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Abstract

Background: Despite its importance for reducing wildlife-vehicle collisions, there is still incomplete understanding of factors
responsible for high road mortality. In particular, few empirical studies examined the idea that spatial variation in roadkills is
influenced by a complex interplay between road-related factors, and species-specific habitat quality and landscape
connectivity.

Methodology/Principal Findings: In this study we addressed this issue, using a 7-year dataset of tawny owl (Strix aluco)
roadkills recorded along 37 km of road in southern Portugal. We used a multi-species roadkill index as a surrogate of
intrinsic road risk, and we used a Maxent distribution model to estimate habitat suitability. Landscape connectivity was
estimated from least-cost paths between tawny owl territories, using habitat suitability as a resistance surface. We defined
10 alternative scenarios to compute connectivity, based on variation in potential movement patterns according to territory
quality and dispersal distance thresholds. Hierarchical partitioning of a regression model indicated that independent
variation in tawny owl roadkills was explained primarily by the roadkill index (70.5%) and, to a much lesser extent, by
landscape connectivity (26.2%), while habitat suitability had minor effects (3.3%). Analysis of connectivity scenarios
suggested that owl roadkills were primarily related to short range movements (,5 km) between high quality territories.
Tawny owl roadkills were spatially autocorrelated, but the introduction of spatial filters in the regression model did not
change the type and relative contribution of environmental variables.

Conclusions: Overall, results suggest that road-related factors may have a dominant influence on roadkill patterns,
particularly in areas like ours where habitat quality and landscape connectivity are globally high for the study species.
Nevertheless, the study supported the view that functional connectivity should be incorporated whenever possible in
roadkill models, as it may greatly increase their power to predict the location of roadkill hotspots.
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Introduction

Roads affect wildlife by increasing habitat fragmentation,

modifying animal behaviour and movements, and increasing

mortality as a consequence of road-killing [1]. The collision with

vehicles is the most visible impact of roads, which in at least some

circumstances, may strongly influence the size and dynamics of

animal populations [2], and even result in a much larger impact on

population genetic diversity than road barrier effects [3]. To reduce

such impacts, a number of mitigation measures have been

conceived, including for instance underpasses, fences, and warning

signs [4–6]. Although these measures are usually expensive, they

may be justified when the costs are weighed against the benefits of

greatly reducing roadkills [7]. However, enhancing cost-effectiveness

requires that mitigation measures are spatially limited to the most

critical road sections [4,8,9], which demands detailed quantification

of the factors responsible for roadkill hotspots [4,10]. In particular,

there is a need for developing models that accurately predict hotspot

locations, which might be used during road planning, construction

and exploration phases to guide the design and implementation of

mitigation measures [7]. Although there is extensive research on the

most important factors contributing to roadkill numbers (reviewed in

[11]), few studies have used an integrative approach that evaluates

the relative importance of both road-specific factors and species-

specific factors when explaining roadkill spatial patterns. This

distinction is important because it may imply different options and

strategies in mitigation of wildlife road-mortality.
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Most studies have suggested that road characteristics and the

quality of the surrounding habitat play a key role in shaping

roadkill patterns, e.g., [4,8,11–13]. Traffic volume is often

considered the most influential road characteristic [1,11,12,

14,15], along with vehicle speed and road width [11]. Other

factors include fencing, embankment, and driver visibility, which

frequently interact and are thus difficult to assess independently

[11]. Thus, roadkill risk results from the combination of many

characteristics of roads themselves. Generally, casualties increase

in sections with high traffic volume or low driver visibility [11],

although the relationship is not always linear, and collisions may

peak in roads with intermediate traffic volume [16]. Collisions

often peak also where roads cross high quality habitats, though this

effect is species-specific [4,6,11,14]. For instance, ungulates are

more frequently killed in roads near forested areas, while

amphibians and some reptiles are mostly killed near wetlands

[11]. Given the recognised importance of road and habitat effects,

they have been the main factors used to develop roadkill models.

In many cases, however, these models have insufficient predictive

ability for practical application, suggesting that additional factors

may need to be considered. Increasingly, there is a perception that

a greater understanding of roadkill patterns might be achieved by

considering landscape factors affecting animal movement rates

across roads [15,17]. Animal movement routes are expected to

concentrate along paths of least resistance [e.g., 18] that are

located in sections where landscape connectivity is promoted [19].

This can lead to funnelling of movement routes through spatially

delimited corridors of higher connectivity, thereby increasing the

risk of collision with vehicles where movement routes intersect

existing roads. Therefore, it is likely that the assessment of

potential movement paths of species, and their inclusion in roadkill

spatial models, might increase the predictive ability to locate

roadkill hotspots. Furthermore, by considering together road

characteristics, habitat suitability, and movement corridors, it

might be possible to quantify the relative importance of each of

these factors in shaping roadkill patterns. This is relevant, because

different factors may imply different mitigation strategies and

techniques to reduce wildlife road-mortality. Despite its impor-

tance, this type of modelling approach has been uncommon (but

see [17,20,21]).

In this study we examined the relative contribution of general

roadkill risk, habitat suitability and landscape functional

connectivity in explaining roadkill spatial patterns of tawny

owl (Strix aluco L.) in southern Portugal. The tawny owl is a

common woodland species in Europe, including Portugal

[22,23], and is frequently reported as a traffic victim [22,24–

26]. These characteristics make the tawny owl a particularly

adequate species to test different hypotheses about factors

affecting roadkill patterns.

In order to accomplish the proposed objectives, we used a

simple roadkill index based on the number of other road-killed

vertebrates collected in the study area. We used detailed data on

tawny owl distribution in the study area to develop habitat

suitability models based on Maxent approach [27]. Also, we

produced alternative functional connectivity scenarios based on

least-cost path predictions (i.e., potential movement paths)

between territory centroids (UNICOR; [28]). We then developed

roadkill models based on Gaussian regression, and we used

hierarchical partitioning to quantify the relative contribution of

each set of independent variables to explain variation in tawny owl

roadkills. The novel approach adopted here can probably be

applied to other species and regions, and adapted to different

spatial scales.

Material and Methods

Study Area
The study was conducted in southern Portugal, within an area

of ca. 400 km2 (38u329240 to 38u479330N; 208u139330 to

207u559450W). The climate is Mediterranean, with mild winters

and hot and dry summers. Mean annual temperature ranges from

5.8uC to 12.8uC during the winter (January), and from 16.3uC to

30.2uC during the summer (July) (Évora 1971–2000; [29]). Annual

rainfall averages 609.4 mm (Évora 1971–2000; [29]). The region

has an undulating relief (150 m to 400 m above sea level), and

land cover is dominated (.90%) by cork oak Quercus suber and

holm oak Quercus rotundifolia woodlands with varying tree density

(‘‘montado’’) and agricultural areas (e.g. arable land, olive groves,

vineyards).

Four road segments (summing to 37 km) with varying traffic

volumes were selected for roadkill monitoring. Roads N4 and

N114 are classified as national roads (4 000 to 10 000 vehicles/

day; N114 includes road sections with more than 10 000 vehicles/

day; [30]), while M529 and M370 are municipal roads (1 000 to 4

000 vehicles/day and less than 1 000 vehicles/day, respectively;

[30]). All roads are two-lanes wide, without central barriers, except

in two road crossings (Figure 1). The tawny owl is abundant in the

oak woodlands surrounding these roads, where individuals of this

species are often found dead due to collisions with vehicles [31,32].

Roadkill Data
We divided the studied roads in 500 m-sections, which were the

units of replication for estimating factors affecting tawny owl

roadkills. We collected data on all vertebrate roadkills between

January 2005 and April 2012 along the four road segments on a

daily (2005, 2007–2012), or weekly basis (2006). Surveys began

within 2 h after sunrise and were conducted by one experienced

observer driving at 20–40 km/h, and checking both sides of the

road. The standard road sampling width corresponded to both

lanes and shoulders (paved and unpaved). We identified every

road-killed animal detected to the most precise taxonomic level,

and registered its geographical coordinates with a GPS (5 m-

accuracy). This procedure yielded a multi-species dataset from

which we extracted the data regarding tawny owl mortality (the

dependent variable) for the period between 2005 and 2012.

To estimate the intrinsic roadkill risk in each road section, we

used a simple index based on the number of road-killed vertebrates

collected in 2005, excluding tawny owl records. This index

assumes that a section with high overall mortality also has a high

intrinsic risk for tawny owls, irrespective of the number of tawny

owls actually found dead in that section. This index reflects mostly

the locations with higher mortality of most common species

occurring in the study area. We used a single year because models

in future applications should be built with easily obtainable and

low-cost variables [33], and also because the sample size was

adequate for the analyses. We used the multi-species roadkill

index, because we wanted to reduce confounding effects of road

characteristics with that of habitat suitability and movement

corridors. Specifically, we have tried to control for the possibility,

for instance, of road sections with characteristics potentially

favouring high tawny owl mortality having in reality low mortality,

just because habitat suitability in the surrounding landscape was

poor and there were no movement corridors across that section.

Furthermore, some important characteristics such as driver

visibility, traffic volume and speed were unavailable at the scale

of 500 m-road sections, thereby limiting the possibility of inferring

risk from road characteristics. Therefore, we believe that this index

Factors Influencing Tawny Owl Roadkills
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has considerable advantages over the actual road characteristics

for quantifying the intrinsic risk of each section.

Habitat Suitability
Habitat suitability was estimated as the average probability of

tawny owl occurrence within a buffer of 250 m of each 500 m-

road section, which was computed using a distribution model

developed for the species in the study area. The model was based

on occurrence data obtained during point counts carried out in the

breeding seasons (March-May) of 2005 (65 points), 2007 (68) and

2011 (75). Although we sampled most point counts in the three

years, a few were sampled only once or twice due to access

restrictions to private lands. Points were located at .1.2 km from

each other, and they were visited after sunset, from 19:30 to 00:30,

using playbacks of conspecific vocalizations to detect territory

holders [34]. Each point was composed by 4 min of male song

playback and 10 min of listening for replies (see [32]). The position

of individuals responding to playbacks was registered in a 1:25 000

topographic map and later introduced in a Geographic Informa-

tion System (GIS).

We used eleven landscape variables to build the habitat model:

proportional cover by nine dominant land cover types, distance to

water courses and elevation. Detailed land cover maps were

previously produced from GIS classification (1:10000 scale) of

digital aerial photos (2003, Associação de Municı́pios do Distrito

de Évora), and field corrections [32]. We reclassified land cover

classes into nine categories: urban, water reservoirs, riparian

vegetation, open agricultural areas (dry arable lands), other

agricultural areas (olive orchards, vineyards, irrigated fields),

sparse (10% tree cover), medium-density (10–50% tree cover),

and dense (.50% tree cover) oak woodlands, and other land cover

types (pine and eucalyptus plantations, scrubland). We assessed the

water courses from the land use map, and the Euclidean distance

to the closest one was calculated for each pixel, creating a distance

raster. Elevation was obtained from NASA (http://asterweb.jpl.

nasa.gov/gdem.asp). The landscape variables were chosen due to

their relevance for the species, the scale of our analysis, and their

availability for the study area. Although the tawny owl is

considered a woodland specialist, it also breeds in more open

woodland [23,35]. In more open areas, the riparian trees can often

be occupied by owls [23], which justifies the inclusion of distance

to water course and elevation variables. For habitat suitability

mapping, we converted land cover variables to raster format, and

all variables were limited to 90690 m resolution.

Model development was based on presence-only approaches

[e.g., 36], because it could not be assumed that owls were absent

from points where they were not recorded [37,38]. Specifically, we

used the maximum entropy method (MaxEnt, [27], in which the

logistic output is a continuous probability of owl occurrence

ranging from 0 (unsuitable habitat) to 1 (optimal habitat), allowing

its usage as a measure of habitat suitability.

We used the default values for convergence threshold (1024),

maximum number of interactions (500), maximum number of

background points (104), and regularization multiplier value (1).

Figure 1. Study area and roads. Details of the study area in Portugal, with location of the four studied roads and overlay of the habitat suitability
map for the tawny owl (Roads N4 and N114 are national roads, and M529 and M370 are municipal roads; darker areas in the habitat suitability map
indicate higher presence probability).
doi:10.1371/journal.pone.0079967.g001

Factors Influencing Tawny Owl Roadkills
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We considered linear, quadratic, product, threshold, and hinge

transformation features [27]. We adjusted the sample radius to 3

pixels (270 m buffer). The validation of the model was performed

with the bootstrap technique with 50 replicates, allowing sampling

with replacement. We used the 10th percentile of training presence

values as logistic threshold and the area under the receiver

operating curve (AUC) as threshold-dependent and -independent

measures of model performance, respectively. Finally, we evalu-

ated the importance of each environmental variable in the habitat

suitability model employing the jack-knife test [27]. We used

MaxEnt version 3.3.3e (http://www.cs.princeton.edu/,schapire/

maxent; [27,39].

Connectivity Patterns
Data on actual movement patterns of tawny owl were

unavailable, thus we estimated connectivity based on territory

spatial distribution and habitat suitability [40–42]. We built a

virtual map of tawny owl territories from a regular grid of 440 90-

ha hexagons, corresponding to the average territory size of the

species [37]. Territories with an average occupancy probability

,0.40 as derived from Maxent modelling were considered vacant.

We used a virtual map because the exact location of most

territories was unknown, though we believe that our approach

provided a reasonable approximation because field data suggested

that territories were tightly packed in suitable habitat areas. We

further assumed that the main movement of individuals occurred

between the centroids of territories, and that movements were

easier where habitat quality was higher. Because breeding tawny

owls are resident year-round [24], the movements considered were

judged to reflect those of dispersing juveniles and non-breeders

searching for a vacant territory [43]. Estimating connectivity from

habitat suitability was considered reasonable, because a telemetry

study on dispersing tawny owl juveniles in Denmark showed that

they had similar habitat preferences to the territorial adults [43].

The eagle owls showed the same similarities of habitat preferences

[44] and it was shown that movement rates for a wide range of

species tend to be greater through matrix of a more similar

structure to the species’ habitat [45]. Although deviations to these

patterns can introduce errors in analyses [42], we believe this is

unlikely given the scarcity of tawny owls outside forested habitats

in our study area.

Under the assumptions described above, we modelled the

connectivity patterns using a modified Dijkstra’s algorithm,

implemented in UNICOR (UNIversal CORridor and network

simulation model; http://cel.dbs.umt.edu/software/UNICOR/;

[28]) to find all least-cost paths (potential movement paths)

between all paired combination of source and destination

locations, and representing the landscape as a connectivity graph

with nodes and edges [28,46]. The surface resistance to movement

was built using the probability of species presence derived from

Maxent habitat modelling (movement cost = [12presence proba-

bility]*100). We then created potential tawny owl movement

routes across the study area with a Gaussian kernel density

function (with linear scaling, and 5 pixels as kernel buffer window),

that produces a map with the cumulative density of optimal paths

buffered by a kernel density estimation. We estimated connectivity

for each road section as the density of optimal paths within a

250 m-buffer.

We used 10 movement scenarios to estimate connectivity,

considering two alternatives defined by territory quality, and five

movement distance thresholds (1, 2, 5, and 10 km, and no distance

threshold) per territory quality alternative. We estimated quality

for each 90 ha-territory, from the average of predicted presence

probabilities yielded by Maxent modelling. Territories with

presence probabilities .0.41 were considered favourable

(n = 156), whereas values .0.51 indicated high quality territories

(n = 60). In one of the scenarios, movements could occur between

all favourable territories, whereas movements in the other scenario

were restricted to high quality territories. The later scenario was

selected to account for the possibility of juvenile dispersers being

produced primarily in high quality territories, which were also

those most sought after by adult non-breeders. Distance thresholds

were defined as Euclidean distances from territory centroids, and

were used to reflect potential limits to tawny owl dispersal range.

Data Analysis
We used Gaussian regression models to relate tawny owl

roadkills per 500 m-road section to each set of explanatory

variables. We specified eleven alternative models, all of which

included roadkill risk (ROAD) and habitat suitability (HABITAT)

variables. One of the alternative models included only these two

variables, whereas the remaining 10 models included one

connectivity variable at a time (estimated from each of the 10

movement scenarios; Table 1).

We powered the dependent variable to 0.5, to approach

normality and remove outliers. We powered also the variable

ROAD and all connectivity variables to 0.3 (Table 1). To check for

collinearity between the explanatory variables, we calculated the

variance inflation factors (VIF) for the 11 models. These

calculations were also made to identify a possible collinearity

between HABITAT and each of the connectivity variables, as

resistance surfaces were obtained from habitat suitability values.

As a rule of thumb, variables with VIF .10 are considered highly

collinear [47].

We determined the relative support for each model using

Akaike information criterion corrected for small sample sizes

(AICc) and ranked all models according to three parameters: AICc

differences compared with the model with lowest AICc (DAICc),

model probabilities (wi) and evidence ratios [48]. We considered as

plausible all the models with an DAICc ,2 (when compared with

the model having the lowest AICc) or with an AICc lower than the

null model (no connectivity variable added). The evidence ratio

was calculated relating the model probabilities of each model with

the null model. This allowed us to state how better is one model

relatively to another [48]. We did not perform model averaging

because our aim was to evaluate the connectivity scenarios

separately. Connectivity models with evidence ratio ,2, compared

to the null model, were not further evaluated. We designated the

best model selected by AICc procedures as the ecological model.

We controlled for the effects of spatial autocorrelation by using

Spatial Eigenvector Mapping (SEVM), in order to remove all

significant autocorrelation from the residuals of the ecological

model [49]. We incorporated a linear combination of the three

most important spatial filters (those minimizing residual spatial

autocorrelation) into the ecological model [50], and verified the

absence of spatial autocorrelation in model residuals after these

procedures. We designated this second model as the complete

model. We checked the prediction power of each model by means

of the Pearson correlation (r) between the dependent variable and

fitted values. We assessed the fit of models with the residual plots

and the adjusted R2.

We applied hierarchical variation partitioning [51,52] to the

ecological and the complete models in order to quantify the

independent effects of each explanatory variable while controlling

for the presence of the others, and thus identify the most likely

causal factors in roadkill patterns [33,47]. We analysed both the

ecological and the complete models in order to assure that the

inclusion of a spatial component did not change the relative

Factors Influencing Tawny Owl Roadkills
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importance of ecological variables. We used the coefficient of

determination (R2) as a measure of variation explained by each

regression model [53]. We tested the statistical significance of

independent contributions of variables using a randomization

procedure (Z-scores) with an upper 0.95 confidence limit [54].

We used the statistical software R version 1.14.1 [55] for

building Gaussian models, and the hier.part package [56] for the

Table 1. Name, description, and summary statistics of untransformed explanatory variables (mean, standard deviation, and range
values).

Variable name Variable description Mean ± SD Range

ROADa Roadkill risk index (percentage of other road-killed
wildlife in each 500-m road section)

1.33360.654 0.410–4.010

HABITAT Habitat suitability model for tawny owl
(probability values)

0.37760.146 0.09–0.600

HQ1a Connectivity between high quality territories up to
1 km distance (cumulative density of paths)

0.01060.003 0–0.190

HQ2a Connectivity between high quality territories up to
2 km distance (cumulative density of paths)

0.06360.170 0–0.790

HQ5a Connectivity between high quality territories up to
5 km distance (cumulative density of paths)

0.47360.874 0–3.370

HQ10a Connectivity between high quality territories up to
10 km distance (cumulative density of paths)

2.02563.397 0–16.530

HQ100a Connectivity between high quality territories without
distance limit (cumulative density of paths)

3.85267.421 0–40.240

F1a Connectivity between favourable territories up to
1 km distance (cumulative density of paths)

0.01760.004 0–0.160

F2a Connectivity between favourable territories up to
2 km distance (cumulative density of paths)

0.20660.304 0–1.080

F5a Connectivity between favourable territories up to
5 km distance (cumulative density of paths)

2.34462.890 0–10.560

F10a Connectivity between favourable territories up to
10 km distance (cumulative density of paths)

12.69060.900 0–74.050

F100a Connectivity between favourable territories without
distance limit (cumulative density of paths)

27.80060.377 0–216.46

SPA Linear combination of three spatial filters obtained
from Spatial Eigenvector Mapping

0.00060.647 21.160–1.720

atransformed to power 0.3.
doi:10.1371/journal.pone.0079967.t001

Table 2. Model selection for the tawny owl roadkill data based upon Akaike information criterion (Mod #: Model number;
Variables in the model: variables included in each model; df: degrees of freedom; DAICc: AICc differences; Model prob (wI): model
probabilities; Evid ratio: evidence ratios of each model; Adj R2: adjusted R2 of each model; VIF: variance inflation factor of each
model; The evidence ratio provides a measure of how better is each model relatively to the null model (model 0); see Table 1 for
variable codes).

Mod # Variables in the model df DAICc Model probies (wi) Evid ratio Adj R2 VIF

3 ROAD+HABITAT+HQ5 5 0 0.37 4.11 0.281 1.45

5 ROAD+HABITAT+HQ100 5 1.92 0.14 1.55 0.263 1.41

4 ROAD+HABITAT+HQ10 5 1.93 0.14 1.55 0.263 1.41

0 ROAD+HABITAT 4 2.90 0.09 1.00 0.241 1.35

2 ROAD+HABITAT+HQ2 5 3.81 0.06 0.67 0.24 1.38

9 ROAD+HABITAT+F10 5 4.32 0.04 0.44 0.239 1.37

1 ROAD+HABITAT+HQ1 5 4.43 0.04 0.44 0.24 1.37

10 ROAD+HABITAT+F100 5 4.58 0.04 0.44 0.236 1.36

8 ROAD+HABITAT+F5 5 5.16 0.03 0.33 0.230 1.35

7 ROAD+HABITAT+F2 5 5.18 0.03 0.33 0.230 1.35

6 ROAD+HABITAT+F1 5 5.20 0.03 0.33 0.230 1.35

doi:10.1371/journal.pone.0079967.t002

Factors Influencing Tawny Owl Roadkills
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partitioning analyses. We addressed the spatial autocorrelation

using the routines available in the program Spatial Analysis in

Macroecology (SAM, version 4.0, [57]) based on spatially explicit

Gaussian regression models.

Ethics Statements
All road-killed animals used in the present study were already

found dead, and therefore an ethic or legal approval was not

required. All efforts were made to minimize suffering of a few

animals found still alive after being hit by a vehicle, delivering

them as soon as possible to wildlife recovering centres.

About 90% of the point counts for censusing tawny owls were

located in public agricultural and paved access roads and thus no

permission of the owners was needed (according to the Portuguese

legislation). For point counts that required entering private lands,

we previously obtained oral permission from the owners to

conduct the study in their properties. Whenever access was denied,

we did not perform point counts inside those properties. The use of

playbacks to census birds (protected species or not) in Portugal

does not require any specific legal or ethics commission permission

neither is referred in national legislation.

Results

Roadkill Patterns
During the seven-year period, we recorded 341 road-killed

tawny owls (1.32 individuals/km/year; Figure S1), most of which

were recorded in 2005, and 2007–2009. Numbers were lower in

2006 and 2012, when sampling was less frequent and incomplete,

respectively (Figure S2). On average, we registered more tawny

owls roadkills from June to August, and less from October to

March. The age was determined for 39 road-killed owls, of which

56.4% were juveniles (first calendar year; [58]), and 43.6% were

adults. Both age classes were found every month, except

November and December. However, adults were most frequent

between March and June, while most juveniles were found

between April and August (Figure S3).

Specifically for the year of 2005, we recorded 4381 road-killed

individuals of 107 species (birds-47.5%, amphibians-28.4%,

mammals-17.7%, and reptiles-6.4%; Figure S4), representing

species with different size and vagility, and including many habitat

generalists (SMS, pers. observ.).

Habitat Suitability
The tawny owl presence records (n = 339) were spatially

clustered (nearest neighbour index = 0.45, Z-score = 219.55,

P,0.05), probably due to the repeated records of the same

individuals in the second and third visits to point counts. We tried

without success several methods to reduce this pattern, and

decided to use a random selection of 50% of the records (n = 169),

which was still spatially clustered (nearest neighbour index = 0.48,

Z-score = 213.04, P,0.05), but produced a more accurate habitat

suitability map when compared to other methods.

Using the logistic threshold rule of 10th percentile of training

presences, the thresholds of replicated runs varied between 0.24

and 0.35, and omission rates were consistently low, with maximum

value of 9%. The average training AUC for the habitat model of

all replicated runs was 0.75960.017. Both measurements indicate

that the model performs better than random, and suggest that

model predictions should be accurate enough to represent the

realized species distribution [27]. The jack-knife analysis showed

that land cover(45.3% contribution) and elevation (38.9%) were

the most important variables, while distance to water had a minor

contribution (15.8%). Dense and medium-density oak woodlands,

and riparian vegetation were associated with tawny owl presences,

while other agricultural areas were associated with absences. The

species was absent from areas under 250 m elevation (figure 1).

Connectivity Patterns
The ten connectivity scenarios covered differently the extent of

the study area. The five scenarios assuming that movements

Table 3. Results of the ecological (EM) and the complete models (CM), and of the hierarchical partitioning applied to tawny owl
roadkill data (Regression models – Coefficient: model coefficients of the explanatory variables, S.E.: standard errors, t-value: t test,
p-value significance of the t test for the ecological and complete models; Hierarchical partitioning – I: independent contribution, J:
joint contribution, Total: total contribution, I(%): percent independent contributions of individual variables for the explained
variance of roadkill data, Z-score: statistical significance of independent contribution of variables, *p,0.05; see Table 1 for variable
codes.

Regression models Hierarchical partitioning

Variables Coefficient S.E. t value p-value I J Total I (%) Z-score

EM Intercept 21.457 0.838 21.739 0.086

ROAD 3.129 0.727 4.301 ,0.001 0.219 0.037 0.256 70.459 11.59*

HABITAT 20.836 0.927 20.902 0.370 0.010 0.001 0.011 3.306 20.180

HQ5 0.659 0.292 2.257 0.027 0.081 0.030 0.112 26.235 3.65*

Total 0.310

CM Intercept 20.326 0.672 20.486 0.629

ROAD 1.787 0.598 2.988 0.004 0.144 0.112 0.256 24.521 7.81*

HABITAT 0.369 0.742 0.498 0.620 0.010 0.001 0.011 1.668 20.180

HQ5 0.310 0.233 1.332 0.187 0.057 0.055 0.112 9.614 2.38*

SPA 0.958 0.139 6.887 ,0.001 0.378 0.109 0.487 64.196 22.12*

Total 0.589

(ecological model: AICc = 203.3, r = 0.557; complete model: AICc = 166.8, r = 0.767).
doi:10.1371/journal.pone.0079967.t003
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occurred only between high quality territories predicted smaller

extents of connected areas, when compared to the scenarios

including movements between all favourable territories. As

expected, allowing higher distance thresholds increased the extent

of the study area predicted to be connected and reduced isolation

between territories. For both scenarios of 10 and 100 km, more

than half of the study area had predictions of potential movement

paths (Figures S5. S6, S7, S8, S9, S10, S11, S12, S13, S14).

Modelling Owl Roadkills
From the 11 a priori Gaussian regression models tested for

tawny owl roadkill patterns, only those including the connectivity

variables HQ5, HQ100, and HQ10 had higher support than the

null model including only ROAD and HABITAT (Table 2). From

these three models, the one including HQ5 had an empirical

support 4.11 times greater than the null model, while the others

were largely equivalent to the null model (evidence ratio of 1.55).

Thus, the model ROAD+HABITAT+HQ5 was the best approx-

imating ecological model, though the Akaike weight of 0.37

suggested some model selection uncertainty (Table 2). Overall, the

model suggested that the number of owl roadkills was higher

where the global roadkill index was also high, and where roads

crossed landscapes with high connectivity. The effect of habitat

suitability had an equivocal importance, as its regression

coefficient was not significantly different from zero in any model

(Table 3). The connectivity scenario which best fitted the roadkill

data was that between high quality habitats and up to 5 km of

source territories (HQ5). Moreover, connectivity between high

quality territories globally received higher support than connec-

tivity between all favourable territories (Table 2). There were no

collinearity problems detected between explanatory variables: all

VIF values were below 2.0 (Table 2). The spatial autocorrelation

was strongly reduced in the residuals of the complete model. The

residual plots revealed no other patterns, influential observations

or problems with overdispersion of the data, both in the ecological

and complete models.

Hierarchical Partitioning
The ecological model explained 31.0% of the variance in the

data set, while the complete model explained 58.9%. Most of the

explained variation by each variable (in both models) was related

to its independent effects (Table 3). Among the ecological

variables, the roadkill risk had the highest independent contribu-

tion to explaining tawny owl mortality on roads (70.5% of the

explained variance in the ecological, and 24.5% in the complete

model), while connectivity accounted for 26.2% and 9.6% of the

independent variation in ecological and complete models,

respectively. The habitat suitability explained the least amount

of data variation (3.3% and 1.7% in ecological and complete

models, respectively; Table 3). Therefore, connectivity explains at

least 5.7 times more independent variation than habitat suitability

(complete model). The spatial variable had a substantially greater

independent explanatory power over the ecological variables

(64.2% in complete model), although its inclusion in the model did

not substantially change the relative contribution of ecological

variables. The independent contributions of variables were all

statistically significant, except for habitat suitability (Table 3).

Discussion

In this study road-specific factors appeared more important

than species-specific factors in explaining roadkill patterns of

tawny owl. Our findings indicate that a simple roadkill risk index

for multi-species served as a valuable surrogate for predicting

roadkill numbers of this species. We also found that the

explanatory power of the roadkill model increased considerably

when the connectivity patterns were incorporated in the predictive

models of tawny owl roadkills.

Road-related Factors
Our results confirm the importance of road-related factors in

influencing the number of roadkills [e.g., 15], which can have

important implications to the road monitoring programs and the

design of mitigation measures. In fact, the most important

ecological variable explaining the roadkill pattern of tawny owl

was the roadkill risk index. Although we expected that high

amounts of variance should be explained by roadkill risk, its large

superiority comparatively to the other variables was unexpected.

As previously explained, we used the proportion of other road-

killed wildlife as a proxy for an index of roadkill danger,

accounting that high numbers of other road-killed species should

reflect several road characteristics that may influence owl mortality

(traffic volume and speed, or road visibility, e.g. [11]). Our results

showed that road sections with high numbers of tawny owl

casualties are associated to sections also with high numbers of

other road-killed species (mostly birds and amphibians). This can

have implications to the survey of road-killed wildlife, suggesting

that road sections with higher numbers of roadkills of a key-species

may be a proxy for the road sections with higher numbers of

fatalities of a whole local vertebrate community. This apparently

points to the possibility that the mortality of a predator like the

tawny owl may be used as an indicator of a wildlife roadkill

hotspot. In fact, traffic volume and speed are difficult to measure

accurately for large study areas, as they change continuously along

road sections, days, seasons and years [59]. Our simple approach

to summarize road factors may allow easy use by wildlife managers

and road planners when accurate data on traffic and other road

characteristics are not available.

Our results also suggest that road-specific factors could be more

important than species-specific factors in explaining roadkill

patterns. Although many studies have used both road- and

species-specific factors (mostly habitat) when explaining patterns of

roadkills, most of the approaches do not weight the importance of

each factor group [4,6,11,60]. In addition, some authors suggest

that road-related factors are more important [15,61], while others

suggest that habitat variables are major determinants [11,26,62].

These contradictory results also motivated us in our present

approach. Confirming the greater importance of road-specific

factors relatively to species-specific also in other species would

allow the application of mitigation measures to the whole

community, instead of a species specific evaluation of road

projects.

Habitat Suitability
Tawny owl roadkills occurred in areas of different suitability

values, and thus habitat had low power in explaining data. This

lack of power may be at least partially due to the moderate

precision of the habitat model in classifying owls’ presence

(AUC = 0.76). Alternatively, this limited power may also indicate

that some of the road-killed owls were moving in road segments of

overall ‘‘low quality breeding habitats’’, as evaluated through our

model. Indeed, the habitat suitability values for each 500 m-road

segment were derived from a 250 m-buffer area. Thus segments

crossing general poor habitat areas may also include small parts of

good habitat. This would also contribute to explain the apparent

contradiction between the lack of influence of the habitat

suitability values in roadkill patterns and the positive influence of

connectivity patterns, which are modelled using the habitat map
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PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79967



and indicate that owls move among high quality territories. One

possible explanation to this difference is that, although both

variables (habitat suitability and connectivity) were analysed within

the 250 m-buffers, the connectivity values (density of paths)

extracted for each buffer depended much on the values in the

adjacent landscape, thus including ‘‘habitat’’ information from

larger extents than the habitat suitability variable alone. Accord-

ingly, some road sections crossing high density of predicted paths

may correspond to areas of overall low quality habitat for

breeding, in spite of connecting territories of high suitability. On

the other hand, the differences found may also reflect different

patterns of mortality for breeder adults and floaters (i.e., juveniles

and non breeder adults without territories; [63]): breeder adults

are killed in areas of suitable habitats (possibly within their

territories), and juveniles and floaters are mostly killed on corridors

of lower resistance to movement, which may include or be

surrounded by less suitable habitats.

Connectivity Patterns
Although connectivity appeared less important than road-

related factors in explaining spatial variation in roadkills, it still

accounted for a significant proportion of the explained variance.

The connectivity pattern most supported by our data was that of

displacements among high quality territories up to 5 km distance.

This distance limit is in agreement with both usual movement

within territories (for adults holding territories) and less frequent

exploratory or dispersal movements outside territories (adults or

juveniles without territories). In fact, most studies refer that

movements of territorial adults outside their home range limits are

infrequent, e.g., [25,64]. On the other hand, the tawny owl is

referred to display some of the shortest natal dispersal distances

among the European raptors [43], and data on ringing recoveries

reveals that most owls marked as juveniles (88%) settled within

5 km from the place of ringing [24]. It is possible that the

casualties of territorial adults occur during small range movements

(ca. 1–2 km), and mostly in individuals with territories nearby, or

including the road. On the other hand, casualties of juveniles and

floaters may occur during larger movements (ca. 2–5 km),

corresponding mostly to individuals searching for vacant territo-

ries.

Our results also suggest that movements occur mostly between

high quality territories, which can be explained by most juveniles

departing from more productive territories and preferably

searching for high quality vacant territories nearby (up to 5 km).

In addition, there is an unknown number of floaters (adults and

juveniles) living nearby territory holders (breeders) and searching

for a vacant area, primarily in high quality habitats [24,37,38],

thereby supporting our results.

The connectivity scenario best supported by the owl roadkill

data should reflect the road sections with higher crossing

probabilities by owls. Nevertheless, connectivity explained modest

values of mortality variance. Indeed, some owls cross those road

sections successfully using potential movement paths, while some

are killed by vehicles. In a recent work, it was estimated that barn

owls (Tyto alba) living next to a highway cross it 0.30 times per day,

resulting in a reduced mortality risk of 0.009 [21]. For tawny owl,

if most road crossings are also successful, a perfect match between

potential movement paths and the roadkill pattern is not expected.

In a similar approach, the spatial patterns of road crossing

movements of migratory mooses (Alces alces) was compared with

data on roadkills (for a larger study area) and the authors

concluded that animal movement data alone were insufficient to

predict road sections with higher mortality risk [65]. These authors

suggested that road mortality increased due to road-specific

characteristics (such as low light and poor road conditions) rather

than to more frequent animal road crossing, which is in line with

the dominant road-related factors observed in our study.

Potential Limitations and Ways Forward
Interpretation of the results observed in our study require

consideration of some potential limitations and shortcomings,

though they are unlikely to affect our key conclusions. In the first

place, the patterns observed may be dependent on the spatial scale

and landscape context of our study, as the roadkill model was

developed at a local scale and in a region where habitat

fragmentation is not severe. In fact, in a study conducted at

broader scale (ca. 300 km of surveyed roads) in southern Portugal,

tawny owl roadkills were most related with species-specific factors,

namely areas of dense oak woodland, although several road-

related variables were also considered in the analyses [26]. Thus,

our small-scale approach (and the use of abundance data in our

models) shows the importance of considering also detailed local

scale variables and population data in roadkill modelling, since

associations between roadkills and environmental factors may be

different from the ones gathered with larger scale studies.

Similarly, Malo and colleagues [4] also found that, at a local

scale, ungulate roadkills were mostly associated to road-related

factors (crossroads, underpasses and guardrails) when compared to

larger scales, thereby supporting our general results for small scale

extents. Our results are however relevant to conservation

practitioners, since mitigation measures of most road infrastruc-

tures also have a local scope.

The ecological variables used here also deserve some comments.

On the one hand, the use of a roadkill risk index of multi-species as

an effective proxy for tawny owl mortality should be still validated

within a larger study area and greater landscape diversity. On the

other hand, our roadkill risk variable may also reflect the

attraction to roads by some owls to feed on carcasses of small

animals, which may increase the risk of an owl being killed by a

vehicle. However, this carrion is more abundant, according to our

definition, in high roadkill risk sections and thus this part of owl

mortality is accounted for in our models with the roadkill risk

variable.

Despite a possible effect of differential road mortality of territory

owners and juveniles/floaters, the habitat suitability model could

be improved by adding additional explanatory variables to the

maximum entropy model. Microhabitat descriptors (e.g., distance

to hedgerows, vegetation structure of road verges, availability of

hunting perches, etc.) could have increased the explanatory power

of habitat suitability in our roadkill model. However, we are aware

that microhabitat information is not available for large spatial

scales. Alternatively, using owl abundance data, instead of

presence, could have resulted in a model with higher precision,

as the tawny owl is abundant and widespread in our study area.

Some authors defend that distribution models of common/

generalist species have lower power and classification accuracies

when compared to more rare/specialist species [66].

Another potential problem is that the connectivity patterns were

estimated assuming that movement rates of owls are greater in

habitats of lower resistance and that breeding habitat suitability is

an adequate surrogate of that resistance. Recently, there has been

some debate on the use of resource selection functions to derive

resistance surfaces, which imply that patterns of habitat use within

home ranges are similar from patterns during dispersal movements

[42,67]. In our study, road-killed owls included both territory

holders and floaters, and thus the movement models referred to

both movement types: within home ranges and dispersal

movements. The connectivity variable represents the patterns of
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habitat use for the whole population, including breeding and non-

breeding individuals. In a strongly territorial species, such as the

tawny owl, breeding individuals are much restricted to their home

ranges. Also, non-breeders spend most of their time searching for

mates and vacant territories with good breeding habitat where

they can establish themselves [43], which suggest that they should

occur primarily in habitats that are favourable for breeding.

According to this, we considered that using the best available

information on habitat use (although it refers only to breeding

habitat) was a reasonable assumption to build a connectivity model

for our study area, as done in many other studies or species with

very different ecological requirements [40,41,68–70].

To the best of our knowledge, this is the first study to

simultaneously evaluate the relative importance of roadkill risk,

habitat suitability and connectivity patterns on wildlife road

mortality data. Particularly, specific research on the inclusion of

connectivity simulations as predictors of roadkill abundance is still

rare. In addition, the present work also uses a simple index of

multi-species mortality on the road to express the roadkill risk for a

single species, which may be of high usefulness for assessing

roadkill risk of rare and endangered species based on overall

roadkill data.

Our results also raise new important questions to be addressed

in future studies. The use of a roadkill index should be further

explored and validated against other potential indicator species.

For instance, it is known that small bodied size animals are

frequently underestimated in road samplings [71]. Thus, can

numbers and location of large and/or generalist species casualties,

that are easier to sample, be a proxy for numbers and location of

small/specialist species mortality on the road ? On what concerns

the tawny owl, connectivity modelling and dispersal movements

should be further addressed with telemetry data and assessment of

individual responses to the roads. In addition, the consequences of

tawny owl road mortality on population dynamics need to be

evaluated. If most dispersal movements of tawny owls are within

short distances, to what extent does the presence of roads influence

population demographic structure? Future studies should find the

answers to these questions.

Supporting Information

Figure S1 Spatial distribution of abundance of tawny
owl roadkills in the study area, overlaid with main land
uses (white: water reservoir, light grey: agricultural and
open areas; dark grey: ‘‘montado’’ and other forests,
crossed white: urban areas).

(TIF)

Figure S2 Total numbers of tawny owls road-killed in
the study area, per month and for each year separately
(2005–2012; n = 341).

(TIFF)

Figure S3 Numbers of adults and juveniles of tawny owl
road-killed in the study area through the year (2005–
2012; n = 39).

(TIFF)

Figure S4 Spatial distribution of the values of roadkill
risk index (percentage of general fauna road-killed in
each 500 m section) in the study area, overlaid with
main land uses (white: water reservoir, light grey:
agricultural and open areas; dark grey: ‘‘montado’’
and other forests, crossed white: urban areas).

(TIF)

Figure S5 Connectivity model for a pattern of connec-
tivity among high quality territories up to 1 km distance
(HQ1), overlaid with owl mortality (lighter areas
indicate higher movement probability).

(TIF)

Figure S6 Connectivity model for a pattern of connec-
tivity among high quality territories up to 2 km distance
(HQ2), overlaid with owl mortality (lighter areas
indicate higher movement probability).

(TIF)

Figure S7 Connectivity model for a pattern of connec-
tivity among high quality territories up to 5 km distance
(HQ5), overlaid with owl mortality (lighter areas
indicate higher movement probability).

(TIF)

Figure S8 Connectivity model for a pattern of connec-
tivity among high quality territories up to 10 km
distance (HQ10), overlaid with owl mortality (lighter
areas indicate higher movement probability).

(TIF)

Figure S9 Connectivity model for a pattern of connec-
tivity among high quality territories up to 100 km
distance (HQ100), overlaid with owl mortality (lighter
areas indicate higher movement probability).

(TIF)

Figure S10 Connectivity model for a pattern of connec-
tivity among favourable territories up to 1 km distance
(F1), overlaid with owl mortality (lighter areas indicate
higher movement probability).

(TIF)

Figure S11 Connectivity model for a pattern of connec-
tivity among favourable territories up to 2 km distance
(F2), overlaid with owl mortality (lighter areas indicate
higher movement probability).

(TIF)

Figure S12 Connectivity model for a pattern of connec-
tivity among favourable territories up to 5 km distance
(F5), overlaid with owl mortality (lighter areas indicate
higher movement probability).

(TIF)

Figure S13 Connectivity model for a pattern of connec-
tivity among favourable territories up to 10 km distance
(F10), overlaid with owl mortality (lighter areas indicate
higher movement probability).

(TIF)

Figure S14 Connectivity model for a pattern of connec-
tivity among favourable territories up to 100 km dis-
tance (F100), overlaid with owl mortality (lighter areas
indicate higher movement probability).

(TIF)
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