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Abstract: The increasing application of Artificial Intelligence (AI) in health and medicine has attracted
a great deal of research interest in recent decades. This study aims to provide a global and historical
picture of research concerning AI in health and medicine. A total of 27,451 papers that were published
between 1977 and 2018 (84.6% were dated 2008–2018) were retrieved from the Web of Science
platform. The descriptive analysis examined the publication volume, and authors and countries
collaboration. A global network of authors’ keywords and content analysis of related scientific
literature highlighted major techniques, including Robotic, Machine learning, Artificial neural
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network, Artificial intelligence, Natural language process, and their most frequent applications
in Clinical Prediction and Treatment. The number of cancer-related publications was the highest,
followed by Heart Diseases and Stroke, Vision impairment, Alzheimer’s, and Depression. Moreover,
the shortage in the research of AI application to some high burden diseases suggests future directions
in AI research. This study offers a first and comprehensive picture of the global efforts directed
towards this increasingly important and prolific field of research and suggests the development
of global and national protocols and regulations on the justification and adaptation of medical
AI products.

Keywords: bibliometric analysis; artificial intelligence; health; medicine; global; mapping; AI ethics

1. Introduction

While the growing importance and relevance of artificial intelligence (AI) is indisputable, the term
itself has no universally agreed upon definition [1,2]. AI commonly refers to the computational
technologies that mimic or simulate processes supported with human intelligence, for instance,
reasoning, deep learning, adaptation, interaction, and sensory understanding [1]. In a broader
definition, the Cambridge dictionary puts AI as an interdisciplinary approach that adopts principles
and devices from a variety of fields, such as computation, mathematics, logics, and biology, to solve the
problem of understanding, modeling, and replicating intelligence and cognitive processes [3]. As such,
applications of AI can be found in various domains, from robotics [4,5], image and voice recognition [6],
to natural language processing and expert systems [2]. Given its broad, dynamic and rapidly growing
capabilities, it is no wonder that AI has been applied in the field of medicine since as early as the
1950s when physicians made the first attempts to improve their diagnoses using computer-aided
programs [3]. A notable example of this is abdominal pain diagnosis that utilized computer analysis
by Gunn in 1976 [7,8]. The interest and advances in medical AI applications have surged in recent
years, thanks to the substantially enhanced computing power of modern computers [4,9] and the vast
amount of digital data now available for collection and utilization [1].

Within the medical literature, scholars have written extensively on the benefits of AI applications,
highlighting the technology’s potential to improve diagnostic and therapeutic accuracy and the
overall clinical treatment process [10,11]. With its sophisticated algorithms and deep learning
capacity, AI applications have assisted doctors and medical professionals in general in the domains of
health information systems, geocoding health data, epidemic and syndromic surveillance, predictive
modeling and decision support, and medical imaging [4,5,12,13]. In particular instances, an AI system
can provide health professionals with constant, possibly real-time updates of medical information from
various sources including journals, textbooks, clinical practices, and patients to inform proper patient
care [14] and enable appropriate inferences for health risk alert and health outcome prediction [15].

As AI is rapidly transforming the medical landscape, scholarship on the topic has also mounted
substantially in recent years, presenting the need for a comprehensive review of the research patterns
as well as trends of AI in medicine (AIM). In their thorough review article on Nature Biomedical
Engineering, Yu, Beam, and Kohane [4] survey the literature on AIM, explain the advanced techniques
and their applications, and point out the breakthroughs and challenges for the field. The paper, though
among the most recent attempts to draw out clinical integration of medical AI at various stages, has yet
to dig into the entirety of the literature on AIM over a certain period of time. Thus, in order to identify
research gaps and facilitate the clear, on-point translation of knowledge that would better inform
policy development, this study presents the use of scientometric analysis in exploring research trends
in the subject of AI in health and medicine. Scientometrics uses databases of published literature to
objectively assess the impact of research knowledge on health issues and provide substantial empirical
evidence. It shows the way of changing concerned research topics in national and international contexts
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with the increasing number of published articles over time, and reflects the visual collaborations of
researcher networks within different topics [16–18]. Scientometric methods are particularly useful in
the evaluation of global scientific production and development trends, such as in the cases of health
systems research [19], administrative healthcare database [20], or diabetes research in Middle East
countries from 1992 to 2012 [21], to name a few. Through an extensive review of the scholarship
on AIM, this paper aims to present a better understanding of publications and research trends, and
suggests potential directions toward solving this ongoing challenge. Specifically, we reviewed the
global growth of research production in medical AI and analyzed patterns of research areas and trends
in this field.

2. Materials and Methods

The search used the Web of Science (WOS) database from Clarivate [22] and Scopus from
Elsevier [23]. WOS was chosen because it covers (i) more research fields compared with PubMed,
and (ii) research dated from 1900 to the present. For the Scopus database, due to the restriction for
not downloading completed data larger than 2000 papers, we could only download papers by year.
This analysis focuses on articles published from 1971 to 31 December 2018 in peer-reviewed journals.
The bibliometric study does not include grey literature, conference proceedings, or books/book
chapters. Articles written in any languages other than English are excluded.

2.1. Search Strategy

There are two steps conducted in sequential order: inclusionary step, followed by an exclusionary
step. Each step is explained in detail below. We applied two steps for both WOS and Scopus.

2.1.1. Inclusion Step

The literature from the WOS database was retrieved using a developed set of search terms,
focusing on (1) AI types, and (2) health and medicine. The search terms were chosen based on our
research on prevailing literature on the topic, discussions within our team, and suggestions provided
by AI experts. The team defined clearly the synonyms for search terms and resolved any potential
differences via discussion. The search query is outlined in Box 1.

Box 1. Search query text.

(1) “Artificial intelligence” OR “Machine intelligence” OR “artificial neutral network*” OR “Machine learning”
OR “Deep learn*” OR “Natural language process*” OR “Robotic*” OR “thinking computer system” OR
“fuzzy expert system*” OR “evolutionary computation” OR “hybrid intelligent system*”

(2) disease* OR illness OR health-related OR medic* OR “medical diagnosis” OR treatment OR health* OR
wellness OR well-being

In our final step, we connected query 1 to 2 with the “AND” operator (see Tables S1 and S2
Supplementary).

2.1.2. Exclusion Step

The team excluded articles published from 1 January 2019 onwards as any capture from that
period forward would include incomplete bibliometric data for that year. Other types of documents
being excluded are book chapters and conference proceedings, plus items with anonymous authors
and studies written in any languages other than English.

2.2. Data Extraction

As a restriction from Scopus, we applied this step and the following only for the dataset
downloaded from WOS. Retrieved data were exported from the WOS database under text format and
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applied STATA version 15 (STATA Corp., College Station, TX, USA) to merge data files and extract
others. Based on the Global burden of disease 2017 study, we identified 25 diseases with the highest
Disability-Adjusted Life Years (DALYs) and used STATA to extract the number of papers related to AI
types. The .dta file then was stored in Excel. The data exported include: (1) Title name, (2) Names of
journals, (3) Authors’ name with the Web of Science affiliation, (4) Number of citations, (5) The types of
documents, (6) The year of publication for each publication, (8) Author and Web of Science keywords,
and (9) Abstracts.

2.3. Data Analysis

We applied STATA to perform a regression model for the growth of world publication in AI in
healthcare and medicine.

In terms of coauthorship analysis, the study examined the most productive countries based on the
number of papers, total citations, citations per paper, the number of downloaded papers, collaborative
country, and international collaborative papers.

VOSviewer software was used to create visualization maps (http://www.vosviewer.com/).
For the most prolific countries, we applied the cutoff point of 5 papers, and there were 93 countries in
the mapping analysis.

A network graph illustrates the connection among the 568 most common authors’ keywords by
applying the specific threshold of 15 appearances for each keyword. Based on this graph, the team
identified the main topic of AIM.

After that, STATA was applied to the number of papers related to the AI tools and the clinical
application of AI. This measure shows not only the trend applying a specific AI type for a disease, but
also identifies whether the investment and testing of an AI tool for a particular disease are adequate
with the burden of disease (in this study we used disability-adjusted life-years or DALYs).

3. Results

3.1. The Publication Trend

After the removal of unmatched data (15,197 research results), 27,451 research results (24,758
Article and 2849 reviews) were included from WOS published between 1971 and 2018. (Figure 1)
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Table 1 shows the distinctive transformation of worldwide publications on AI in medicine and
health. Below are some of the highlights:

• Most of the papers (80.0%) were assorted into one (n = 14,756; 53.6%) or two (n = 7225; 26.4%)
subject categories.

• The number of publications dated between 2008 and 2017 (16,913 articles) accounts for 61.6%
of the total number of publications being analyzed. This figure was double compared with the
previous time range and seven times as much as that in the previous ten-year period.

• The number of countries means the paper was written by one country only or in collaboration
with others. Based on that information, we found that AI-related medical research was mainly
performed by one to three countries (85.9%). The global collaboration among nation-states was
not so high (14.0%).

Table 1. Characteristics of the selected articles.

Characteristic Category Number Percent

Total number of papers 27,451 100

Year of publication

2018–2014 16,913 61.62
2013–2009 6303 22.97
2008–2004 2471 9.00
2003–1999 968 3.53
1998–1994 599 2.18
1993–1989 174 0.64

<1989 23 0.06

Number of authors

1 1413 5.15
2–3 8085 29.45
4–6 10,992 40.05
7–10 5237 19.07
>10 1724 6.28

Number of subject
categories

1 14,756 53.75
2 7225 26.32
3 3597 13.10
4 1244 4.53

>5 629 2.30

Number of countries in
authorship

1 18,532 67.51
2 4954 18.05
3 1126 4.1
4 295 1.07
5 109 0.4
6 42 0.15
7 32 0.12
8 20 0.07
9 6 0.02

>10 18 0.06

Figure 2 is the visualization of this exponential growth of AI research in medicine. Although the
number of papers in Web of Science is more than that in Scopus, both showed a similar trend over
the study period. The number of publications has increased exponentially since 1998, and most of
the papers (65.0% Scopus paper and 97.7% WoS paper) were published in 2008–2018. The first paper
related to “AI in health and medicine” of WOS was found in 1977, whereas that of Scopus was in 1963.

We attempted to estimate the number of publications related to AI in healthcare and medicine
on a global level by employing an exponential model in which the dependent variable was the
annual number of articles and the independent variable was the year published. The coefficients of
determination (r2) of such model was 0.935. Figure 3 visualizes how the exponential model fit with
observed data compared to a linear model. The dotted lines corresponding to each solid line in terms of
color (dotted blue with solid blue, dotted green with solid green) represent the 95% confidence interval.
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There is an inflection point in the amount of AI research that happens around 2002–2003 when
the quantity of AI research in health and in medicine surges upward dramatically. This observation
can be explained by the exponential growth of computing power and data storage capacity, which also
went through an inflection point during the same period [2,24,25]. The revolution in computing power
and digitalization has not only changed the quantity of research but also enabled a robot called Adam
to identify the function of a yeast gene on 12 June 2007, a noteworthy point in the history of AI, as it
effectively ended the human monopoly of scientific discovery [26].
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Five thousand and fifty-seven journals published 27,451 research articles. Two-thousand two
hundred and fifty-seven (8.2%) journals published one paper, 848 (3.09%) journals published two,
490 (1.78%) journals published three, and 1462 (86.9%) journals published four or more. PLOS One
(n = 478; 1.74%) and Expert Systems with Applications (n = 281; 1.02%) are two journals that published
the most papers, followed by Journal of Biomedical Informatics (n = 269; 1.00%), Medical Physics
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(n = 258; 0.94%), and Journal of Robotic Surgery (n = 255; 0.93%). “Expert systems with applications”
(281 papers) was the most prolific journal, publishing in the categories “Computer Science” and
“Engineering”. Among all topics, AI in health and medicine was the one which attracted the greatest
concern, mainly from the medical community, which could be clearly seen from the diversity of the
subject categories, such as surgery, medical chemistry, and oncology. (see Table S3 Supplementary).

3.2. Contribution by Author

As Table 1 shows, 40% (n = 10,992) of the papers were the fruits of collaboration of four or six
authors; the number of papers with two or three authors was 8085 (29.5%) and only 5.15% (n = 1413)
of items were written by one author. Given that publications in this field were mostly the results
of coauthorship, one implication stands out here: conducting research on medical AI often requires
extensive teamwork. This observation also highlights the multidisciplinary links among the authors
and the interdisciplinary nature of the field. However, it is also noteworthy that the number of papers
with more than 10 authors accounts for only 6.25% (n = 1724). This suggests it might not be effective
for too many authors to collaborate on international publications; the data imply four to six authors as
the optimal number of team members.

Applying the cut-off of 15 papers for one author, we visualized the global cooperation of authors.
Among 135 authors in Figure 4, most of the prolific authors had strong collaborations with others and
appeared at the center of many constellations. Such authors are Mani Menon (red cluster), Kaouk Jihad
H, Autorino Ricardo (yellow cluster), and Inderbir S. Gill (purple cluster). Meanwhile, stand-alone
authors had fewer papers. The thickness of lines is an indication of the strength of the relationship
between authors relative to others. The strength of these relationships was determined by the frequency
with which they appeared together in published articles. Their inclusion into specific thematic groups
was based on their clustering with a certain constellation of terms. The position of an author within
this constellation represents how interrelated and frequent their co-occurrence was with other authors.
This pattern has been confirmed by other scientometric studies as socially important and productive
researchers tend to drive the productivity of their coauthors [18,27].

3.3. Global Collaboration

Table 2 illustrates the productivity ranking of the top 20 countries in this dataset. In this list,
the top five countries were from North America (the United States and Canada), Europe (Italy, and
Germany), and China. The United States ranked at the top of all indices: total papers (10,623 papers,
30.8%), total citations (232,669 citations), and number of downloads (25,384). Countries in Europe
had the strong co-operation in AIM, confirmed by the high number of institutes (>7.7), countries in
collaboration (>2.0), and collaborative papers (>50%). Meanwhile, in Asia, China was ranked second
with 2671 papers (7.6%) and 15,995 downloads. It is remarkable that Israel and Singapore had the
highest level of international collaboration (nearly 70%), while the figure in other Asian countries was
only one-third of this.

The network of 93 countries with the minimum of five papers is visually mapped and presented
in Figure 5. This visualization also demonstrates the strength of collaborative partnerships between
countries. Regarding AI technology, the United States, China, England, and Canada are leading the
way. The red cluster showed the close collaboration between The United States and China, Australia,
and other Asian countries, such as Japan, Taiwan, and South Korea. Europe sought to narrow the gap
in the AI world leader race [28]. The largest cluster in Europe was formed among Germany, Italy, the
Netherlands, and Denmark (green cluster). Clusters of collaboration were also seen among France,
Greece, and Morocco (Purple cluster) or, beyond the European border, Spain was the leader in the
cooperation with South America countries (Brazil, Mexico, and Argentina).

Table S1 (Supplementary) presents the most active institutions in AI technology publications,
which also shows the leading positions of those from the United States, China, England and Canada.
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Table 2. The most prolific countries in AI in Health/Medicine research and their collaborations.

No. Country Total Papers % Papers Total
Citations Cite Rate Total

Downloads
Total

Co-Authors
Total

Institutes
Total

Country

% Papers with
International
Collaboration

1 United
States 10,623 30.8 232,669 3.4 25,384 5.8 6.8 1.5 33.6%

2 China 2617 7.6 27,997 2.9 15,995 5.9 7.3 1.7 44.8%
3 Italy 1834 5.3 29,485 2.8 3343 7.4 8.4 2.1 55.2%
4 Germany 1553 4.5 31,219 3.3 3415 7.4 8.9 2.1 53.1%
5 Canada 1312 3.8 22,608 2.9 3343 6.2 8.0 1.8 48.5%
6 France 1308 3.8 22,687 3.1 2623 7.4 9.0 2.2 63.7%
7 India 1264 3.7 12,871 2.1 3350 4.5 4.9 1.6 31.6%
8 Spain 1029 3.0 14,653 2.6 2852 6.5 7.7 2.0 49.3%
9 Australia 910 2.6 17,413 3.5 3337 5.8 7.5 2.0 50.5%

10 Japan 841 2.4 11,054 2.2 2107 6.7 7.5 1.7 35.7%
11 Turkey 787 2.3 9058 1.8 1121 4.1 4.4 1.4 20.3%
12 Iran 713 2.1 7438 2.2 1599 4.1 4.6 1.4 30.2%
13 Netherlands 640 1.9 14,811 4.4 1948 8.0 10.1 2.4 59.2%
14 Switzerland 554 1.6 10,197 3.6 1804 7.6 9.7 2.3 63.5%
15 Taiwan 543 1.6 6213 1.8 1084 5.1 6.6 1.5 28.5%
16 Brazil 489 1.4 6097 2.6 1380 6.6 8.1 1.9 44.6%
17 Israel 384 1.1 6393 3.4 950 7.8 9.8 2.4 69.8%
18 Sweden 382 1.1 6220 3.0 700 7.7 9.7 2.4 61.3%
19 Belgium 365 1.1 7269 3.5 696 8.8 10.7 2.8 66.6%
20 Singapore 349 1.0 5378 3.2 1904 6.0 7.1 2.2 66.2%
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3.4. Keyword and Text Analysis

As can been seen from Figure 6, the author’s keywords can be divided into two groups: (1) types
of AI, and (2) AI applications in health and medicine.

1. Types of AI: among all the keywords applied for searching, three kinds of AI being outstanding
compared with others were “machine learning”, “robotics”, and “deep learning”

2. AI applications in health and medicine: For example, “machine learning”, “artificial intelligence”,
“support vector machines” were used to support the diagnose and/or treatment of “Parkinson’s
disease”, “Alzheimer’s disease” or used in “neuroimaging”. “Robotics” was utilized mainly for
assisting laparoscopy of “oropharyngeal cancer” or “cervical cancer” or “surgery”. “Natural
language processing” was applied for collecting “health records” information contributing to
“big data” system.

It is quite remarkable that the keyword “ethics” is nowhere to be seen in the figure, suggesting that
there is a lack of attention toward AI ethics in health and medicine. Additionally, in our dataset, when
searching “ethics” on both keyword field and abstracts there are only 204 papers (0.7%) related to ethics.
The first paper was published in 1994 “Ethical considerations in the management of individuals with
severe neuromuscular disorders”. The application of AI has brought many benefits to the healthcare
system and improve medicine. However, the use of AI technology unethically may be dangerous
to patients and physicians. Thus, we need an ethical standard to apply to all the actors not only in
healthcare services, but also in health-related fields [29].

Table 3 provides the number of publications of most common AI tools and types of clinical
application using AI (diagnosis/prediction or treatment) for each of the top 25 diseases in terms of
the burden of disease measured in DALYs [30]. Robotics is transforming health care with its diverse
applications, such as early detection, training future doctors, or treatment. The highest number of
papers were about robotic surgery. Machine learning was the second most popular AI type in which
one would use for large and complex data analysis fields, such as genetics [31]. AI clinicians are higher
than medical clinicians [32], however, in our dataset, the number of papers using AI for prediction
of disease or its consequences was higher than that of treatment. The burdens of disease shift from
infectious diseases to noncommunicational diseases (NCDs) [33], thus the research on AI application
for heart disease, stroke, or respiratory disease were higher than for other diseases. The increasing
burden due to cancer has attracted scientific concern, with the highest total number of papers in AI
tools (Robotic, Machine leaning, or Artificial neural network) and in treatment and diagnosis. Robotics
received the highest concern due to its broad application in medicine and health care, from serving as
a nurse to supporting in surgery [34].
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Table 3. Number of papers related to AI techniques, clinical application of AI, and top burden of diseases.

Title Robotic Machine
Learning

Artificial
Neural

Network

Artificial
Intelligence

Natural
Language

Process

Deep
Learning

Fuzzy Expert
System

Evolutionary
Computation

Clinical
Application Treatment Prediction Diagnosis Total

Rank Burden
of Diseases

(DALY)

Cancer 1774 767 366 144 103 0 5 6 28 209 1008 82 4492 12
Heart Diseases 263 357 166 75 33 59 11 3 11 19 331 33 1361 1

Vision 543 264 81 101 57 1 4 5 19 27 189 21 1312 22
Stroke 543 99 45 16 9 0 0 2 13 32 119 5 883 3

Alzheimer 17 314 70 18 8 0 0 1 5 2 210 48 693 24
Depression 71 232 29 33 24 0 1 0 7 39 178 6 620 20

Kidney 293 64 38 14 9 0 2 0 1 17 125 9 572 19
Diabetes 38 159 86 34 20 0 4 3 1 6 176 21 548 8

Respiratory 119 104 64 20 16 2 0 0 1 9 136 6 477 4
Substance use 75 101 57 17 35 7 0 0 2 20 120 4 438 16

HIV 24 114 35 28 21 6 0 2 6 10 113 4 363 13
Injuries 162 32 9 9 5 0 1 0 5 7 30 1 261 5
Asthma 12 60 29 6 12 1 2 0 0 0 62 4 188 25

Tuberculosis 8 42 17 12 2 2 0 0 1 2 42 15 143 14
Congenital 64 24 14 5 1 3 0 0 3 6 19 3 142 9
Cirrhosis 11 23 24 6 2 0 0 0 2 4 38 2 112 11
Malaria 4 38 9 8 1 0 1 0 1 0 42 2 106 15
Suicide 0 43 1 3 10 0 0 0 1 1 34 1 94 16
COPD 5 32 7 3 3 0 1 0 0 0 29 1 81 6

Neonatal 7 22 8 5 4 3 1 0 0 0 22 1 73 2
Hearing 7 11 9 6 0 0 0 1 0 1 14 3 52 21

Back pain 18 5 9 2 1 0 0 0 2 2 11 0 50 10
Headache disorders 0 0 0 0 0 5 0 0 0 0 0 0 5 23

Diarrhea 1 0 0 0 0 0 0 0 0 0 0 0 1 7
Headache disorders 0 0 0 0 0 1 0 0 0 0 0 0 1 18

Total 4059 2907 1173 565 376 90 33 23 109 413 3048 272 13,068



J. Clin. Med. 2019, 8, 360 13 of 18
J. Clin. Med. 2019, 8, x FOR PEER REVIEW 15 of 20 

 

 
Figure 6. The co-occurrence of authors’ keywords. Figure 6 presents the prevalence of 568 keywords appearing in our search results using the Web of Science. The 
thickness of lines is an indication of the strength of the relationship between keywords relative to the others. The strength of these relationships was determined by 
the frequency with which they appeared together in published articles. Their inclusion into specific thematic groups was based on their clustering with a certain 
constellation of terms. The position of a keyword within this constellation represents how interrelated and frequent its co-occurrence was with other terms. 

 

Figure 6. The co-occurrence of authors’ keywords. Figure 6 presents the prevalence of 568 keywords appearing in our search results using the Web of Science.
The thickness of lines is an indication of the strength of the relationship between keywords relative to the others. The strength of these relationships was determined
by the frequency with which they appeared together in published articles. Their inclusion into specific thematic groups was based on their clustering with a certain
constellation of terms. The position of a keyword within this constellation represents how interrelated and frequent its co-occurrence was with other terms.



J. Clin. Med. 2019, 8, 360 14 of 18

4. Discussion

To the best of our understanding, although bibliometrics has been used to explore the trends
in other research areas [16–21], this study can be considered the first intensive global mapping and
analysis of scientific research on AI in health and medicine.

The growth of scientific literature in the field of AI has increased rapidly, particularly in the past
10 years, thanks to the exponential growth of computing power and data storage capacity [2,25,26].
This growth is attributed to the prolific output of research at leading institutions located in the United
States, Europe, and China. These three players are also the biggest contributors to overall AI research
worldwide [2]. At the national level, this study points out that among the top 10 researchers, the
number of citations per paper of Asian researchers is significantly lower than that of their North
American peers. This can be explained by the late-coming of China to the field. In-depth research
should look into factors driving the differences in research output and citation impacts between the
two regions.

Our research was the first study showing the number of papers with AI applications in healthcare
and medicine with the global burden of disease measured by DALYs. The number of papers related to
disease with high rank in burden of disease shows there is shifting focus from infectious diseases to
NCDs. The volume of publications mentioned about AI application in cancer was the highest, although
the rank of cancer was 12th in the list (Table 3). The special concern that the scientific community spent
for the second leading cause of death disease can be explained by (1) the uncertainty in early diagnosis
and treatment outcomes; (2) the severity of late treatment, (3) the variety in types of cancers. Using AI
in treatment will increase the level of accuracy, which may cause evolution of cancer treatment.

The absence of the word “ethics” in the research subjects, the keywords, and the text mining of the
abstracts (Figure 5 and Figure S2 Supplementary) suggests the promotion of evidence-informed policy
making, health system strengthening, and a renewed focus to ensure that AI should be developed and
used in the transparent and accountable way, which is consistent with public interest. This suggests a
need for research on AI-related policy. The effect of AI might be reduced where data are not available,
difficult to collect, or transfer digitally.

Another implication is the factors contributing to research output in medical AI. Empirical data
suggest influential authors, as measured by the total number of citations and the number of citations
per paper, are often those who either lead a field and stay productive throughout his or her career, or
invents a method applicable in a variety of research areas. This pattern has been observed in other
studies, such that senior and productive authors will drive the productivity of their collaborators [28].

In terms of policy implications, this study puts forth three suggestions. First, recent approaches
that are rising in popularity include the use of AI to collect health data and information, in support
of treating cancer (Table 3). This means applications of AI in medicine will be increasingly useful in
aiding diagnosis and clinical treatment. Second, developing countries should look to investment in
research in medical AI. particularly China and India, which are emerging as top players in the field.
Third, rapidly development of AI might create new challenges to established frameworks. Fourth,
future AI techniques and development trends will focus on machine learning based on data obtained
from the latest diagnostic modalities, including multi-omics (e.g., genomics, metabolomics) [35] and
state-of-the-art imaging methods to predict treatment responses [36,37], especially in areas where
there is a lack of objective diagnostic methods, e.g., psychiatric disorders [38]. Finally, to accelerate
application and expansion of AI in health and medicine, it is critical to develop global and national
protocols and regulations to frequently review and justify the validity of AIM products in clinical and
practical environments.

An important challenge in applying AI for health and medicine is the lack of large clinical
datasets for training AI models. This is especially true for datasets with labels, which require
doctors/medical expert annotation and therefore are very costly and time-consuming to collect [39–41].
In general, AI techniques that are applicable to situations with limited amounts of labeled training
data are of great interest for many applications [42], in addition to health and medicine. This is
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an important fundamental problem with active AI research and several promising AI directions:
First, more sophisticated data augmentation techniques have recently been proposed to enrich
the training datasets to better characterize data distribution. These techniques include feature
space data augmentation [42,43] and data synthesis using complex deep neural networks models,
notably generative adversarial networks (GAN) [44–47]. Second, there are substantial interests to
improve semisupervised learning: learning methods that typically use a small amount of labeled
data and unlabeled data [48]. Third, self-supervised learning [49,50] has attracted a lot of attention.
Self-supervised learning methods automatically identify and extract supervisory signals without
using any labeled data. Self-supervised learned models represent strong baselines that can be used in
different applications with limited labeled data, including many medical and health applications.

Regarding the weaknesses and limitations of this study, the restriction on searchable
peer-reviewed research publication and the exclusion of other documents may impact the thoroughness
of the results and analysis. In addition, as only English articles and reviews were included in this study,
the non-English papers were not counted. That made the number of Western countries’ publications,
especially English-speaking ones, more than that of Asia or Africa. Nonetheless, a bibliometric analysis
of a large volume of publications and a summary of keywords is a helpful proxy for the overall
content of these papers. Further studies may benefit from investigating how different AI techniques
are being used to resolve specific medical tasks or exploring the impacts of methodological versus
more application-oriented AI studies.

Given the limitations and current scope of the study, both academics and practitioners are aware
that the AI developments—despite the field’s vibrant growth—will further evolve in line with rising
uncertainties and complexities in the coming years. It is hard to tell if one specific technique will prevail,
but the surging trend is inexorable, to the extent that entrepreneurial attempts and policymaking
changes will have to adapt. This study provides a contextual outline which may become useful for
creating a more enabling environment, in which both AI developers and health researchers will work.
It is anticipated that more in-depth reviews and theoretical surveys will be conducted, and early
“maps” will more likely help at this early stage of development, let alone the fact that the recent
debates on ethical issues of AI in the industries in general, and in the medical realm, in particular, will
be less fruitful without a more updated understanding of macro views.

In conclusion, AI has been applied for a wide range of purposes, especially in in the field of
healthcare. With the rapid development of technology, AI has the opportunity to help raise important
health problems to light but might be restricted by the unavailability of health data, and/or by the
inability of AI to have some human characteristics, such as compassion. The use of AI raises some
ethical and social issues, which might be overcome via data policy. A key challenge for governments
is that AI development should be conducted in a way that is easy to approach and aligned with the
public interest.
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