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ABSTRACT: We present an explicit solvent alchemical free-energy
method for optimizing the partial charges of a ligand to maximize the
binding affinity with a receptor. This methodology can be applied to
known ligand−protein complexes to determine an optimized set of
ligand partial atomic changes. Three protein−ligand complexes have
been optimized in this work: FXa, P38, and the androgen receptor. The
sets of optimized charges can be used to identify design principles for
chemical changes to the ligands which improve the binding affinity for
all three systems. In this work, beneficial chemical mutations are
generated from these principles and the resulting molecules tested
using free-energy perturbation calculations. We show that three
quarters of our chemical changes are predicted to improve the binding
affinity, with an average improvement for the beneficial mutations of
approximately 1 kcal/mol. In the cases where experimental data are
available, the agreement between prediction and experiment is also good. The results demonstrate that charge optimization in
explicit solvent is a useful tool for predicting beneficial chemical changes such as pyridinations, fluorinations, and oxygen to
sulfur mutations.

■ INTRODUCTION

In recent years, alchemical methods have garnered increasing
attention in drug design.1−6 In particular, free-energy
perturbation (FEP) is now commonly used by pharmaceutical
companies because of improvements in efficiency,7 more
accurate force fields,8,9 and increases in computational power.
Based on the Zwanzig equation,10,11 it is common to use FEP
calculations in drug design to calculate the relative binding
affinity of two molecules.11−14 This relative free energy, ΔGAB,
can be defined using the Zwanzig equation, as shown in eq 1,
as the free-energy difference between thermodynamic states A
and B.

G kT ln e E E kT
AB

(( )/ )
A

B AΔ = − ⟨ ⟩− −
(1)

with k as Boltzmann’s constant, T as temperature, EA and EB as
the potential energies of the system calculated using the
Hamiltonian of state A and B, and ⟨.⟩A as a state average over
system A. Typically, in free-energy calculations, eq 1 is
expanded upon to include sampling from both states A and B15

or sampling from intermediate states.7 This is done to improve
the sampling overlap between end states. The drawback here is
that for every relative binding affinity calculation, lengthy
molecular dynamics (MDs) simulations must be performed for
all the end and intermediate states. If, however, the

perturbation between end states remains small enough, such
that the overlap between end states is large, eq 1 is sufficient
without any intermediate states. Applying eq 1 with no
intermediate states is referred to as single-step perturbation
(SSP), and this is the primary free-energy method used in this
work. Numerous studies have used SSP,16−19 demonstrating
that it is applicable to relative free-energy calculations20,21 and
can be significantly faster than standard FEP.22 Most recently,
the authors of this article have used SSP to perform
computational fluorine scanning.23 We now apply SSP with
the goal of optimizing ligand partial charges.
Charge optimization was developed by Tidor and co-

workers using an implicit water treatment of electrostatics.24,25

Poisson−Boltzmann calculations are performed on the bound
and unbound states in order to find the optimal partial charges
of a given molecule.26−29 This approach has since been used by
other academic groups,30,31 employed in industries,32 and been
extended to consider induced fit effects.33 However, the
approach suffers from the deficiencies of all implicit water
approaches: it is unable to deal effectively with interfacial water
molecules. These occur commonly and are very difficult to
treat effectively with implicit solvent approaches. The accuracy
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of implicit water models is lacking for many types of free-
energy calculations,34−36 particularly relevant here are the
implicit model’s shortcomings relative to explicit models in
terms of binding free energies.37 Additionally, while previous
work has considered flexibility in the ligand, the receptor and
complex were assumed to be rigid. It is known that this may
play a significant role in binding free energies.33 Because of
advances in available computing power, explicit water
approaches to charge optimization are now possible. We
propose to exploit these computational advances by applying
SSP to the bound and unbound states of small molecule
inhibitors to develop a method for electrostatic charge
optimization in explicit solvent.
Combining SSP with explicit water MD calculations and

flexible receptors and complexes has the potential to develop a
more accurate charge optimizer. To carry out these charge
optimizations, we developed a tool to automate their
execution. This tool is freely available at https://github.com/
adw62/Ligand_Charge_Optimiser. Our ligand charge opti-
mizer uses OpenMM38 as both an MD engine and a tool to
create the modified alchemical systems. The software will
generate all of the required mutant ligands from an input wild-
type ligand. These mutants are automatically parameterized,
built into the complex systems, simulated, and optimized.

■ METHODS

We optimize the ligand partial charges for three protein test
cases: FXa, P38 kinase, and the androgen receptor. The
chemical structures of the ligands studied are shown in Table
1. The ligands were built from highly related molecules in the
Protein Databank39 (PDB): 2RA040 (FXa), 3S3I41 (P38), and
2NW442 (androgen receptor). These small modifications are
made from the PDB to allow comparison with experimental

data.40−42 Superpositions of the molecules in the original PDB
and the modified molecules are shown in Figures S2−S4.

System Setup. To prepare the FXa, P38, and androgen
receptor systems, the nonstandard residues were converted to
their standard equivalents with pdbfixer.43 Selenomethionines
were changed to methionines and missing sidechains were
added using Schrödinger’s Preparation Wizard,44 which was
also used to assign the protonation state of all ionizable
residues. All buffer solvents and ions were removed. The
hydrogen atom positions were then built using tleap and force
field parameters, and partial charges were assigned from the
AMBER ff14SB force field.9 Parameters for the inhibitors were
generated using Antechamber45 with AMBER GAFF 246 and
AM1-BCC.47 These structures and parameters were then
passed to YANK’s48 0.23.7 automatic setup pipeline to build
solvated ligand−protein and ligand systems. For solvation,
TIP4P-EW49 was used. A salt concentration of 150 mM and
any required counterion were added using sodium and
chloride ions. In every case, the edge of the solvation box
was set to be 15 Å from any atom of the receptor and ligand.

Molecular Dynamics. MD sampling in this work is
collected to compute SSP and FEP relative free energies, and
the amount of MD sampling varies for each application in this
work and so is stated explicitly for each case in the relevant
section. All simulations were performed with OpenMM 7.3.043

as follows. First, OpenMM’s default minimizer was used to
minimize all structures. Then, equilibration was performed in
the NPT ensemble at 300 K and 1 atm using a Langevin
integrator and Monte Carlo barostat for 250 ps. MD
simulations were performed in the NPT ensemble using a
time step of 2 fs. van der Waals interactions were truncated at
11.0 Å with switching at 9.0 Å. Electrostatics were modeled
using the particle mesh Ewald method with a cutoff of 11.0 Å.
All other simulation parameters were left as default. Snapshots
were collected every 5 ps and all simulations were performed
with constrained hydrogens.

Charge Optimization. The objective function of this
optimization was ΔGbinding(qi) − ΔGoriginal. ΔGbinding(qi) was
defined as the difference in free energy between the bound and
unbound states of the ligand and target for a ligand with
charges qi. ΔGoriginal was defined as the difference in free energy
between the bound and unbound states of the ligand and
target for a ligand with the charges of the original unoptimized
ligand. ΔGoriginal is thus a constant. We therefore constructed
the optimization problem as follows.

G q Gmin ( )
q ibinding original

i

Δ − Δ
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where qi denotes the charges of the ligand and qi,n denotes the
charges for iteration n of the optimization, m is the number of
atoms in the ligand, and net charge is the total net charge of
the ligand. Equation 2.1 constrains the net charge of the ligand
to be constant. Equation 2.2 constrains the root mean square
difference between the ligands′ original charges, qi,0, and the

Table 1. Name of the Target for Each System with Ligands′
2D Chemical Structure and the PDB IDs of the Target
Ligand Complex
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qi,n+1 charges to be less than some value of the root-mean-
square deviation (rmsd) limit. These limits were chosen to
limit the change in ΔΔGtotal to a sensible range <10 kcal/mol.
Without this limit, the optimization continued to very large
unphysical values of ΔΔGtotal because atomic partial charges
can reach unphysical values. The results of an unconstrained
optimization can be seen in Figures S17−S19. Equation 2.3
constrains the perturbation to each atom to be less than 0.01e
per iteration, where e is the elementary charge. With this limit
of 0.01e, a determination of how much sampling was required
to give converged calculation of ΔGbinding with a perturbation
to each atom of 0.01e is shown in Figure S14. The amount of
sampling needed was determined to be 2.5 ns, and this was
then the amount of sampling used in this work to calculate the
objective and gradient for each optimization step. The
algorithm which was used to find a local minimum in this
objective function was the SciPy 1.1.050 implementation of the
sequential least squares programming algorithm.51

The primary calculations in this work were those of
ΔΔGbindings, calculated as follows: first we applied SSP theory
to calculate ΔGunperturbed→perturbed in the bound and unbound
states as shown in eq 3.

G

kT ln e E E kT

unperturbed perturbed

(( )/ )
unperturbed

perturbed unperturbed

Δ

= − ⟨ ⟩

→

− −
(3)

Eperturbed and Eunperturbed are the potential energies of the system
calculated using the Hamiltonian of the perturbed system and
the unperturbed system, respectively. To change Hamiltonians,
the charges were switched from unperturbed to perturbed
values; however, Lennard-Jones, bonded, angle, and torsion
parameters did not change. ΔΔGbinding was then constructed as
shown in eq 4, with ΔGunpe r t u r b ed→pe r t u r b ed

bound and
ΔGunperturbed→perturbed

unbound as ΔGunperturbed→perturbed calculated in the
bound and unbound states of the ligand and target.

G G

G

binding unperturbed perturbed
bound

unperturbed perturbed
unbound

ΔΔ = Δ

− Δ

→

→ (4)

Note that ΔΔGbinding is equal to the objective function in eq
2, if we take eqs 3 and 4 and set the unperturbed state as the
ligand with the original unoptimized charges and the perturbed
state as the ligand with charges qi.
To calculate the gradient of the objective function in each

direction in charge space, a finite difference was calculated as
shown in eq 5.

G q G

G q h G q

h

( ( ) )

( ) ( )
i

i i

binding original

binding binding

∇ Δ − Δ

=
Δ + − Δ

(5)

where h is a finite difference of 0.00015e. The numerator of the
rhs of eq 5 is a ΔΔGbinding and can be calculated using an SSP
approach as detailed in eqs 3 and 4 where qi are the
unperturbed charges and qi + h are the perturbed charges. This
calculation of the gradient shows the advantage of SSP, as
numerous (10−100 s) evaluations of ΔΔGbinding are required,
one for each direction in charge space. This ΔΔGbinding is
between molecules that are extremely similar, differing only by
0.00015e in one atom’s partial charge. There is therefore likely
to be a large sampling overlap between these states allowing
SSP to be applied. Of note is that for each finite difference

calculation, the charge of the simulation box has been changed
by 0.00015e. The potential for finite size effects52 caused by
this change was investigated and the padding of the simulation
with solvent was chosen to negate these effects, see Figure S15.
To delineate between the free-energy change for individual

optimization steps and the free-energy change between the
original and final optimized ligands, these will be defined as
ΔΔGstep and ΔΔGtotal, respectively. Because an SSP method is
being used, efforts were made to avoid poor overlap between
the end states of any perturbations. To achieve this, the system
was resampled after every optimization step. With the new
sampling, the perturbed system could be redefined as a new
unperturbed system after each optimization step. If this was
not done, then the difference between the perturbed and
unperturbed systems would grow over the course of the
optimization, reducing the overlap in sampling and so reducing
the applicability of SSP. Resampling had an additional
advantage as it allowed for a calculation of a reverse alchemical
step. Therefore, ΔΔGstep for both the forward and backward
alchemical transformation was calculated for every step, and
the ΔΔGstep in the results are reported as an average of the
forward and backward transformations.

FEP Calculations. The optimization in this work gave a set
of optimized charges and an associated ΔΔGbinding for going
from the original set of ligand charges to the optimal set,
named above as ΔΔGtotal. To validate the ΔΔGtotal given by
the optimization, we compared it against standard alchemical
relative binding free-energy calculations using the MBAR7

estimator applied to the system with the original and optimized
set of charges as end states. These calculations were performed
using the Ligand Charge Optimiser package as follows. For
these calculations, 12 equally spaced lambda windows (except
when explicitly stated otherwise) were used. Between these
windows, the charge parameters were interpolated simulta-
neously from the original to optimized charges. All windows
were sampled independently with 2 ns of Langevin dynamics
totaling 24 ns of sampling. All simulation conditions were
identical to the optimization MD calculations described above.
The samples collected in each intermediate state were
decorrelated based on an estimate of the statistical inefficiency
of the reduced potential time series before carrying out the
MBAR analysis with PyMBAR 3.0.1.7

In addition to testing the ΔΔGtotal, we also wished to
calculate the ΔΔGbinding for a set of chemical changes informed
by the optimal charges. This ΔΔGbinding is defined as
ΔΔGdesigned and is the change in binding free energy between
the original ligand and a designed ligand with some chemical
mutation. To perform these calculations, the protocol was the
same for the full FEP calculation of ΔΔGtotal but with the
following additional considerations. Now, in addition to the
charges, the van der Waals and bonded terms were all
interpolated simultaneously from the original to the designed
state. In the case of hydrogen to fluorine mutations, the
original hydrogen was constrained; therefore, its associated C−
H bond could not be interpolated to a C−F bond. When
neglecting the interpolation of this bond, the fluorine appeared
at the position of the hydrogen, instead of the true physical
position of the fluorine. To avoid this issue, for fluorinations,
we used a hybrid topology approach where a massless
interaction site at the position of the mutation was added.
This virtual site represents the fluorine and its position was
defined relative to the position of the parent hydrogen such
that the C−F distance is always 1.24 times the C−H
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distance.53 When mutating a hydrogen to fluorine, the relevant
hydrogen was turned off and fluorine Lennard-Jones and
charge parameters were applied to the additional site. When
simulating these systems, all bonds to hydrogen were
constrained. Because the position of the fluorine was defined
relative to the position of its parent hydrogen, it was also
implicitly constrained. We therefore made the assumption that
the C−F bond length oscillations were negligible. To prevent
the hybrid topologies from interacting, the additional sites
were excluded from interacting with their parent hydrogens.

■ RESULTS
Using the optimization methodology mentioned above, the
partial atomistic charges of three ligand−target systems are
optimized. For each optimization, we would like to inspect the
convergence over the number of steps. A good metric to
analyze the results of the optimization is the set of optimized
charges taken as a vector. In the methodology, a mention was
made to limiting the rmsd between the original and optimized
charges to some value of the rmsd limit. The values which are
chosen for the rmsd limit are 0.01, 0.03, and 0.05e. The
optimization is therefore repeated with the rmsd bound of
these three values. With an rmsd bound of 0.01e, the optimizer
is limited to seven steps as adequate convergence is seen at this
point. For a larger rmsd, the convergence is slower and
therefore for optimizations with rmsd bounds of 0.03 and
0.05e, the optimizer is limited to 20 steps. To assess
convergence across simulation steps, we take the dot product
of the normalized vector of new charges with the normalized
vector of original charges for each step of the optimization (see
Figure 1).
Figure 1 shows that the direction of the charge vectors over

all systems and rmsds are well converged. The direction of
these charge vectors represents where the charge is being
applied on the molecule and this is the information that will be
used in the following section to make chemical mutations to
improve ΔΔGbinding. It can also be seen that the dot product
between the original and optimized charges is different for
different rmsds. To quantify this difference, the dot product
between the set of optimal charges obtained for rmsd 0.01 with
0.03 and 0.05e can be taken and the results of these projections
can be seen in Table 2. Here, we see that sets of charges for the
same system are pointing in the same direction. Thus, only the
value of the charge changes are dependant on the rmsd, while
the direction and relative magnitude of the charge changes are
completely consistent. This is an important result because it
shows that the design principles identified by the approach will
not depend on the arbitrary choice of the rmsd. The invariance
in where the charge is being applied can also be seen by the eye
if the atoms are colored by change in charge. Figures
illustrating this are presented in Figures S5−S13 for all sets
of optimized charge.
In Table 2, we can see the dot product of the optimized

charges from the optimization with an rmsd of 0.01e with
themselves returns 1.00 as expected. The dot product of the
vector of charges with rmsd = 0.01e and with rmsd = 0.03e also
returns 1.00 as these vectors are extremely similar in direction.
The dot product of the vector of charges with rmsd = 0.01e
and with rmsd = 0.05e returns approximately 1.00 as these
vectors are extremely similar in direction but not as close as
0.01e with 0.03e. To summarize, each optimization for a system
added the charge in approximately the same place. It is only
the magnitude of this charge that varies with rmsd. We can also

look at the convergence of ΔΔGstep with the optimization step,
and this can be seen in Figure 2.
With an rmsd of 0.01e, Figure 2 demonstrates that ΔΔGstep

is well converged for all systems. For an rmsd of 0.03 or 0.05e,
the results are only well converged for the androgen receptor
system, Figure 2c. This suggests that ΔΔGstep for the optimized

Figure 1. Dot product of the normalized optimized charges with the
normalized original charges showing variation of charge vector
direction with step. Results are shown for rmsd limits 0.01, 0.03, and
0.05e with the FXa, P38, and androgen receptor systems labeled (a−
c), respectively.

Table 2. Dot Products of the Normalized Vector of Optimal
Charges Using an rmsd of 0.01 qe with the Normalized
Vector of Optimal Charges Using Different rmsds

rmsd (e) FXa P38 androgen receptor

0.01 1.00 1.00 1.00
0.03 1.00 1.00 1.00
0.05 0.99 0.98 0.99
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set of charges is dependent on the rmsd and ΔΔGstep is slow to
converge for larger ligands such as those in the P38 and FXa
test cases. ΔΔGtotal can be calculated between the original and
the optimized charges with the cumulative sum of the SSP
ΔΔGstep for all optimization steps. This gives a ΔΔGtotal that
will be termed ΔΔGtotal

SSP . We compare this SSP ΔΔGtotal for
each set of optimized charges with full FEP calculations, see
Table 3. These FEP calculations use the original and optimized
charges as the two end states and the resulting ΔΔGtotal will be
termed ΔΔGtotal

FEP.
Table 3 shows that the SSP and FEP calculations well agree

with an rmsd of 0.01e (differing by less than 1.0 kcal/mol in all
cases). For an rmsd of 0.03 and 0.05e, SSP and FEP are less
well agreed (differing by more than 1.0 kcal/mol in some
cases). Table 3 also shows clearly that changing the rmsd
changes the calculated ΔΔGtotal. The reason is that increasing
the rmsd bound increases how much the charges can be

changed and so increases the change in ΔΔGtotal. However, as
discussed above, the convergence of ΔΔGtotal is an unnecessary
condition, providing no additional information. It is only
critical that the direction of the charge vectors are well
converged and consistent for all rmsd values for all test cases,
which has been shown in Figure 1 and Table 2, as it is this
information that will inform what chemical mutations are
proposed for the ligands. As such, we then use where the
optimizer has placed the charge as a design tool to generate
ideas for beneficial chemical mutations and this is presented in
Figure 3.
We developed specific design ideas to improve ΔΔGbinding

based on the changes in charge. First, analyzing the FXa ligand,
three options are selected:

• Replacing the hydrogen with a fluorine at position 1a.
• Replacing the nitrogen with a carbon at position 2a.
• Replacing one or more hydrogen atoms with a fluorine

atom on the methyl group at position 3a.

Analyzing the P38 ligand, four options are selected:

• Replacing the hydrogen with a fluorine at position 1b or
4b.

• Replacing the nitrogen with a carbon at position 1b or
4b.

• Replacing the oxygen with a sulfur at position 2b.
• Replacing one or more hydrogen atoms with a fluorine

atom on the methyl group at position 3b.

The final set of changes applies to the ligand of the androgen
receptor with three options selected:

• Replacing the oxygen with a sulfur at position 1c and 2c.

Figure 2. Cumulative sum of ΔΔGstep averaged over three replicates
for each step of the optimizer. Three optimizations are shown with
rmsd bounds of 0.01, 0.03, and 0.05e, with the FXa, P38, and
androgen receptor systems labeled (a−c), respectively.

Table 3. Calculated ΔΔGtotal for the Set of Optimal
Chargesa

FXa
rmsd (e) 0.05 0.03 0.01
ΔΔGtotal

FEP [kcal/mol] −8.7, −6.3, −3.1,
[−9.2, −8.2] [−6.5, −6.1] [−3.4, −2.9]

ΔΔGtotal
SSP [kcal/mol] −11.3, −8.1, −3.9,

[−12.4, −10.1] [−9.1, −7.0] [−4.4, −3.3]

P38
rmsd (e) 0.05 0.03 0.01
ΔΔGtotal

FEP [kcal/mol] −9.4, −6.6, −3.2,
[−10.8, −8.0] [−7.2, −6.0] [−3.4, −3.1]

ΔΔGtotal
SSP [kcal/mol] −11.1, −8.3, −3.5,

[−11.5, −10.8] [−8.7, −7.9] [−4.0, −3.1]

Androgen Receptor
rmsd (e) 0.05 0.03 0.01
ΔΔGtotal

FEP [kcal/mol] −11.5, −8.8, −4.2,
[−12.0, −10.9] [−8.8, −8.8] [−4.2, −4.1]

ΔΔGtotal
SSP [kcal/mol] −11.9, −8.9, −4.2,

[−12.3, −11.5] [−9.2, −8.7] [−4.4, −4.0]
aSSP ΔΔGtotal values are calculated by summing the average of
forward and backward SSP calculations made for each step of the
optimizer. FEP ΔΔGtotal values are calculated from an alchemical
transformation from the original charges to the optimal charges. SSP
and FEP predictions are reported as the mean of three replicates with
95% confidence interval reported between square brackets computed
as mean ± t2·SEM, where t2 is the t-distribution statistic with two
degrees of freedom, and SEM is the standard error of the mean
computed from the sample standard deviation of the three
independent replicate predictions.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.9b00976
J. Chem. Theory Comput. 2019, 15, 6504−6512

6508

http://dx.doi.org/10.1021/acs.jctc.9b00976


• Replacing the hydrogen with a fluorine at position 3c,
4c, or 5c.

• Replacing the bonded carbon with a nitrogen at
positions 4c or 5c.

ΔΔGdesigned for all these changes was calculated using the
FEP protocol discussed in the Methods section. Each FEP
calculation was performed in triplicate, and the averaged
results of these calculations can be seen in Table 4.
The atoms indicated by the optimization to beneficially be

more negative in Figure 3 line up with experimental work on
these test cases.40−42 Mutants 1, 6, and 19 are predicted by
FEP to be beneficial (−2.2, −2.2, and −2.5 kcal/mol,
respectively), and this is in good agreement with experimental
data (−2.1, −2.3, and −1.1 kcal/mol, respectively). Exper-
imental data do not exist for the remaining proposed
mutations. However, 73% of the mutations in Table 4 are
predicted to be favorable by FEP. Both the FXa and androgen
systems have a higher success rate with 80 and 89% of ideas,
respectively, from charge optimization being beneficial as

assessed by FEP. P38 has a lower (though still promising)
success rate with 50% of mutations being beneficial as assessed
by FEP.

■ CONCLUSIONS

We have demonstrated ligand charge optimization in explicit
solvent to be a useful tool to rationally design ligands with
improved binding affinities. The electrostatics of three ligand−
receptor systems were systematically optimized using the
alchemical SSP method, yielding sets of optimal ligand charges.
These sets of optimal charges were used to generate design
principles for chemical mutations to the ligands that would
yield improved receptor binding affinity. These chemical
mutations were assessed with a more rigorous FEP method.
Using FEP, 73% of the predicted chemical mutations were
found to be beneficial. The average improvement of the
beneficial mutations was approximately 1 kcal/mol. In three of
these cases, experimental data exist and are in excellent
agreement with calculations, with mutants 1, 6, and 19 in
Table 4 predicted by FEP to be beneficial (−2.2, −2.2, and
−2.5 kcal/mol, respectively) compared to the experimental
data (−2.1, −2.3, and −1.1 kcal/mol, respectively).
The major advantage of SSP shown in this work is the

calculation of the gradient. SSP allows for many highly related
mutations to be assessed quickly, as is required to calculate the
gradient via a finite difference method. For comparison, the
collection of 2.5 ns of sampling for the FXa system with 99 000
and 13 000 atoms in the complex and solvent systems,
respectively, takes 29 min. To calculate a gradient from this
sampling takes 15 min and so, including sampling, this totals to
44 min per gradient. The calculation of a perturbation of
0.00015e with full FEP (assuming 1.0 ns of sampling converges
ΔΔGbinding, see Figure S16 for convergence plot) takes 14 min.
With 58 charges in the FXa ligand, which must all be perturbed
in the complex and solvent systems, this gives approximately
27 h to calculate one gradient. This advantage would only be
compounded if a more complex optimization scheme, which
required a calculation of the Hessian, was used. Both these
calculations of the gradient are run in parallel (see the
Supporting Information for parallelization strategy) across 4
NVIDIA P100 GPUs using OpenMM 7.3.0 and CUDA 10.0.
This ligand charge optimization methodology could be easily

extended by considering the optimization of any other
parameters of the force field with respect to the binding free
energy. For example, the van der Waals parameters could be
“optimized”. Additionally, the calculation for the gradient of
force field parameters with respect to potential energies could
be used in the systematic optimization of a small molecule
force field. Because here we have demonstrated a methodology
for quickly calculating gradients of force field parameters with
respect to free energy, this could lead to some interesting
studies of force field optimization using experimental ligand−
receptor binding energies as a target data set. This method is
relatively unique in providing drug design principles from
alchemical free-energy calculations along with a rationale for
increase or decrease in binding because of specific changes to
the ligand.54

In summary, we have presented a novel technique for
identifying partial charges that optimize protein−ligand
binding affinities and highlighted ways in which these
predictions can be turned into design principles for drug
discovery. The method is fast compared to traditional FEP,

Figure 3. Panels (a−c) show the FXa, P38, and androgen receptor
ligands with atoms colored by change in charge relative to the original
partial charges. The optimized charge is taken from the optimization
with an rmsd bound of 0.03e. Blue represents atoms which are more
negative, and red represents atoms which are more positive. Selected
sites for chemical modification are numbered.
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Table 4. ΔΔGdesigned for Proposed Chemical Mutations to the FXa, P38, and Androgen Receptor Ligands Calculated with FEPa

aThe positions denoted numerically correspond to numerical positions in Figure 3. 2D structures of mutation are presented in the column-labeled
mutant. FEP predictions are reported as the mean value of three replicates with 95% confidence interval reported between square brackets
computed as mean ± t2·SEM, where t2 is the t-distribution statistic with two degrees of freedom, and SEM is the standard error of the mean
computed from the sample standard deviation of the three independent replicate predictions. The asterisk label * indicates single or double
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easy to interpret, and simple to test by using more thorough
approaches such as MBAR.
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