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Abstract

ened, leading to high mortality.

analysis

Background: Opportunistic Candida species causes severe infections when the human immune system is weak-

Methods: In our study, bioinformatics analysis was used to study the high-throughput sequencing data of samples
infected with four kinds of Candida species. And the hub genes were obtained by statistical analysis.

Results: A total of 547,422,415 and 405 differentially expressed genes (DEGs) of Candida albicans, Candida glabrata,
Candida parapsilosis and Candida tropicalis groups were obtained, respectively. A total of 216 DEGs were obtained
after taking intersections of DEGs from the four groups. A protein—protein interaction (PPI) network was established
using these 216 genes. The top 10 hub genes (FOSB, EGRT, JUNB, ATF3, EGR2, NR4AT, NR4A2, DUSP1, BTG2, and EGR3)
were acquired through calculation by the cytoHubba plug-in in Cytoscape software. Validated by the sequencing data
of peripheral blood, JUNB, ATF3 and EGR2 genes were significant statistical significance.

Conclusions: In conclusion, our study demonstrated the potential pathogenic genes in Candida species and their
underlying mechanisms by bioinformatic analysis methods. Further, after statistical validation, JUNB, ATF3 and EGR2
genes were attained, which may be used as potential biomarkers with Candida species infection.
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Background

Candida species colonizes human mucosal surfaces as
commensals, which can turn to pathogenic behavior
under certain conditions, especially in immunocom-
promised patients [1]. Opportunistic Candida species
includes Candida albicans (C. albicans), Candida kru-
sei (C. krusei), Candida tropicalis (C. tropicalis), Can-
dida glabrata (C. glabrata), and Candida parapsilosis
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(C. parapsilosis). Among them, Candida albicans is the
major pathogen isolated [2, 3], accounting for about
50% of all candidiasis cases with a total mortality rate of
43% [4, 5]. However, in the last decade, the proportion
of Candida has been changed, with a reduction of Can-
dida albicans and an increase in Candida parapsilosis,
Candida tropicalis, and Candida glabrata [2, 6]. Non-
albicans Candida such as Candida glabrata, Candida
parapsilosis, and Candida tropicalis have now been iden-
tified as frequent human pathogens [7]. The number of
patients and the geographic location determined that the
overall distribution of the species Candida albicans was
more common in Australia, Japan, Korea, Hong Kong,
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and Malaysia, whereas Candida tropicalis is more com-
mon in Pakistan and India [2, 8].

Candidiasis is a common bloodstream infection in hos-
pitals around the world, causing high morbidity and mor-
tality [2, 9]. In recent years, the emergence of Candida
resistant strains brought about the further risk of clini-
cal infection [10]. The major virulence factors of these
pathogens were the Candida peptide and the extracellu-
lar aspartic proteases of the Candida peptide family [11].
Despite the introduction of intensive care facilities and
modern antifungal drugs, the results of progress in curing
Candida infections over the past decades have been dis-
appointing [10, 12]. At present, adjuvant immunotherapy
can further reduce the morbidity and mortality caused by
Candida infection [13]. Therefore, understanding how
host defense pathways participate in candidiasis is crucial
for determining new targets for immunotherapy.

Sequencing technology has been applied to find tar-
gets for immunotherapies. High-throughput sequencing
has become an important method for studying genomics,
epigenomics, and transcriptome [14]. At present, some
studies applied high-throughput sequencing to the iden-
tification and characterization of clinical microbiology.
And when clinical data are more complex and contains
multiple species, this technology is more reliable than
normal sequencing [15].

To study the differentially expressed genes (DEGs)
and signaling pathways related to Candida infection,
this study applied bioinformatics analysis to analyze the
gene expression profiles of human whole blood infected
by four common Candida species including Candida
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albicans, Candida parapsilosis, Candida glabrata, and
Candida tropicalis.

Methods

Data sources

The Gene Expression Omnibus (GEO, http://www.ncbi.
nlm.nih.gov/geo/) database, attached to the National
Center for Biotechnology Information (NCBI), was
used to store gene expression datasets, series, and
platform records. The gene expression profiles of
GSE114174, GSE114175, GSE114177, GSE114178, and
GSE114179 provided by Philipp Kdimmer from the GEO
database were downloaded. These gene expression pro-
files were attained by high-throughput sequencing. The
number of infection and control samples is shown in
Table 1. As shown in Table 1, The number of whole blood
sample infected with Candida albicans, Candida glabrata,
Candida parapsilosis and Candida tropicalis are 15, 15,
15 and 15, respectively. As a control group, GSE114179
includes three whole blood sample. These whole blood
samples were donated by German volunteers. Addi-
tionally, the sources of samples infected with differ-
ent Candida species were from Germany, America and
Netherlands. Further details of the data sources from the
GEO database for this study are shown in Table 1.

Data possessing and identification of DEGs

With R software, the data of GSE114174, GSE114175,
GSE114177, GSE114178 and GSE114179 were batch-
corrected and standardized using the affy software pack-
age, and the screening and identification of DEGs were

Table 1 Details of the data sources from Gene Expression Omnibus (GEO) for this study

GEO series (GSE) Sample collection

Sample size Infection

GEO sample (GSM) Sample source GEO platform (GPL)

vs control

GSE114174 Homo sapiens whole blood 18 15vs 3 GSM3136879 ~96 Germany GPL24974 lllumina HiSeq
infected with Candida albicans 2500 (Candida albicans; Homo

sapiens)

GSE114175 Homo sapiens whole blood 18 15vs 3 GSM3136897 ~99 Germany GPL24975 lllumina HiSeq 2500
infected with Candida glabrata GSM3136900~ 14 ([Candida) glabrata; Homo

sapiens)

GSE114177 Homo sapiens whole blood 18 15vs 3 GSM3136915~32  Germany GPL24976 lllumina HiSeq 2500
infected with Candida parap- (Candida parapsilosis; Homo
silosis sapiens)

GSE114178 Homo sapiens whole blood 18 15vs3 GSM3136933~50  Germany GPL24977 lllumina HiSeq 2500
infected with Candida (Candida tropicalis; Homo
tropicalis sapiens)

GSE114179 Homo sapiens whole blood 3 Ovs3 GSM3136951 ~53 Germany GPL16791 lllumina HiSeq 2500

(Homo sapiens)

GSE42630 Homo sapiens PBMCs stimu- 10 5vs5 GSM1046846 ~ 55 America & GPL16288 AB 5500xI Genetic

lated with Candida albicans Netherlands Analyzer (Homo sapiens)

PBMCs peripheral blood mononuclear cells
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carried out using the limma software package. Addition-
ally, the ggplot2 package was applied to draw a volcano
map, whereas the pheatmap package was employed to
make a heatmap to visualize the DEGs. Using P<0.05
and |log2FC|>1 as critical values, the gene expression
profiles in infected samples and uninfected samples were
compared.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) analysis of DEGs

Gene Ontology was the main bioinformatics means used
to annotate genes and analyze their biological processes.
It includes the biological process (BP), molecular func-
tion (MF), and cellular component (CC), which reflects
the conceptual category of gene product function, the
biological processes of DNA metabolism and known dif-
ferences between different organisms [16]. The KEGG is
a database that can be used to understand biological sys-
tems and advanced functions from large-scale sequenc-
ing data generated by high-throughput sequencing
technology [17]. In order to illustrate the biological func-
tion of genes and signal pathways involved in the vivo and
cells, differentially expressed genes were annotated based
on GO and KEGG analysis. The clusterProfler package in
R software was used to performed the two analyses.

Construction of protein—-protein interaction (PPI) network
and identification of hub genes

The DEGs of four transcription profile data (GSE114174,
GSE114175, GSE114177 and GSE114178) were over-
lapped by using online tools (https://bioinfogp.cnb.
csic.es/tools/venny/index.html). The construction of
the PPI network was carried out using the Search Tool
for the Retrieval of Interacting Genes (STRING) data-
base (http://string-db.org/), which aimed at providing
important estimates and integrations of protein—protein
interactions, including functional and physical associa-
tion [18]. Moreover, the cytoHubba plug-in in Cytoscape
3.7.2 software was applied to obtain the top 10 hub genes
which ranked by Maximal Clique Centrality (MCC).
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Verification of intersection hub genes and construction

of intersection gene-miRNA interaction

After identifying the intersection hub genes from four
groups of data, the data of GSE42630 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE42630) obtained
after the bioinformatics analysis were used for verifica-
tion. GraphPad Prism 8.0 software was used for statistical
analysis. The Gene—-miRNA interaction was constructed
using the miRTarBase v8.0 database [19] by Network

Analyst  (https://www.networkanalyst.ca/NetworkAna
lyst/home.xhtml).
Results

Identification of DEGs associated with Candida infection

A total of 547, 422, 415 and 405 DEGs of Candida albi-
cans, Candida glabrata, Candida parapsilosis and Can-
dida tropicalis groups were separately obtained. Table 2
shows the detailed results of DEGs between the infection
and control groups. The heat map of the DEGs proved
that these DEGs could clearly distinguish between
control samples and samples infected by C. albicans
(Fig. 1B), Candida glabrata (Fig. 1D), Candida parapsi-
losis (Fig. 1F) and Candida tropicalis (Fig. 1H), respec-
tively. Figure 1A, C, E and G, respectively, shows the
volcano plot of the DEGs for C. albicans, C. glabrata, C.
parapsilosis and C. tropicalis.

Go enrichment analysis of DEGs associated with Candida
infection

Figures 2, 3 and 4 represent the results of biological pro-
cesses, cellular components and molecular function
in the GO enrichment analysis. For the biological pro-
cess, both the C. tropicalis and C. parapsilosis groups
were significantly enriched in T cell activation, whereas
the C. albicans, C. tropicalis and C. parapsilosis groups
were significantly enriched in leukocyte differentiation
and regulation of leukocyte activation. With regard to
the cellular component, the C. albicans, C. glabrata, C.
parapsilosis and C. tropicalis groups were significantly
enriched in the cytosolic ribosome and cytosolic part.

Table 2 Detailed results of differentially expressed genes (DEGs) between infection and control group

Infection Control Infected with Candida species Totally DEGs Up-regulated DEGs Down-
regulated
DEGs
GSE114174 GSE114179 Candida albicans 547 118 429
GSE114175 GSE114179 Candida glabrata 422 103 319
GSE114177 GSE114179 Candida parapsilosis 415 115 300
GSE114178 GSE114179 Candida tropicalis 405 106 299
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Fig. 1 Heat map and volcano map of DEGs from four groups of Candida species. AB Candida albicans, CD Candida glabrata, EF Candida
parapsilosis, and GH Candida tropicalis. In heat maps, gene expression data are converted into a data matrix. Each column represents the genetic
data of a sample, and each row represents a gene. The color of each cell represents the expression level, and there are references to expression
levels in different colors in the upper right corner of the figure. In volcano maps, red dots indicated up-regulated genes. The green or blue dots

followed: P<0.05 and |log2FC|> 1. FC: fold change

indicated down-regulated genes. Black dots indicated the rest of the genes with no significant expression change. The threshold was set as

Regarding the molecular function, both C. tropicalis
and C. parapsilosis groups were significantly enriched in
cytokine activity and DNA-binding transcription activa-
tor activity, RNA polymerase II-specific. The top 5 terms
of significant enrichment of GO analysis for Candida
albicans, Candida glabrata, Candida parapsilosis and
Candida tropicalis in the Additional files 1, 2, 3, 4 (Tables
S1-54).

KEGG pathway enrichment analysis of DEGs associated
with Candida infection

KEGG pathway analysis was conducted to identify the
biological functions of DEGs. The results of the analysis
are shown in Fig. 5. Five significant enrichment pathways
were found simultaneously in C. albicans, C. glabrata,
C. parapsilosis and C. tropicalis, which included the NF-
kappa B signaling pathway, TNF signaling pathway, viral

protein interaction with cytokine and cytokine recep-
tor, salmonella infection and osteoclast differentiation.
Additionally, the Toll-like receptor signaling pathway and
MAPK signaling pathway were found simultaneously in
C. glabrata, C. parapsilosis and C. tropicalis. The top 10
terms of significantly enriched KEGG pathways for Can-
dida albicans, Candida glabrata, Candida parapsilosis
and Candida tropicalis in the Additional files 5, 6, 7, 8
(Tables S5-S8).

Construction of PPl network and hub genes identification

The overlapping results of DEGs of four groups of Can-
dida species are shown in Fig. 6A. The PPI network and
the top 10 hub genes of the C. albicans, C. glabrata, C.
parapsilosis, and C. tropicalis groups are, respectively,
shown in Additional files 9, 10 (Figs. S1 and S2). A total
of 216 DEGs were obtained after taking the intersec-
tion of the DEGs from the four groups. The 216 genes
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Fig. 2 The biological processes (BP) of GO analysis from four groups of Candida species. A Candida albicans, B Candida glabrata, C Candida
parapsilosis, and D Candida tropicalis

were uploaded to STRING to construct a PPI network,
consisting of 51 nodes and 96 edges (Fig. 6C). The top
10 hub genes obtained included FOSB, EGR1, JUNB,
ATF3, EGR2, NR4Al, NR4A2, DUSP1, BTG2, and
EGR3 (Fig. 6D).

Construction of intersection gene and miRNA interaction
and verification of intersection hub genes

The Gene-miRNA interaction of intersection genes is
shown in Figure 6B. According to Degree, the top 10
genes interacted with miRNA were: BTG2, PMAIP],
GLUL, HS3ST1, DDX3X, TFRC, ORC6, SGK1, ZFP36
and RPL23A. In consideration of the rigorousness of
this study, the data from the GSE42630 were used to
verify the 10 intersection hub genes obtained. With
P<0.05 as the standard, the analytic results of the genes
(JUNB, ATF3, EGR2) were found to be statistically sig-
nificant (Fig. 7).

Discussion

Candida species is one of the most common pathogens
of invasive fungal infections among hospitalized patients
[20]. Bioinformatics analysis can quantitatively analyze
the gene expression of Candida species and identify the
differentially expressed genes generated in cells, tissues or
organisms that were infected with Candida species and
uninfected. It is extremely important to understand the
molecular mechanism of genetic regulation of Candida

species and to better treat and diagnose diseases [21]. We
downloaded the gene expression profiles relevant to the
Candida infection from the GEO database. The obtained
DEGs were used to perform GO enrichment analysis and
KEGG pathway analysis, construct the PPI network, and
gene—miRNA interaction network and identify the top 10
hub genes.

The GO enrichment analysis indicated that an increase
in pattern recognition receptor activity may enhance the
host’s defense against Candida species. The study has
shown that when infected with Candida species, the first
step to develop an immune response to Candida species
is the recognition of invasive fungi [22]. At present, stud-
ies have found that PRRs of Candida albicans include
TLRs, CLRs, NLRs and RIG-I-like receptors (RLRs) [22,
23]. Additionally, in our study, the leukocyte differentia-
tion, regulation of leukocyte activation and T cells acti-
vation increased resistance to the invasion of Candida
species, which was consistent with previous studies
[24-26]. In addition to killing Candida by the produc-
tion of reactive oxygen species (ROS) and phagocytosis,
activated neutrophils can also release neutrophil extra-
cellular traps (NETs), that capture Candida conidia and
hyphae and contain the antimicrobial proteins to inhibit
fungal growth [27, 28]. TH17 cell responses played an
important role in mucosal host defenses against Candida
by producing IL-17 and IL-22. These cytokines recruit
and activate neutrophils, activate epithelial cells
and release antifungal B-defensins cooperatively [29].
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TH1 cell responses and IFNy productions were quite
important for the fungicidal activities of both neutrophils
and macrophages [30].

In the current study, certain cellular signaling pathways
identified using KEGG analysis were closely associated

with Candida fungal infections. In addition to recogniz-
ing a wide variety of microbial products including lipo-
proteins, flagellin, lipopolysaccharides and bacterial
DNA, signal transduction through TLRs also led to the
production of inflammatory mediators [31]. Previous
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and D Candida tropicalis

studies have shown that TLR4 mediated the induction of
pro-inflammatory cytokines after Candida stimulation,
whereas TLR2’s recognition of Candida primarily led to
the release of anti-inflammatory cytokines [32]. TLRs
initiate downstream signaling that culminates in the acti-
vation of nuclear factor kappa B (NF-kB), mitogen acti-
vating protein (MAP) kinases, or Interferon regulatory
factors (IRFs), to regulate the expression of type I IFNs,
cytokines and chemokines that ultimately should pro-
tect the host from infection by pathogens [33]. Primar-
ily produced by activated macrophages, TNF signals are
transmitted through two different cell surface receptors,
TNEF-R1 and TNF-R2 [34]. A number of experimental
studies have revealed that the TNF-R1 activates most
of the biological activity of TNF. The binding of TNF to
TNE-R1 initiates downstream signaling that culminates
in the activation of NF-kB and c-Jun, two major transcrip-
tion factors [35, 36]. The NF-kappa B pathway is divided
into two different but interacting pathways: the classical
NEF-kappa B essential modulator (NEMO)—a depend-
ent pathway and the alternate NEMO—an independent
pathway. While the classical NF-kB signaling pathway,
induced by TNF-a, IL-1, or by-products of bacterial and
viral infections, is mainly associated with inflammatory,
proliferative, and survival responses, the activation of the
noncanonical pathway results in a chemokine expression.

Taken together, detecting these pathways may be helpful
to predict the progression of Candidiasis [37].
Protein—protein interactions and acquired networks
are very important in most biological functions and
processes, as most proteins seem to activate their func-
tions through interactions [38]. The hub genes screened
through the PPI network are closely related to the
potential molecular mechanism of Candida infection in
humans. Therefore, a total of 10 hub genes were selected
in this study. Keeping in mind the rigor of this study, the
data of GSE42630 was used to verify the 10 hub genes.
Through verification, among the 10 hub genes, the three
hub genes—JUNB, ATF3, and EGR2—were significant
statistical significance. Studies have shown that JUNB
possesses an important effect during the growth of Treg
cells, as it promotes IL-2 signal transduction [39]. There-
fore, during Candida infection, the regulation of JUNB
may affect Treg cells in resisting Candida infection. The
research of Rynes et al. found that ATF3 can maintain
the homeostasis of the metabolism and immune system
[40, 41]. The loss of ATF3 can cause chronic inflamma-
tion. Through NF-B/Relish in the ATF3 mutant, the
overactive pro-inflammatory and stress signals caused
by Jun N-terminal kinase and FOXO can remove the
regulation of the important genes in immune defense
[42]. In Candida infection, the main role of ATF3 is to
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Fig. 6 The intersection results and relevant analysis of DEGs from four groups of Candida species. A The overlapping results of DEGs of four
groups of Candida species. Crossed regions indicate co-expressed DEGs. B The gene-miRNA network of overlapping DEGs based on miRTarBase
v8.0 database. C The PPI network of overlapping DEGs. D The top 10 hub genes of PPI network

PMAIP1

inhibit inflammation. Studies have found that the adap-
tive immune response is regulated by EGR2 and EGR3 by
uncoupling and expanding the time of T cell differentia-
tion. EGR2 binds to and controls the expression of prolif-
eration regulating genes (Myc and Myb), differentiation
inhibitors (Bcl6, 1d3) and inhibits transcription factors
(Zeb2, RORa, RORc, and Bhlhe40) required for effec-
tor functions. EGR2 and EGR3 are upstream regulation
factors of CD4 and CD8 T cells, which are essential for
optimal response under limited immunopathology [43,
44]. In our research, EGR2 was a key adjustment factor.
While its impact has been confirmed, the effect of EGR3
was not reflected clearly.

BTG2 is an archetype member of the BTG/Tob anti-
proliferative protein family, and its expression is related
to various cellular processes, for instance, the generation

cycle, divergence, or apoptosis of cells. BTG2 may act as
a regulatory factor of the intracellular signal transduction
cascade [45, 46]. BTG2 expression is induced through a
p53-dependent mechanism, and the function of BTG2
may be related to cell cycle control and DNA damage
reaction [47, 48].

Overall, bioinformatics analysis can be used to study
the complex underlying molecular mechanisms related
to diseases. In this study, the hub genes related to Can-
dida infection were identified. However, further experi-
mentation is required to verify these predicted results
from bioinformatics analysis. This study has some limi-
tations. Firstly, the number of sample of each group of
Candida species was 18, therefore, the sample size of the
study was relatively small. Secondly, the research sample
did not eliminate factors like gender, whether the gene
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Fig. 7 Verification of hub genes associated with Candida infection. P-value <0.05 is considered to be statistically significant

expression profiles were infected with other diseases, or
whether drugs were used. This may have affected the fac-
tors of Candida infection in the gene expression.
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