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Genetic analyses, including genome-wide association studies and whole exome sequencing (WES), provide
powerful tools for the analysis of complex and rare genetic diseases. To date there are no reference data for
Aboriginal Australians to underpin the translation of health-based genomic research. Here we provide a
catalogue of variants called after sequencing the exomes of 72 Aboriginal individuals to a depth of 20X
coverage in �80% of the sequenced nucleotides. We determined 320,976 single nucleotide variants (SNVs)
and 47,313 insertions/deletions using the Genome Analysis Toolkit. We had previously genotyped a subset
of the Aboriginal individuals (70/72) using the Illumina Omni2.5 BeadChip platform and found ~99%
concordance at overlapping sites, which suggests high quality genotyping. Finally, we compared our SNVs
to six publicly available variant databases, such as dbSNP and the Exome Sequencing Project, and 70,115 of
our SNVs did not overlap any of the single nucleotide polymorphic sites in all the databases. Our data set
provides a useful reference point for genomic studies on Aboriginal Australians.
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Whole Exome Sequencing • Genetic Population Study • genotyping by array
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Background & Summary
Whole exome sequencing (WES) is a powerful and cost-effective tool1 that has been employed
successfully to identify causative mutations in patients affected by rare genetic diseases2,3. WES enables
the detection of rare sequence variants specific to an individual as well as common variants that are
endemic to a specific population. As there are no reference data for Aboriginal Australians to underpin
the translation of health-based genomic research, we conducted a study in partnership with an Aboriginal
population living at the edge of the Western Desert in Western Australia. We present a summary of the
data here to be used as a reference panel to aid in the diagnosis of rare diseases and other health-based
research in Aboriginal Australians.

We recently published the first Genome-Wide Association Study (GWAS) for body mass index (BMI)
and type 2 diabetes (T2D) undertaken in an Aboriginal Australian population4. As part of the GWAS, we
genotyped 402 individuals (195 of pure Martu ethnicity) using the Illumina Omni2.5 BeadChip platform.
However, the design of the chip is based on single nucleotide polymorphisms (SNPs) previously identified
in the HapMap5 and 1,000 Genomes6 projects, which do not include ethnically diverse groups such as the
Aboriginal Australians. While the chip genotyping information is useful as a baseline to compare allele
frequencies for known variants in this Aboriginal Australian sample, novel variants cannot be identified
and genotyped.

In continuing work, we have carried out WES on a subset of individuals (70/402) from our GWAS
study and two additional individuals (a total of 72) in order to identify variants that may be associated
with extreme phenotypes for BMI, renal disease, and otitis media. We processed the exome data using the
Genome Analysis Toolkit (GATK) and by following their best practices guide (see Methods). Almost 80%
of the sequenced bases in all the samples had a sequence depth of 20X coverage and around 60% had a
sequence depth of 30X coverage (Fig. 1). Furthermore, we called a total of 320,976 single nucleotide
variants (SNVs) and 47,313 insertions/deletions (indels) observed in at least one of the 72 sequenced
exomes. A visual summary of a subset of the variants is shown in Fig. 2.

A comparison of our SNVs to SNPs recorded in the HapMap5, ESP7, ExAC8, dbSNP9, 1,000
Genomes10, and UK10K11 databases revealed that around 30% to 70% of our SNVs are recorded in these
databases (Table 1). Our SNVs constituted the highest percentage of the ESP database (5%) (Table 1),
which is expected as the ESP database contains variants determined using exome sequencing.
Furthermore, 70,115 of our 320,976 SNVs (21.8%) have not been previously reported in any of these six
databases. As recently reported, while most common variants are shared across the entire population,
rare variants are typically restricted to closely related populations10. However, these unrecorded SNVs
may also represent false positives, such as variants incorrectly inferred from sequencing or technical
artefacts. We used the calibrated probabilities (VQSLOD) calculated using the Variant Quality Score
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Figure 1. Whole exome sequencing coverage at 20X (left panel) and 30X (right panel) depth. Each bar on the

x-axis represents a single sample and the percentage (starting at 50%) on the y-axis indicates the percentage of

bases, out of all sequenced bases, that had at least (a) 20X or (b) 30X coverage. The red lines mark the 80 and

60% percentages.
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Recalibration (VQSR) step in the GATK pipeline to gain an idea of the quality of these SNVs. Briefly, the
VQSR step trains a model based on the variant annotations of known and high-quality variants in the
dataset and compares unknown variants to these models, assigning a confidence score to each putative
variant call. 61,212/70,115 (87.3%) of the previously unrecorded SNVs have a passing confidence score,
providing confidence that these SNVs are true positives.

The genomic location and effect of our sequence variants with respect to protein coding genes in the
RefSeq database was annotated using ANNOVAR12 (Fig. 3). The majority of our variants were located
within introns, the 3' untranslated region (3' UTR), and exons. While the exome capture protocol mainly
targets exonic regions, many of the captured DNA fragments will still fall outside of the targeted regions.
We used a 100 bp padding on the targeted regions in our GATK pipeline, thereby allowing variants to be
called outside of exonic regions. Intronic and 3' UTRs make up the majority of a protein coding gene,
which is reflected by the number of our variants that fall within these regions. The variants that were
within exonic regions were further characterised by their functional effect on protein coding genes. The
majority of the sequence variants either caused a non-synonymous or synonymous mutation. While it

Figure 2. Summary metrics of Variant Call Format file generated using vcf.iobio (Miller et al.27). Reference

chromosomes are displayed in (a) and the distribution of variants with respect to the reference chromosomes

are displayed in (b). The Ts/Tv ratio calculated on the sampled variants is shown in (c). The distribution of the

alternative allele frequency (log scale) is shown in (d). Nucleotide substitutions per base is summarised in

(e) and the tally of variant types is shown in (f). The distribution of insertion and deletion lengths is shown in

(g) and finally the distribution of quality scores, i.e., the QUAL field, is shown in (h).

Database Overlapping Percent overlapping Database size Percent of database

HapMap 3.3 97,786 30.5 3,627,692 2.7

ESP 6500 99,284 30.9 1,872,875 5.3

ExAC 0.3 130,423 40.6 8,880,581 1.47

UK10K 187,043 58.3 42,424,188 0.44

1KGP Phase 3 212,798 66.3 81,443,083 0.26

dbSNP 138 226,943 70.7 53,687,179 0.42

Table 1. Overlap between the 320,976 loci detected using whole exome sequencing and SNPs recorded in
six public databases.
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may be expected that there should be more synonymous than non-synonymous mutations, we observed
the same distribution when we annotated the UK10K and ESP6500 variants. The larger number of
non-synonymous mutations is mainly caused by sequence variants that have a very low frequency in the
population.

Methods
Study population
Subjects were recruited from an Aboriginal Australian community of Martu ancestry13,14 at the edge of
the Western Desert in Western Australia as previously described4. The individuals belong to a small
number of inter-related extended pedigrees and different subsets of these individuals have been diagnosed
with type 2 diabetes (T2D) and/or obesity (according to their BMI).

Chip genotyping
402 individuals were genotyped on the Illumina Omni2.5 BeadChip, which profiles 2,450,000 SNPs that
were selected based on SNPs identified in the HapMap and 1,000 Genomes project. We converted the
PED and MAP files into the Variant Call Format (VCF) using PLINK 1.9 (ref. 15) and hg18 coordinates
were converted to hg19 coordinates using the liftOver tool16 and a custom Perl script (see Code
availability). To ensure compatibility with the exome genotypes, we modified the REF and ALT fields
(and accordingly, the genotypes) in the VCF file, such that the bases of a SNP were always on the positive
strand with respect to the reference genome and the major allele was the allele present at position POS on
the positive strand of the hg19 reference genome. The strandedness of the SNPs were obtained online17

and a custom Perl script (see Code availability) was used to modify the VCF file. The final VCF file
contained genotypes for 2,380,601 SNPs due to missing calls (72 SNPs), SNPs that could not be converted
to hg19 coordinates (60,142 SNPs), and missing strand information (9,185 SNPs). We did not perform
any filtering of SNPs based on minor allele frequencies or call rates.

Whole exome sequencing
We sequenced 72 samples prepared following the Illumina TruSeq protocol on an Illumina GAII
outsourced to the Australian Genome Resource Facility (AGRF). The data was processed using GATK18

according to GATK Best Practices recommendations19,20 and using the GATK 2.8 data bundle21 for hg19;
the full pipeline was implemented using Bpipe22 (see Code availability). Briefly, sequences were aligned to
the hg19 reference genome with BWA-MEM23, followed by the removal of PCR duplicates, base quality
score recalibration, indel realignment, and variant quality score recalibration on putative SNPs and
INDELs. The VCF file produced by the pipeline uses the reference base on the positive strand of hg19 in
the REF field and the variant is shown in the ALT field. We calculated the coverage using BEDTools24

and GNU parallel25 to parallelise the jobs; specifically we used bedtools coverage with the -d parameter to
calculate the per base depth and then calculated the percentage of bases with at least 20X and 30X
coverage.

Overlapping with known variants
We compared our SNVs with SNPs available in six publicly available databases: HapMap 3.3 (ref. 5),
dbSNP 138 (ref. 9), ESP 6500 (ref. 7), ExAC 0.3 (ref. 8), UK10K11, and 1KGP Phase 3 (ref. 10). We
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downloaded the respective VCF files and used BEDTools24 to intersect our SNVs to the database variants;
specifically, we used bedtools intersect with the -u parameter. To obtain a list of SNVs not recorded in
any of the databases, we used bedtools intersect with the -v parameter, which reports entries with no
overlaps. We ran six intersects, one for each variant database, using the output from the first intersect as
input to the second intersect, and so forth. Note that BEDTools only considers the genomic coordinates
and doesn't take into account the alleles; hence a SNV that overlaps a SNP in a database but has different
REF and ALT alleles will still count as an overlap.

Variant annotation
We used ANNOVAR12 (version 2015Jun16) to annotate our genomic variants against RefSeq sequences
(version 20150322), given that commercial kits target, at a minimum, all of the RefSeq genes. ANNOVAR
annotates variants (in this precedence) as exonic (within coding regions), splicing (within an intron and
2 bp of a splice junction), ncRNA (within a transcript without any coding annotation), UTR5 (within a 5'
untranslated region), UTR3 (within a 3' untranslated region), intronic (within an intron), upstream
(within 1 kb of a transcription start site), downstream (within 1 kb of the end of a transcript), and
intergenic (within an intergenic region). Variants within exons are further annotated to indicate the
amino acid changes as a result of the exonic variant. Annotations include (in this precedence): frameshift
insertion (an insertion leading to a frameshift), frameshift deletion (a deletion leading to a frameshift),
stopgain (creation of a stop codon), stoploss (the loss of a stop codon), nonframeshift insertion
(an insertion not leading to a frameshift), nonframeshift deletion (an insertion not leading to a
frameshift), nonsynonymous SNV (single nucleotide change leading to an amino acid change),
synonymous SNV (single nucleotide change not leading to an amino acid change), and unknown
(unknown function).

Code availability
A full description of our GATK pipeline, which contains all the programs and parameters used, is openly
available at https://github.com/davetang/tang_sd_2015. The Markdown file in the pipeline folder
documents each step of the pipeline, as well as providing external links to the relevant sources for further
information. In addition, we have provided the two Perl scripts that were used to prepare the Illumina
Omni2.5 BeadChip files, and the R and TeX code used to generate Figs 1,3 and 4.

Data Records
The unprocessed Illumina Omni2.5 BeadChip data is available from the European Genome-phenome
Archive (EGA) under the accession number EGAS00001001004 (Data Citation 1) and more information
on this data set can be found in our recently published study4. We have also deposited our full set of
variants identified from our WES study as a single multi-sample VCF file in the EGA under the accession
number EGAS00001001585. The raw FASTQ files are not available in the data archive, however all the
steps used to process the raw files to create the final VCF file, are available at our GitHub repository
(see Code availability).

Technical Validation
70 of the 72 individuals who had their exomes sequenced were also chip genotyped, allowing us to
compare the genotypes at overlapping sites. We found 83,806 comparable sites, i.e., loci where we have
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genotype information across the 70 individuals from both technologies, which corresponded to 5,784,674
genotypes (out of a maximum of 5,866,420 due to missing data). Using SnpSift26 we found that 5,701,729
of the 5,784,674 comparable genotypes were concordant (98.6%), i.e., both technologies called the same
genotype (homozygous reference, heterozygous, or homozygous non-reference) at the same loci for a
particular individual (Table 2). Furthermore, SnpSift only compares sites where the REF and ALT fields
are identical, otherwise an error is reported; however, we only observed 178 error cases.

In addition, we calculated the transition/transversion (Ts/Tv) ratios per exome sample as a quality
metric. Transitions are interchanges between purines (A, G) or pyrimidines (C, T) and transversions are
interchanges between purines and pyrimidines. When there is no bias towards either transitions and
transversions, the ratio is 0.5. While there are more possible transversions than transitions, transitions are
observed more frequently due to molecular mechanisms and transitions are less likely to result in non-
synonymous mutations; therefore we should observe a ratio greater than 0.5.

Unfiltered SNVs had the lowest Ts/Tv ratios per sample compared to SNVs that were filtered using the
VQSLOD score and filtered by exonic region (Fig. 4). Due to the nature of the exome capture, regions
slightly outside of the exon are captured; this is also by design to capture non-coding regions that have
functional implications such as the 5′ and 3′ UTRs. However, as these sites are not as constrained
(i.e. under purifying selection to maintain function) as exons, transversions are more common and can
lower the Ts/Tv ratio. While it has been reported anecdotally that WES Ts/Tv ratios are around the 2.8
value, there is no general consensus. It may be possible that by using additional filters that the Ts/Tv ratio
can be increased, however, we would like to present the data as is and users may apply their preferred
hard filters.

Usage Notes
Ethical approval for the study was obtained from the Western Australian Aboriginal Health Ethics
Committee (Reference 227 12/12). This ethics committee is responsible for reviewing health and medical
research undertaken in Western Australian Aboriginal communities. It is registered with the National
Health and Medical Research Council's (NHMRC’s) Australian Health Ethics Committee (AHEC)
and operates in accordance with the NHMRC National Statement on Ethical Conduct in Human
Research 2007.

The data is made available through the European Genome-phenome Archive (EGA), subject to review
by a study-specific Data Access Committee (DAC). Access to data will be granted to qualified researchers
for appropriate health related uses. A qualified researcher refers to a scientist, who is employed, or a
student enrolled at, or legitimately affiliated with an academic, non-profit or government institution, or a
commercial company performing Aboriginal health related diagnostic services. Applicants are asked to
complete a basic application form (which includes a brief summary of the proposal, so the DAC can
determine if the planned usage falls within consents) and to agree to the terms and conditions laid out in
the Data Access Agreement (DAA). The DAA must be signed by the applicant and the relevant Head of
Department, Head of Institute, or equivalent. If applications include a named collaborator then the
collaborator’s Institution must sign and submit a separate Data Access Agreement. Review by the DAC
takes 2 weeks and if the application is approved, access via the EGA is then arranged for the applicant
(https://www.ebi.ac.uk/ega/about/access). The application form, data access agreement, and further
information are available from our website: http://bioinformatics.childhealthresearch.org.au/AGHS/.

Permission to lodge de-identified genotype and basic demographic data (broad geographical location,
age, sex and phenotype information) in the EGA was obtained from the Board of the local Aboriginal

Type Count Percent of total

REF/REF 3,140,230 54.3

REF/ALT1 24,011 0.42

REF/ALT2 28,140 0.49

ALT1/REF 9,275 0.16

ALT1/ALT1 1,353,334 23.4

ALT1/ALT2 3,654 0.06

ALT2/REF 12,050 0.21

ALT2/ALT1 5,815 0.1

ALT2/ALT2 1,208,165 20.9

Total 5,784,674 100

Table 2. Genotype concordance between whole exome sequencing and genotyping on the Omni2.5
platform. The genotypes are: homozygous reference (REF), heterozygous (ALT1), and homozygous non-
reference (ALT2). The pairs of genotypes, e.g., REF/REF, on each row represent genotype calls by exome
sequence and by the Omni chip respectively. REF/REF, ALT1/ALT1, and ALT2/ALT2 indicate concordant
genotypes.
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Health Service. It should be noted that this Board approval is for use of the data in health-based research,
and not for use in pure population genetics research. The data is provided as reference data for health-
based research and translation in Aboriginal Australian communities.
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