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ABSTRACT Lathosterol oxidase (LSO) catalyzes the formation of the C-5–C-6 double
bond in the synthesis of various types of sterols in mammals, fungi, plants, and pro-
tozoa. In Leishmania parasites, mutations in LSO or other sterol biosynthetic genes
are associated with amphotericin B resistance. To investigate the biological roles of
sterol C-5–C-6 desaturation, we generated an LSO-null mutant line (lso�) in Leishma-
nia major, the causative agent for cutaneous leishmaniasis. lso� parasites lacked the
ergostane-based sterols commonly found in wild-type L. major and instead accumu-
lated equivalent sterol species without the C-5–C-6 double bond. These mutant par-
asites were replicative in culture and displayed heightened resistance to amphoteri-
cin B. However, they survived poorly after reaching the maximal density and were
highly vulnerable to the membrane-disrupting detergent Triton X-100. In addition,
lso� mutants showed defects in regulating intracellular pH and were hypersensitive
to acidic conditions. They also had potential alterations in the carbohydrate compo-
sition of lipophosphoglycan, a membrane-bound virulence factor in Leishmania. All
these defects in lso� were corrected upon the restoration of LSO expression. To-
gether, these findings suggest that the C-5–C-6 double bond is vital for the struc-
ture of the sterol core, and while the loss of LSO can lead to amphotericin B resis-
tance, it also makes Leishmania parasites vulnerable to biologically relevant stress.

IMPORTANCE Sterols are essential membrane components in eukaryotes, and sterol
synthesis inhibitors can have potent effects against pathogenic fungi and trypanoso-
matids. Understanding the roles of sterols will facilitate the development of new
drugs and counter drug resistance. LSO is required for the formation of the C-5–C-6
double bond in the sterol core structure in mammals, fungi, protozoans, plants, and
algae. Functions of this C-5–C-6 double bond are not well understood. In this study,
we generated and characterized a lathosterol oxidase-null mutant in Leishmania ma-
jor. Our data suggest that LSO is vital for the structure and membrane-stabilizing
functions of leishmanial sterols. In addition, our results imply that while mutations in
lathosterol oxidase can confer resistance to amphotericin B, an important antifungal
and antiprotozoal agent, the alteration in sterol structure leads to significant defects
in stress response that could be exploited for drug development.
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Leishmaniasis is the second most deadly parasitic disease, after malaria, with more
than 12 million people infected worldwide (1). The causative agents belong to a

group of trypanosomatid protozoans known as Leishmania. In the sandfly vector,
Leishmania parasites are flagellated, extracellular promastigotes, whereas in the mam-
malian host, they are nonflagellated, intracellular amastigotes (2). Current treatments
are limited by toxic side effects, and resistance is on the rise (3). Without a safe vaccine,
it is necessary to identify new drug targets, develop new treatments, and decipher the
mechanism of drug resistance in Leishmania (4).

The biosynthesis of sterol is an important pathway for most eukaryotes. In mammals,
the dominant type of sterol is cholesterol, a vital membrane component that is also the
precursor of steroid hormones (5). In fungi and trypanosomatids, ergostane-based
sterols, such as ergosterol and 5-dehydroepisterol, are synthesized in high abundance
and play roles equivalent to those of cholesterol in cellular membranes (6, 7). Ergosterol
differs from cholesterol in the presence of two more double bonds: one at C-7–C-8 on
the B ring and the other at C-22–C-23 on the side chain (see Fig. S1 in the supplemental
material) (8). In addition, ergosterol has an extra methyl group at the C-24 position
(Fig. S1). These structural differences make sterol biosynthesis a desirable source for
antifungal and antitrypanosomatid drug targets.

Amphotericin B (Amp B) is a polyene antibiotic that binds to ergostane-based sterols
on the plasma membrane of pathogenic fungi or Leishmania, leading to pore formation
and the accumulation of reactive oxygen species (ROS) (9–11). It has been used
successfully to treat antimony-resistant leishmaniasis and in patients coinfected with
Leishmania spp. and human immunodeficiency virus (11, 12). However, resistance to
Amp B has been reported both in the laboratory and in clinical isolates (13–16). Multiple
Amp B-resistant Leishmania lines show altered sterol composition and mutations in
sterol biosynthetic enzymes, such as the sterol C-24-methyltransferase (SMT; EC
2.1.1.41) and sterol C-14-alpha-demethylase (C14DM; EC 1.14.13.70) (13–16).

To interrogate the roles of these enzymes in L. major, we generated null mutants of
C14DM (c14dm�) and SMT (smt�) using the targeted gene deletion approach (17). Both
c14dm� and smt� mutants lack ergostane-based sterols but are viable in culture and
highly resistant to Amp B (18, 19). C14dm� mutants are extremely sensitive to heat and
highly attenuated in virulence (19). They also display altered morphology, cytokinesis
defects, and increased plasma membrane fluidity (19). In comparison, defects exhibited
by smt� mutants, including elevated mitochondrial membrane potential and superox-
ide level, are less drastic (18). Interestingly, both c14dm� and smt� mutants show
altered expression of lipophosphoglycan (LPG), a glycosylphosphatidylinositol (GPI)-
anchored virulence factor (20). Compared to L. major wild-type (WT) parasites, the
cellular level of LPG appears to be much lower in c14dm� but higher in smt� mutants
(18, 19). These findings suggest that loss-of-function mutations in C14DM and SMT can
lead to Amp B resistance but result in significant defects in stress response and
virulence.

In addition to C14DM and SMT, mutations in the gene encoding lathosterol oxidase
(LSO) are also implicated in Amp B resistance in Leishmania and Candida spp. (15, 21,
22). LSO (also called sterol C-5-desaturase) catalyzes the formation of the C-5–C-6
double bond in the B ring of sterol intermediates, a late step in sterol synthesis (Fig. S1)
(23). Orthologs of LSO have been identified in mammals, yeast, protozoans, plants, and
algae (15, 23–26). In Saccharomyces cerevisiae, the activity of LSO (encoded by ERG3) is
sensitive to cyanide and requires iron, NAD(P)H, and molecular oxygen (27). LSOs from
yeast and Tetrahymena thermophila exhibit dependence on cytochrome b5 and cyto-
chrome b5 reductase, suggesting that this desaturation reaction shares similarity to the
sterol C-4- and C-14-demethylation steps (27–30) (Fig. S1).

In S. cerevisiae, deletion or inactivation of ERG3/LSO results in the accumulation of
episterol and depletion of ergosterol, and the null mutants fail to grow in the absence
of heme synthesis (23, 31) (Fig. S1). In addition, ERG3/LSO mutants are unable to utilize
respiratory substrates, such as glycerol, acetate, and ethanol (25). Furthermore, LSO
expression contributes to tolerance to high temperature and acidic pH in fission yeast
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(32). These studies allude to the functions of LSO in regulating respiration and stress
response in fungi, although the mechanism of action is not well understood.

While LSO mutations were associated with Amp B resistance in fungi (21, 22),
knockout mutants of LSO/Erg3 failed to display such resistance in Candida albicans and
Aspergillus fumigatus (33, 34), questioning whether LSO-null mutation alone is sufficient
to cause Amp B resistance. Studies on LSO in trypanosomatids are scarce. In light of its
potential involvement in the development of Amp B resistance (15), it is necessary to
characterize LSO in Leishmania and determine whether it is essential in the promasti-
gote and amastigote stages and whether it is required for the sensitivity of Leishmania
to sterol synthesis inhibitors or Amp B. To address these questions, we generated
LSO-null mutants in L. major. Our results indicate that LSO deletion confers resistance
to Amp B, but the mutants show poor survival and reduced growth rate under the
acidic condition due to their inability to maintain intracellular pH. In addition, LSO
deletion altered the structure of LPG and reduced parasite virulence in mice. These
findings shed new light on the roles of sterol synthesis in Leishmania stress response
and reveal the fitness costs associated with the development of drug resistance.

RESULTS
Genetic deletion and cellular localization of L. major LSO. The L. major LSO gene

(TriTrypDB entry LmjF.23.1300) is located on chromosome 23 with 40% identity to S.
cerevisiae ERG3p (gene ID 850745) and 38% identity to human sterol C-5-desaturase
(GenBank accession no. BAA33729.1). The predicted open reading frame (ORF) contains
302 amino acids with four transmembrane helices and no obvious signal peptide, and
it is expected to catalyze the formation of a double bond between C-5 and C-6 in the
B ring of sterol intermediates (see Fig. S1 in the supplemental material).

To investigate the roles of the sterol C-5–C-6 desaturation reaction in L. major, we
replaced the endogenous LSO alleles with nourseothricin (SAT) and blasticidin (BSD)
resistance genes using the homologous recombination approach (17). The resulting
LSO-null (lso�) mutants were verified by Southern blotting with an ORF probe and a
5=-flanking sequence probe (Fig. 1A). To complement the null mutants, we introduced
an LSO-expressing plasmid (pXG-LSO) into the lso� mutant to generate the lso�/�LSO
mutant (the add-back strain). To examine the cellular localization of LSO, the C terminus
of LSO was fused to green fluorescent protein (GFP) and introduced into the lso�

mutant (lso�/�LSO-GFP) (Fig. S2A). In immunofluorescence microscopy, LSO-GFP
showed a distribution similar (�72% overlap) to that of BiP, an endoplasmic reticulum
(ER) marker (35) (Fig. 1B to F), suggesting that LSO is primarily located at the ER. This
result is similar to the localizations of C14DM and SMT in Leishmania (18, 19) as well as
LSO in T. thermophila (28).

FIG 1 Genetic knockout and cellular localization of LSO. (A) Genomic DNA samples from L. major LV39
WT, LSO�/� (heterozygous knockout), and lso� (homozygous knockout clones 1 to 3) parasites were
processed for Southern blot analyses, using radioactive probes from the open reading frame (top) or
upstream flanking region (bottom) of LSO. Bands corresponding to LSO and drug resistance genes
(BSD/SAT) are indicated. (B to F) Immunofluorescence microscopy of lso�/�LSO-GFP promastigotes. (B)
Differential interference contrast (scale bar, 10 �m). (C) DNA staining with Hoechst. (D) GFP fluorescence.
(E) Anti-BiP (an ER marker) staining followed by goat anti-rabbit IgG-Texas Red. (F) Merge of panels D and
E. Overlap between GFP and ER was calculated using JACoP Image J analysis from 30 cells.
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lso� promastigotes have altered sterol composition. Sterols from promastigotes
were converted into trimethylsilyl (TMS) derivatives, followed by electron ionization (EI)
gas chromatography-mass spectrometry (GC-MS) analysis. Sterol molecules were iden-
tified based on their molecular weights, retention times, and EI spectra. Consistent with
the findings we previously reported, L. major WT promastigotes contained two main
sterols, i.e., ergosterol and 5-dehydroepisterol, represented by peaks 1 and 2, respec-
tively, in Fig. 2A (18, 19). Interestingly, all the sterols from lso� promastigotes were
shifted to the right in the GC chromatogram, including two dominant peaks, 1= and 2=
(Fig. 2B and Fig. S2B and C). While ergosterol and 5-dehydroepisterol had the expected
molecular weight of 468.5 as TMS derivatives, the dominant sterols from the lso�

mutant (1= and 2=) had the molecular weight of 470.5 as TMS derivatives (Fig. 2D). By
library search, peak 1= and peak 2= matched ergosta-7,22-dien-3-ol, (3�,22E)- and
episterol-TMS derivatives, respectively. While we did not have pure ergosta-7,22-dien-
3-ol (3�,22E) (not available commercially) to confirm the structure of peak 1=, the
retention time and the EI mass spectrum of peak 2= in lso� were identical to those of
the episterol standard (Fig. 2D to F). These findings are consistent with the role of LSO

FIG 2 GC-MS analyses of sterol TMS derivatives show altered sterol profile in lso� mutants. (A to C) Total ion current chromatograms plotted from 19.0- to
24.0-min scans (mass range, m/z 50 to 550) of the sterol TMS derivatives of LV39 WT (A), lso� (B), and lso�/�LSO (C) strains. In panels A and C, peaks 1 and
2 represent ergosterol and 5-dehydroepisterol, respectively. In panel B, the peaks including 1= and 2= are shifted to the right. (D) The reconstructed ion
chromatogram of the M� ion (m/z 470.5) from full GC-MS scans (m/z 50 to 550) of the lso� sample (trace in red) and from the episterol standard (trace in blue).
In addition to the perfect match of the retention time of peak 2= with the episterol standard, the full-scan EI mass spectra (70 eV) plotted from peak 2= (E) and
the episterol standard (F) are also identical, confirming that peak 2= is episterol.
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in catalyzing the C-5–C-6 desaturation reaction to form 5-dehydroepisterol (Fig. S1).
GC-MS analysis on the area ratios of internal standard peak and leishmanial sterol peaks
revealed no significant difference in total cellular sterol abundance between WT and
lso� promastigotes. Importantly, the introduction of LSO or LSO-GFP into the lso� strain
restored the sterol profile to WT-like composition (Fig. 2C and Fig. S2). Taken together,
these results support the identity of L. major LSO as a sterol C-5-desaturase.

lso� mutants are replicative in culture but show poor survival in stationary
phase. The LSO-null mutants were fully viable in culture, with a doubling time of �8 h
during the log phase, and could reach a maximal density of 2 � 107 to 3 � 107 cells/ml,
similar to WT and add-back parasites (Fig. 3A). However, after reaching maximal density,
lso� promastigotes showed significantly reduced viability in the stationary phase. First,
we measured the percentage of cells whose long axis was less than twice the length of
the short axis. Such a round shape was indicative of cells under duress. In early
stationary phase (stationary days 1 to 2), 18 to 32% of lso� promastigotes were round,
whereas only 2 to 9% of WT and add-back cells were round (Fig. 3B). The difference
became less pronounced in late stationary stage (stationary days 3 to 4) when the
percentages of round cells increased among WT and add-back parasites (Fig. 3B).
Similarly, we observed a much higher percentage of dead cells in lso� mutants (28 to
38%) than in WT and add-back parasites (3 to 14%) from stationary day 2 to day 3
(Fig. 3C). We also examined the ability of lso� mutants to form metacyclics, which are
the nondividing and infective form of promastigotes (36). lso� produced 40 to 50%

FIG 3 lso� mutants show poor survival in stationary phase. (A) Promastigotes were inoculated in M199
medium at 1 � 105/ml, and cell densities were determined daily. The arrow marks the onset of stationary
phase. (B and C) Percentage of round cells (B) and dead cells (C) were measured during days 1 to 4 in
stationary phase. Error bars represent standard deviations from 3 experiments (**, P � 0.01; ***,
P � 0.001).
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fewer metacyclics than WT and add-back parasites in stationary phase. In conclusion,
LSO is not required for the survival or replication of log-phase promastigotes but is
important for maintaining viability during the stationary phase.

lso� promastigotes show increased resistance to Amp B and are hypersensitive
to Triton X-100. Amp B is a potent drug that interacts with ergosterol or ergosterol-like
sterols on the plasma membrane, resulting in pore formation, oxidant accumulation,
and cell death (9–11, 37). Alterations in sterol biosynthesis can confer resistance to Amp
B (14, 16). In Candida lusitaniae, the Amp B-resistant clinical isolates showed reduced
ERG3 gene expression, suggesting that the C-5–C-6 double bond contributes to the
binding of Amp B to membrane sterol (22). In another report, mutations in sterol
C-5-desaturase (LSO) were found to be associated with Amp B resistance in Leishmania
mexicana (15). Here, we measured the sensitivity of lso� promastigotes to Amp B in
liquid culture by growing cells in various concentrations of Amp B for 48 h (Fig. 4A). The
effective concentrations to inhibit 25%, 50%, and 90% of growth (EC25, EC50, and EC90,
respectively) were determined using cells grown in the absence of Amp B as a control
(Table 1). Compared to WT and lso�/�LSO promastigotes, lso� mutants were 2 to 4
times more resistant to Amp B (Fig. 4A and Table 1). The increase in Amp B resistance
was close to that of the smt� mutants (18) but not as pronounced as that of the
c14dm� mutants (10 to 100 times more resistant than the WT). This result is in
agreement with the notion that C-5–C-6 desaturation enhances the binding between

FIG 4 lso� mutants are resistant to Amp B and hypersensitive to Triton X-100. (A and B) Log-phase
promastigotes were inoculated into M199 medium with different concentrations of Amp B (A) or ITZ (B).
Cells grown in the absence of drugs were used as controls, and percentages of growth were calculated
after 48 h. (C) Log-phase promastigotes were incubated in the presence of 0.0125% Triton X-100 for 1 to
8 h. Cell viability was determined by flow cytometry. Error bars represent standard deviations from 3 to
4 experiments (*, P � 0.05; **, P � 0.01; ***, P � 0.001).
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membrane sterol and Amp B. Meanwhile, the susceptibility of lso� mutants to itra-
conazole, an inhibitor of C14DM (19), was similar to that of WT and lso�/�LSO parasites
(Fig. 4B).

We also examined whether the change in sterol composition could alter the plasma
membrane stability in lso� mutants. Log-phase promastigotes were incubated in
regular medium containing 0.0125% Triton X-100, and percentages of dead cells were
monitored over time. As shown in Fig. 4C, lso� exhibited hypersensitivity to Triton
X-100 after 4 h, and the defect was rescued by the introduction of LSO. This finding
resembles our previous observation in the c14dm� mutants, which are unable to form
detergent-resistant membrane fractions (19). Therefore, alteration in sterol composition
may cause hypersensitivity to detergent-induced plasma membrane disruption in L.
major.

LSO is required for promastigote survival and optimal growth under acidic
conditions. When promastigotes are transmitted from the sandfly vector to the
mammalian host, they encounter elevated temperature, acidic pH, and oxidative bursts
(38). Here, we investigated whether LSO is required for parasites to survive under stress
conditions. First, promastigotes were inoculated in complete medium at pH 7.4 (the
regular pH) or pH 5.0 for 0 to 60 h to examine their tolerance to acidic stress. While WT
and lso�/�LSO cells showed good viability at pH 5.0 (�8% death), 25 to 30% of lso�

mutants died after 8 to 12 h (Fig. 5A and B). The dead cell percentage in lso� mutants
went down after 24 h (although still higher than those of WT and lso�/�LSO strains),
which was likely due to the rapid lysis of dead cells (Fig. 5B). Next, we evaluated the
ability of lso� promastigotes to withstand heat stress by increasing the culture tem-
perature from 27°C to 37°C. As indicated in Fig. 5C, no significant difference was
detected until 48 h into the temperature shift, when lso� mutants showed �2 times
more dead cells than WT and add-back parasites. We also incubated promastigotes in
phosphate-buffered saline (PBS) to assess their resistance to starvation, and results
indicated that the lso� mutants responded similarly to WT parasites (Fig. 5D).

Consistent with their hypersensitivity to acidic pH, lso� promastigotes proliferated
slowly in the pH 5.0 medium (Fig. 5E). Overall, the mutants’ poor survival and growth
delay at pH 5 suggest that LSO is crucial for L. major promastigotes to tolerate acidic
stress and affect parasite growth in the phagolysosome (39).

LSO contributes to intracellular pH homeostasis. Their hypersensitivity to acidic
conditions prompted us to examine whether lso� mutants can regulate intracellular
pH. When cultivated in the regular medium (pH 7.4), lso� mutants had a slightly lower
intracellular pH than WT parasites (7.5 versus 7.8) (Table 2). However, when grown in an
acidic medium (pH 5.0), the intracellular pH of the lso� mutant dropped to 7.0, whereas
in WT and lso�/�LSO parasites it remained at 7.8 to 7.9 (Table 2). This finding argues
that alteration in sterol composition can affect the cytosolic pH homeostasis in L. major.

The plasma membrane is the first barrier against the change of extracellular pH.
Hypersensitivity of lso� mutants to Triton X-100 (Fig. 4C) suggests that their plasma
membrane is less stable, thereby affecting their ability to control intracellular pH.
Besides plasma membrane, certain intracellular organelles and proteins are essential for
intracellular pH homeostasis as well (40). Acidocalcisomes are electron-dense acidic
organelles rich in divalent cations and polyphosphate first identified in trypanosoma-
tids (41). They play important roles in calcium homeostasis, osmoregulation, and the
maintenance of intracellular pH (41, 42). The acidocalcisome has a vacuolar-type
H�-pyrophosphatase (VP1) that is involved in the uptake of H� from the cytosol into

TABLE 1 lso� mutants show reduced sensitivity to Amp Ba

EC25 (�M � SD) EC50 (�M � SD) EC90 (�M � SD)

WT lso� WT/lso� WT lso� WT/lso� WT lso� WT/lso�

0.034 � 0.003 0.077 � 0.004 1/2.24 0.046 � 0.003 0.133 � 0.005 1/2.89 0.084 � 0.005 0.303 � 0.033 1/3.61
aEC25, EC50, and EC90 (averages � standard deviations from 3 independent experiments) were calculated through comparison to control cells grown in the absence of
Amp B.
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acidocalcisomes and regulates intracellular pH homeostasis (43, 44). After labeling
stationary-phase or metacyclic-like promastigotes with an anti-T. brucei VP1 antibody,
we observed a 40 to 45% reduction in fluorescence intensity in lso� mutants compared
to that of WT and add-back parasites (Fig. 6A and B), suggesting that LSO is involved
in the expression and/or localization of VP1 at the acidocalcisome. We did not detect
any significant difference in acidocalcisome morphology, abundance, or contents in
short-chain and long-chain polyphosphate between lso� and WT parasites (Fig. S3A
and B and data not shown). From these analyses, we postulate that compromised

FIG 5 lso� mutants show poor viability under acidic and heat stress. (A to D) Log-phase promastigotes
were incubated at 5 � 106 cells/ml in M199 medium (A to C) or PBS (D) under neutral (A, C, and D) or
acidic (B) conditions at either 27°C (A, B, and D) or 37°C (C). Percentages of dead cells were determined
at the indicated times. (E) Log-phase promastigotes were inoculated into an acidic medium (pH 5.0) at
1 � 105 cells/ml, and culture densities were determined daily. Error bars represent standard deviations
from 4 experiments (*, P � 0.05; **, P � 0.01; ***, P � 0.001).

TABLE 2 LSO is required for the maintenance of intracellular pHa

Cell type

Intracellular pH at medium pH of:

7.4 5.0

Mean SD Mean SD

WT 7.76 0.265 7.90*** 0.122
lso� 7.48 0.265 7.05*** 0.031
lso�/�LSO 7.83 0.124 7.78 0.130
aPromastigotes were cultivated in the regular medium (pH 7.4) or acidic medium (pH 5.0) for 3 days, and
intracellular pH values were measured after labeling with 10 �M of BCECF-AM for 30 min. Mean values and
standard deviations (SDs) were calculated from 3 experiments (***, P � 0.001).
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expression of VP1 along with increased plasma membrane instability in lso� parasites
contribute to their inability to maintain intracellular pH when challenged with acidic
stress.

Depletion of LSO alters the expression and structure of LPG. Sterols are enriched
in the ordered microdomains (lipid rafts) along with sphingolipids and glycosylphos-
phatidylinositol (GPI)-anchored proteins on the plasma membrane (45). Previous work
on c14dm� and smt� mutants demonstrates that the alteration of sterol synthesis can
affect the expression level of membrane-bound GPI-anchored virulence factors, such as
LPG and GP63 (a metalloprotease) (18, 19). To determine the role of LSO in the synthesis
of GPI-anchored glycoconjugates, we performed Western blot and immunofluores-
cence microscopy assays using the WIC79.3 monoclonal antibody, which recognizes the
terminal Gal (�1,3) subunits on the side chains branching off the Gal (�1,4)-Man
(�1)-PO4 repeat units of L. major LPG (46, 47). As illustrated in Fig. 7A and B, whole-cell
lysates from log-phase and stationary-phase lso� parasites appeared to have less LPG
than WT and lso�/�LSO parasites (10 to 20% of the WT level) (Fig. 7E). The reduction
was not due to increased release of LPG from lso� parasites into the culture superna-
tant (Fig. 7A and B). Immunofluorescence microscopy assay confirmed this finding in
lso� mutants (Fig. 7G and H). Using the same WIC79.3 antibody, WT and add-back
parasites displayed robust surface labeling at an exposure time of 100 ms (Fig. 7G). In
contrast, signals from lso� mutants were only detectable at a longer exposure time
showing significant intracellular staining (Fig. 7H). Therefore, the expression of LPG was
clearly altered in lso� parasites. Meanwhile, these mutants showed levels of GP63
similar to those of WT and add-back parasites (Fig. 7C, D, and F).

LPG in Leishmania is a complex, polymorphic molecule composed of a lysoalkyl-
phosphatidylinositol lipid anchor, a phosphorylated oligosaccharide core, a phospho-
glycan backbone made of Gal (�1,4)-Man (�1)-PO4 repeat units, which may contain side
chains, and an oligosaccharide cap (20, 48). The lack of reactivity to WIC79.3 antibody
in the lso� mutant could reflect a loss or modification of side chains that branch off the
phosphoglycan backbone (49, 50) or deficiencies in the synthesis of lipid anchor,
oligosaccharide core, or phosphoglycan backbone (51, 52). To probe the LPG structure
in lso� parasites, we first carried out a Western blot analysis using the CA7AE mono-
clonal antibody, which recognizes the unsubstituted (bare) Gal (�1,4)-Man (�1)-PO4

backbone (53). As shown in Fig. 8A, CA7AE could label the LPG and related proteo-
phosphoglycan from L. donovani (strains lS2D and LV82), which was expected, since
their phosphoglycan backbones were devoid of side chains (54). Meanwhile, no sig-
nificant labeling was detected from L. major WT or lso� parasites with the CA7AE
antibody, suggesting that their LPG backbones had side chain modifications (Fig. 8A).

FIG 6 lso� mutants express less vacuolar proton pyrophosphatase (VP1). (A) Day 3 stationary-phase
promastigotes were labeled with rabbit anti-TbVP1 antiserum (1:800), followed by anti-rabbit IgG-Texas
Red (1:1,000). DNA was stained with Hoechst. DIC, differential interference contrast; merge, the merge of
Texas Red and Hoechst images. Scale bar, 10 �m. (B) Relative levels of VP1 staining were determined
from 100 metacyclic-like promastigotes for each line. Error bars represent standard deviations from 3
experiments (*, P � 0.05).
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To explore the carbohydrate composition of the LPG side chain from lso� mutants,
we purified LPG from WT, lso�, and lso�/�LSO promastigotes as previously described
(55). The yield of LPG was similar (150 to 200 �g/1010 cells for all lines), and these LPG
samples exhibited reactivity similar to that of the WIC79.3 antibody, as we observed
with whole-cell lysates (Fig. 7A and B and 8B). As expected, LPG from the L. major
Friedlin V1 strain (positive control) was recognized strongly by this antibody (Fig. 8B)
(50).

The LPG samples then were subjected to fluorophore-assisted carbohydrate elec-
trophoresis (FACE) to analyze the sizes of their Gal (�1,4)-Man (�1)-PO4 repeat units. As
shown in Fig. 8C, L. major LV39 WT parasites had both short (G3 and G4) and
intermediate (G5 to G11) side chains branching off the LPG repeat units, indicative of
a mixture of mono-, di- ,and polygalactosylated residues on the side chains (49).
Notably, lso� mutants had a profile similar to that of the LV39 WT for the intermediate
side chains (G5 to G11), but their short side chains (G3 and G4) were much reduced
(Fig. 8C). As expected, L. major FV1 parasites had more short side chains (G3 and G4)
than intermediate side chains (G5 to G11), which is consistent with the dominance of
Gal1-2 short side chains capped with arabinose in this strain (Fig. 8C) (50, 56, 57).

FIG 7 LSO is required for the synthesis of WT-like LPG. (A to D) Whole-cell lysates or culture supernatants
(supe.) from log-phase (A and C) or day 3 stationary-phase (B and D) promastigotes were analyzed by
Western blotting using anti-L. major LPG (MAb WIC79.3), anti-GP63, or anti-�-tubulin antibodies. (E and
F) The relative abundance of LPG (E) and GP63 (F) in lso� and lso�/�LSO was normalized to the levels
in LV39 WT promastigotes. Error bars represent standard deviations from 4 experiments (***, P � 0.001).
(G and H) Log-phase promastigotes were labeled with MAb WIC79.3, followed by anti-mouse IgG-FITC.
DNA was stained with Hoechst. Exposure times for the FITC channel were 100 ms (G) and 300 ms (H).
Scale bar, 10 �m.
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We next examined if LSO deletion affected the carbohydrate composition of gly-
coinositolphospholipids (GIPLs), another major glycoconjugate in Leishmania (58). After
strong acid hydrolysis, the carbohydrate composition of GIPLs was very similar among
WT, lso�, and lso�/�LSO promastigotes, consistent with the galactose- and mannose-
rich type II GIPLs (58, 59) (Fig. 8D). This profile was distinct from that of the type I GIPLs
in L. donovani, which is highly enriched in mannose (59) (Fig. 8D). Together, these data
suggest that LSO deletion does not change the carbohydrate profile of GIPLs but
reduces the abundance of short (Gal1-2) side chains on the LPG backbone in L. major.

lso� mutants have minor defects in the mitochondria. Previous reports indicate
that the inhibition of sterol biosynthesis can lead to compromised mitochondrial
functions in trypanosomatids (18, 60–62). In S. cerevisiae, LSO/Erg3 is not required for
viability in media containing ergosterol, but mutants fail to grow on nonfermentable
substrates, such as glycerol and ethanol, suggesting that this enzyme is needed for
respiration (31, 63). To assess the role of LSO in mitochondrial functions in L. major, we
first examined the mitochondrial membrane potential (Δ�m) after labeling cells with
tetramethylrhodamine ethyl ester (TMRE) (64). Compared to WT and add-back para-
sites, lso� mutants had 30 to 50% higher Δ�m in the early stationary stage but did not
show significant difference in log phase or late log phase (Fig. S4A). To measure the
production of mitochondrial ROS, we labeled cells using a mitochondrion-specific ROS
indicator, MitoSox Red. As shown in Fig. S4B, lso� mutants had slightly higher fluores-
cence signal than the WT and lso�/�LSO parasites, although the difference was not
statistically significant, except for that during log phase, suggesting a modest accumu-
lation of ROS in their mitochondria. Next, we used the MitoXpress probe to examine
oxygen consumption rate (65) by incubating log-phase promastigotes in a respiration
buffer containing sodium pyruvate but no glucose. Under this condition, lso� showed
an oxygen consumption rate similar to that of WT and add-back parasites (Fig. S4C).
Together, these data indicate that LSO deletion causes minor defects to the mitochon-
dria in L. major.

FIG 8 lso� mutants have fewer short side chain sugar residues on their LPG. (A) Whole-cell lysates were
processed for Western blotting with MAb CA7AE or anti-�-tubulin antibody. Log-phase (left three lanes)
and day 3 stationary-phase (right three lanes) promastigotes of LV39 WT, lso�, and lso�/�LSO strains
were analyzed along with L. donovani strains 1S2D and LV82 (middle two lanes). PPG, proteophospho-
glycan. (B) Immunoblotting of purified LPG (5 �g per lane) from L. major strains probed with MAb
WIC79.3. (C) FACE analysis of dephosphorylated LPG repeat units from L. major (lanes 2 to 5). Lane 1,
malto-oligomer ladder represented by 1 to 7 glucose residues (G1 to G7). (D) Monosaccharide profile of
GIPLs. Lane 1, glucose standard; lane 2, type I GIPL from L. donovani 1S2D containing mostly mannose
residues and low levels of galactose; lane 3, repeat units of L. major LV39 WT (type II GIPL); lane 4, repeat
units of L. major lso�; and lane 5, repeat units of L. major lso�/�LSO. Man, mannose; Glc, glucose; Gal,
galactose. Experiments were performed twice, and results from one representative set are shown.
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lso� mutants show attenuated virulence in a mouse model. To study the role of
LSO in L. major virulence, metacyclics were isolated from stationary-phase cultures and
used to infect BALB/c mice in the footpads. Parasite virulence was assessed by mea-
suring the development of footpad lesions over time. Compared to WT and lso�/�LSO
parasites, mice infected by lso� mutants showed a 2- to 4-week delay in lesion
progression (Fig. 9A), which was consistent with the lower parasite numbers in the
infected footpads at weeks 6 and 14 postinfection (Fig. 9B). To explore the virulence of
amastigotes, we isolated amastigotes from promastigote-infected footpads and used
them to infect naive BALB/c mice. As shown in Fig. 9C and D, lso� amastigotes were
slightly attenuated in virulence compared to those of WT and lso�/�LSO amastigotes,
but the difference was less pronounced than that of metacyclics. These findings
suggest that LSO is important for L. major promastigotes to grow and cause disease in
mice.

DISCUSSION

In this study, we characterized the gene encoding LSO (sterol C-5-desaturase), a
sterol biosynthetic enzyme, in the protozoan parasite L. major. LSO catalyzes the
formation of a double bond between C-5 and C-6 in the B ring of sterol intermediates
(see Fig. S1 in the supplemental material). L. major LSO-null (lso�) mutants were devoid
of ergosterol or 5-dehydroepisterol (abundant in WT parasites). Instead, they accumu-
lated C-5–C-6 saturated sterols such as ergosta-7,22-dienol and episterol (Fig. 2 and
Fig. S2B to E). While the difference appears to be minor, lso� mutants were 2 to 4 times
more resistant to Amp B than WT and lso�/�LSO parasites (Fig. 4A and Table 1). These
mutants were fully replicative in culture during the log phase but showed poor viability

FIG 9 lso� mutants show attenuated virulence in mice. BALB/c mice were infected in the footpads with
metacyclics (A and B) or amastigotes (C and D). Footpad lesions were measured weekly (A and C), and parasite
numbers were determined by the limiting dilution assay (B and D). Error bars represent standard deviations (*,
P � 0.05; **, P � 0.01).
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after entering stationary phase (Fig. 3). LSO deletion also led to hypersensitivity to
acidic pH (Fig. 5). These observations are largely in agreement with the phenotypes of
the ERG3 mutant in S. cerevisiae (23, 31).

It is interesting that LSO activity appears to contribute (directly or indirectly) to the
binding affinity between Amp B and ergostane-based sterols. The C-5–C-6 double bond
is conserved among all major sterols, including cholesterol (mammals), ergosterol
(fungi and trypanosomatids), and stigmasterol (plants) (15, 23–26). Without this double
bond, the A ring could twist/rotate more freely from the B ring, potentially making the
sterol core less flat and reducing its binding capacity to Amp B (Fig. S1). Such a change
in sterol core conformation could also increase the gap between sterol and phospho-
lipid, making the membrane less stable. This is consistent with the increased sensitivity
of lso� mutants to heat and Triton X-100 (Fig. 4C and 5C).

Compared to WT and add-back parasites, lso� mutants had a lower intracellular pH,
and the difference became more pronounced when cells were cultivated in a pH 5.0
medium (Table 2). This finding is consistent with their reduced capacity to survive and
replicate under the acidic conditions (Fig. 5B and E). Besides affecting the plasma
membrane, the loss of LSO may influence the function of intracellular organelles, as
sterols are located not only in the plasma membrane but also in the membrane of
intracellular organelles. Acidocalcisomes are membrane-enclosed storage organelles
involved in osmoregulation, phosphate metabolism, calcium homeostasis, and intra-
cellular pH maintenance in protozoan parasites (41). The expression of VP1, an
acidocalcisome-associated vacuolar H�-pyrophosphatase, was lower in lso� parasites
during stationary phase (Fig. 6). Since VP1 transports protons from the cytosol into
acidocalcisomes (using pyrophosphate hydrolysis as the energy source), the reduced
VP1 expression may lead to a more acidic intracellular pH and slower recovery of
intracellular pH under acidic conditions (44).

Similar to the C14DM-null mutants, the cellular level of LPG in lso� parasites
appeared to be significantly reduced based on Western blot and immunofluorescence
microscopy analyses using the WIC79.3 antibody, which recognizes the terminal Gal
(�1,3) subunits on the side chain of L. major LPG (46, 62) (Fig. 7 and 8B). However,
further analyses suggest that lso� mutants still synthesized bulk glycoconjugates, as
their LPG and GIPLs could be extracted and purified to yields similar to those of WT and
add-back parasites (LPG, �150 �g/1010 cells; GIPLS, �60 �g/1010 cells). Lack of reac-
tivity to CA7AE antibody indicates that the LPG backbone in lso� parasites is not bare
like that in L. donovani (54) (Fig. 8A). In addition, the FACE result indicates that lso�

mutants possess fewer short side chains and similar levels of intermediate side chains
compared to those of WT parasites (Fig. 8C). Together, these data imply that the low
WIC79.3 reactivity in lso� parasites is not due to a total loss of LPG structure, like several
previously characterized LPG-biosynthetic mutants (51, 52, 66). Instead, it is likely
caused by the reduced level of terminal Gal (�1,3) subunits on the LPG side chain. In
L. major, certain groups of galactosyltransferases and arabinosyltransferases catalyze
the attachment of galactose and arabinose, respectively, to the LPG side chains (49, 50).
Future studies on the expression of these sugar transferases, along with detailed LPG
structure determination in sterol mutants (lso�, c14dm�, and smt�), will help elucidate
the molecular mechanism by which sterol synthesis influences LPG production in
Leishmania.

Despite these defects, lso� parasites showed only slightly attenuated virulence in
BALB/c mice (Fig. 9). While the hypersensitivity to acidic pH and heat likely compro-
mised their ability to survive and replicate in the phagolysosome (39), these defects
may be restricted to the promastigote stage and, thus, have only limited impact on
disease progression after transitioning to amastigotes. Similarly, LPG is a known viru-
lence factor for L. major promastigotes, but the structural change in lso� parasites may
be relatively minor compared to those of LPG synthetic-null mutants (51, 67). Overall,
the fitness loss displayed by lso� parasites is similar in severity to that of smt� and less
dramatic than that of c14dm� mutants (18, 19).

Based on our characterization of the smt� and lso� mutants, it appears that
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Leishmania could develop resistance to Amp B and only suffer mild to moderate fitness
loss. However, Amp B has been used to treat leishmaniasis, especially visceral leish-
maniasis (caused by L. infantum and L. donovani), since the 1960s, and reports of
resistance have been scarce (4, 68). In addition, studies on several visceral leishmaniasis
clinical isolates suggest that Amp B treatment failure is not due to resistance but other
host/parasite factors (69, 70). Since our smt� and lso� mutants were generated in L.
major, it would be of interest to determine the degree of fitness loss in equivalent
mutants in L. infantum or L. donovani. While C14DM could be deleted from L. major, it
is essential for L. donovani (19, 71), so perhaps L. major can better withstand changes
in sterol synthesis than those responsible for visceral leishmaniasis infection.

In summary, our study shed new light on the biological roles of LSO in Leishmania
sterol synthesis, growth, stress response, and virulence. Along with previous reports on
smt� and c14dm� mutants (18, 19), these findings reveal the potential fitness costs
associated with mutations conferring Amp B resistance and may offer strategies to
counter the development of drug resistance.

MATERIALS AND METHODS
Materials. M199 medium, cholesta-3,5-diene, phenyl-Sepharose CL-4B, and alkaline phosphatase

(from Escherichia coli) were purchased from Sigma-Aldrich (St. Louis, MO). Itraconazole (ITZ) and
amphotericin B (Amp B) were purchased from LKT Laboratories, Inc. (St. Paul, MN), and EMD Chemicals,
Inc. (San Diego, CA), respectively. MitoXpress oxygen probe was purchased from Luxcel Biosciences
(Cork, Ireland). AG50W-X12 cation-exchange and AG1-X8 anion-exchange resins were purchased from
Bio-Rad (Hercules, CA). All other chemicals were purchased from Thermo Fisher Scientific unless specified
otherwise.

Molecular constructs. The predicted open reading frame (ORF) of L. major LSO (LmjF.23.1300, 302
amino acids) was amplified by PCR from L. major LV39 WT genomic DNA with primers 649 and 650 (see
Table S1 in the supplemental material). The PCR product was digested with BamHI and ligated into the
pXG vector to generate pXG-LSO. A modified ORF of LSO was amplified by using primers 649 and 651 to
remove the stop codon and then used to generate pXG-LSO-GFP for localization study.

To generate knockout constructs, the upstream and downstream flanking sequences (�550 bp each)
of LSO were amplified with primer pairs 645/646 and 647/659, respectively. These flanking sequences
were digested and ligated into the cloning vector pUC18. Genes conferring resistance to nourseothricin
(SAT) and blasticidin (BSD) were inserted between the upstream and downstream flanking sequences to
generate pUC18-KO-LSO::SAT and pUC18-KO-LSO::BSD. All the molecular constructs were confirmed by
restriction enzyme digestion and/or sequencing. Oligonucleotides used in this study are summarized in
Table S1.

Leishmania culture and genetic manipulation. Unless otherwise specified, L. major strain LV39
clone 5 (Rho/SU/59/P), L. major strain Friedlin V1 (MHOM/IL/80/Friedlin), L. donovani strain 1S2D
(MHOM/SD/00/1S-2D), and L. donovani strain LV82 (MHOM/ET/67:LV82) promastigotes were cultivated at
27°C in M199 medium (pH 7.4, with 10% fetal bovine serum and other supplements) (72). The infective
metacyclic promastigotes (metacyclics) were isolated from day 3 stationary-phase promastigotes using
the density centrifugation method (73). To generate the LSO-null mutants, the two LSO alleles in L. major
LV39 WT parasites were replaced with BSD and SAT by homologous recombination (17). The resulting
heterozygous (LSO�/�) and homozygous (lso�) mutants were confirmed by Southern blotting. Briefly,
genomic DNA samples were digested and resolved on a 0.7% agarose gel, transferred to a nitrocellulose
membrane, and hybridized with [32P]-labeled DNA probes targeting the ORF or a 500-bp upstream
region of endogenous LSO. To restore LSO expression, pXG-LSO or pXG-LSO-GFP was introduced into lso�

parasites by stable transfection, resulting in lso�/�LSO or lso�/�LSO-GFP parasites, respectively.
Sterol analysis by GC-MS. Total lipids were extracted from mid-log-phase promastigotes (3 � 106 to

7 � 106 cells/ml) by following the method of Folch et al. (74). An internal standard, cholesta-3,5-diene
(formula weight, 368.34), was provided at 2.0 � 107 molecules/cell during extraction. Lipid samples were
dissolved in methanol at 1.0 � 109 cell equivalents/ml. Equal amounts of each lipid extract in methanol
were transferred to separate vial inserts, evaporated to dryness under nitrogen, and derivatized with
50 �l of BSTFA plus 1% TMCS-acetonitrile (1:3), followed by heating at 70°C for 30 min. GC-MS analysis
was conducted on an Agilent 7890A GC coupled with Agilent 5975C MSD in electron ionization mode.
Derivatized samples (2 �l each) were injected with a 10:1 split into the GC column with the injector and
transfer line temperatures set at 250°C. The GC temperature started at 180°C and was held for 2 min,
followed by 10°C/min increase until 300°C and then held for 15 min. To confirm that the unknown GC
peak retention time matched that of the episterol standard, we also used a second temperature program
started at 80°C for 2 min, ramped to 260°C at 50°C/min, held for 15 min, and increased to 300°C at
10°C/min and held for 10 min. A 25-m Agilent J & W capillary column (DB-1; inner diameter, 0.25 mm; film
thickness, 0.1 �m) was used for the separation.

Immunofluorescence microscopy. For LSO-GFP localization, lso�/�LSO-GFP parasites were labeled
with rabbit anti-T. brucei BiP antiserum (1:2,000) for 20 min, followed by goat anti-rabbit IgG-Texas Red
antibody (1:1,000) for 20 min. Localizations of LPG were determined as previously described (19). To label
acidocalcisomes, stationary day 3 promastigotes were permeabilized with ice-cold ethanol and stained
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with rabbit anti-T. brucei VP1 (TbVP1) antiserum (1:800) (44) for 30 min, followed by goat anti-rabbit
IgG-Texas Red antibody (1:1,000). DNA staining was performed with 1.5 �g/ml Hoechst 33342 for 10 min.
Images were acquired using an Olympus BX51 upright fluorescence microscope equipped with a digital
camera. To quantify the overlap between LSO-GFP and anti-BiP staining, 30 randomly selected cells were
analyzed using Image J JACoP (Just Another Colocalization Plugin) (75). The fluorescence intensity of
TbVP1 staining in WT, lso�, and lso�/�LSO parasites was measured from metacyclic-like cells (100 each)
using Image J.

Cell growth, stress response, and drug sensitivity. To measure parasite growth under regular
conditions, log-phase promastigotes were inoculated in M199 medium (pH 7.4) at 1.0 � 105 cells/ml and
incubated at 27°C. Culture densities were determined daily using a hemocytometer. Percentages of
round cells and metacyclics in stationary phase were determined as previously described (19). Parasite
growth under the acidic condition was determined using an acidic M199 medium (same as complete
M199 medium, except that the pH was adjusted to 5.0 with hydrochloric acid).

To assess cell viability under stress, mid-log-phase promastigotes were incubated in complete M199
medium (pH 7.4) at 37°C (heat stress) in an acidic M199 medium (pH 5.0) at 27°C (acidic stress) or in
phosphate-buffered saline (PBS) at 27°C (starvation stress). Cell viability over time was determined by
flow cytometry after staining with 5 �g/ml of propidium iodide (dead cells were highly positive for
propidium iodide).

To determine sensitivity to drugs, log-phase promastigotes were inoculated in complete M199
medium at 2.0 � 105 cells/ml with different concentrations of Amp B (0.01 to 0.6 �M) or ITZ (0.01 to
13 �M). Percentages of growth were calculated after 48 h by comparing culture densities from drug-
treated cells to cells grown in the absence of drugs (18).

To determine sensitivity to detergent, log-phase promastigotes were inoculated in complete M199
medium with 0.0125% Triton X-100 at 2.0 � 105 cells/ml. Cell viability was measured at different time
points by flow cytometry after staining with propidium iodide.

Intracellular pH measurement. Intracellular pH was measured using a pH-sensitive fluorescent
indicator, BCECF-AM (76). Briefly, promastigotes were inoculated in the regular (pH 7.4) medium or acidic
(pH 5.0) medium at 1.0 � 105 cells/ml as described above. After 3 days, 1.0 � 107 cells were washed once
with PBS and resuspended in 500 �l of buffer A (136 mM NaCl, 2.68 mM KCl, 0.8 mM MgSO4, 11.1 mM
glucose, 1.47 mM KH2PO4, 8.46 mM Na2HPO4, 1 mM CaCl2, and 20 mM HEPES, pH 7.4) with 10 �M
BCECF-AM. After 30 min of incubation, cells were washed twice and resuspended in buffer A. The
emission intensity at 535 nm was measured using a microplate reader when samples were excited at
490 nm and 440 nm at the same time. The fluorescence intensity ratio (emission intensity at 535 nm
when excited at 490 nm/emission intensity at 535 nm when excited at 440 nm) was converted into an
intracellular pH value using a calibration curve, which was generated by measuring fluorescence intensity
ratios of cells prepared in pH 5.0-pH 8.0 buffer A containing 10 �M BCECF-AM and 5 �g/ml the ionophore
nigericin (77, 78).

Acidocalcisome isolation and analysis of short-chain and long-chain polyphosphate. Acidocal-
cisome fractions were isolated from log-phase and stationary-phase promastigotes as described for T.
brucei and T. cruzi (79). The amounts of short-chain and long-chain polyphosphate in acidocalcisome
fractions were determined as previously described (80).

Western blots. To determine LPG and GP63 expression, promastigotes were washed once in PBS and
resuspended at 5.0 � 107 cells/ml in 1� SDS sample buffer. Samples were boiled for 5 min and resolved
by SDS-PAGE, followed by immunoblotting with mouse-anti-L. major LPG monoclonal antibody WIC79.3
(1:1,000) (47), mouse-anti-GP63 monoclonal antibody 235 (1:1,000) (81), mouse-anti-L. donovani LPG
monoclonal antibody CA7AE (1:500), or mouse-anti-�-tubulin antibody (1:1,000), followed by a goat
anti-mouse IgG-horseradish peroxidase (1:2,000). To examine the expression of LSO-GFP, immunoblot-
ting was performed using a rabbit anti-GFP antiserum (1:1,000) followed by a goat anti-rabbit IgG-
horseradish peroxidase (1:2,000). To confirm LPG purification, 5 �g of purified LPG isolated from each
strain was subjected to immunoblotting as described above using monoclonal antibody WIC79.3
(1:1,000).

Glycoconjugate extraction, purification, preparation, and FACE. LPG and GIPLs from Leishmania
promastigotes (2 to 4 � 1010 cells each) were extracted in solvent E (H2O-ethanol-diethyl ether-pyridine-
NH4OH; 15:15:5:1:0.017) and chloroform-methanol-water (10:10:3), respectively. The extracts were dried
by N2 evaporation, resuspended in 0.1 M acetic acid– 0.1 M NaCl, and applied to a column of phenyl-
Sepharose (2 ml), equilibrated in the same buffer. LPG and GIPLs were eluted using solvent E (82).

To prepare LPG repeat units, the LPG samples were depolymerized by mild acid hydrolysis (0.02 M
HCl, 5 min, 100°C). This would generate a mixture of phosphorylated repeat units and core-PI anchor,
which were separated after n-butanol–water (2:1) partitioning. Repeat units were collected in the
aqueous phase and dephosphorylated with alkaline phosphatase in 15 mM Tris-HCl, pH 9.0 (1 U/ml, 16
h, 37°C). After enzymatic treatment, the repeat units were desalted by passage through a two-layered
column of AG50W-X12 (H�) over AG1-X8 (acetate) (55). GIPLs were depolymerized after strong acid
hydrolysis (2 M trifluoroacetic acid, 3 h, 100°C) to obtain neutral monosaccharides, samples were dried
in a speed-vac, and acid was removed by toluene wash (twice) under N2. GIPL samples were resuspended
in 500 ml of water and desalted as described above (59).

LPG repeat units and GIPL monosaccharides then were subjected to FACE analysis. Purified LPG
samples were fluorescently labeled with 8-aminonaphthalene-1,3,6-trisulfate and subjected to FACE
analysis, and the gel was visualized by a UV imager as described previously (55). To determine the
monosaccharide composition of GIPLs, depolymerized and desalted GIPL samples were fluorescently
labeled with 0.1 M 2-aminoacridone in 5% acetic acid and 1 M cyanoborohydride. Labeled sugars were
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subjected to FACE, and the gel was visualized under UV light. Oligo-glucose ladders (G1 to G7) and
monosaccharides (D-galactose, D-glucose, and D-mannose) were used as standards for oligosaccharides
and monosaccharide gels, respectively (59).

Mitochondria membrane potential, mitochondrial ROS, and oxygen consumption. Mitochon-
drial membrane potential was determined as described previously (18). Log- or stationary-phase pro-
mastigotes were resuspended at 1.0 � 106/ml in PBS with 100 nM TMRE. After incubation at 27°C for
15 min, cells were washed once with PBS and analyzed by an Attune acoustic flow cytometer. To evaluate
superoxide accumulation in mitochondria, promastigotes were resuspended in PBS at 1.0 � 107/ml and
labeled with 5 �M MitoSox for 25 min. Cells were washed once with PBS and analyzed by flow cytometry
(18). To determine the oxygen consumption rate, log-phase promastigotes were resuspended in a
respiration buffer (Hanks’ balanced salt solution with 5.5 mM sodium pyruvate, 5.5 mM 2-deoxy-D-
glucose) at 2.0 � 107/ml, and oxygen consumption was measured with 1 �M MitoXpress as described
previously (65). WT parasites treated with 10 �M antimycin A were included as a negative control (65).

Mouse footpad infection. BALB/c mice (female, 7 to 8 weeks old) were purchased from Charles River
Laboratories International (Wilmington, MA). Mice were housed and cared for in a facility operated by the
Animal Care and Resources Center at Texas Tech University. Procedures involving live mice were
approved by the Animal Care and Use Committee at Texas Tech University (PHS-approved animal welfare
assurance no. A3629-01). To determine parasite virulence, 2.0 � 105 metacyclics or 2.0 � 104 lesion-
derived amastigotes were injected into the footpad of each mouse (5 mice per group). The progression
of footpad lesions was monitored weekly using a Vernier caliper. Anesthesia was applied via isoflurane
inhalation during footpad injection and measurement. Euthanasia was achieved by CO2 asphyxiation.
Parasite loads from infected footpads were determined by the limiting-dilution assay (83).

Statistical analysis. All experiments were repeated at least three times, except for the Southern
blotting. All graphs were made using SigmaPlot 13.0 (Systat Software Inc, San Jose, CA). Differences
between two groups were determined by the Student’s t test. P values indicating statistical significance
were grouped into values of �0.05 (*), �0.01 (**), and �0.001 (***).
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