 0.364

Spec. DT
≥ 0.4 0.284 0.093 0.836 0.090
≥ 0.5 0.169 0.200∗ 0.956 0.785
≥ 0.6 0.188 0.200∗ 0.911 0.403

AUC DT
≥ 0.4 0.204 0.200∗ 0.948 0.714
≥ 0.5 0.243 0.200∗ 0.900 0.334
≥ 0.6 0.233 0.200∗ 0.933 0.580

∗-is is a lower bound of the true significance. aLilliefors significance correction.
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Figure 10: Accuracy obtained for PCC-DTCV model using the DT classifier with PPC ≥ 0.4, 0.5, and 0.6 for all datasets.
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Figure 11: AUC obtained for PCC-DTCV model using the DT classifier with PPC ≥ 0.4, 0.5, and 0.6 for all datasets.

Computational Intelligence and Neuroscience 11



confidence interval and uncertainty interval 0.001. If the
value of 22.46 is greater than 18.466, then it is assumed that
there are no multiple-choice outliers. Sig� .0155, which is
greater than 0.0001. It is a fulfilled condition and it means
that the homogeneity condition variance exists and is ful-
filled by a choice of Finney greater than 0.5. -is indicates
that the variance of the dependent variables is equal.

7. Conclusions

-is paper presents a PCC-DTCV model for cancer diag-
nosis and classification. PCC-DTCV optimizes the tuning
parameter (max-depth) of the DT classifier using Grid
Search and Pearson’s correlation used as a gene (feature)

selection method. -e proposed model was effective in
identifying an optimal or near-optimal subset of informative
and important genes and yielded high classification results.
Several experiments were carried out to evaluate the pro-
posed PCC-DTCV model for selecting the most informative
genes to improve the performance classification of cancer
microarray data. In addition to reducing the dimensionality
of microarray data, the result demonstrates the model’s
effective performance in selecting the most informative
genes with high importance. -e results showed that PCC-
DTCV provides the best fit for cancer type prediction in
terms of specificity, AUC, sensitivity, and accuracy. In future
work, for Decision Tree optimization, we anticipate using ski
driver and other algorithms.
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