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ABSTRACT
Objective: While some oral carcinomas appear to arise de novo, others develop within long- 
standing conditions of the oral cavity that have malignant potential, now known as oral 
potentially malignant disorders (OPMDs). The oral bacteriome associated with OPMD has 
been studied to a lesser extent than that associated with oral cancer. To characterize the 
association in detail we compared the bacteriome in whole mouth fluid (WMF) in patients 
with oral leukoplakia, oral cancer and healthy controls.
Methods: WMF bacteriome from 20 leukoplakia patients, 31 patients with oral cancer and 23 
healthy controls were profiled using the Illumina MiSeq platform. Sequencing reads were 
processed using DADA2, and taxonomical classification was performed using the phyloge
netic placement method. Sparse Partial Least Squares Regression Discriminant Analysis model 
was used to identify bacterial taxa that best discriminate the studied groups.
Results: We found considerable overlap between the WMF bacteriome of leukoplakia and 
oral cancer while a clearer separation between healthy controls and the former two disorders 
was observed. Specifically, the separation was attributed to 14 taxa belonging to the genera 
Megaspheara, unclassified enterobacteria, Prevotella, Porphyromonas, Rothia and Salmonella, 
Streptococcus, and Fusobacterium. The most discriminative bacterial genera between leuko
plakia and oral cancer were Megasphaera, unclassified Enterobacteriae, Salmonella and 
Prevotella.
Conclusion: Oral bacteria may play a role in the early stages of oral carcinogenesis as 
a dysbiotic bacteriome is associated with oral leukoplakia and this resembles that of oral 
cancer more than healthy controls. Our findings may have implications for developing oral 
cancer prevention strategies targeting early microbial drivers of oral carcinogenesis.
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Introduction

Oral potentially malignant disorders (OPMD) include 
conditions which harbour an increased risk of transfor
mation to oral cancer when compared to patients with 
an apparently normal oral mucosa. Oral leukoplakia 
(LKP) is an OPMD defined as a white plaque of ques
tionable risk having excluded (other) known diseases or 
disorders that carry no increased risk for cancer. The 
rates of malignant transformation of LKP vary accord
ing to the population as well as histopathologic grades 
of dysplasia historically categorized into mild, moder
ate, and severe [1,2]. Histopathologic grading of dyspla
sia remains the most useful predictor of the malignant 
transformation potential of LKP [3]. Early detection of 

oral cancer can help to save lives, lessen the burden of 
morbidity owing to the more radical surgical resection 
and/or debilitating chemo/radiotherapy required to 
manage late-stage cancer, and reduces the economic 
burden of treatment. Hence, over the years, researchers 
have explored various methods in the hope of develop
ing sensitive and specific biomarkers for early detection 
of oral cancer or recognition of an OPMD with 
a relatively high likelihood of malignant transforma
tion. Unfortunately, no single marker has yet been 
shown to have sufficient utility to successfully translate 
to the clinical setting [4].

The oral cavity is the gateway to the gut and 
dysbiosis in the bacterial communities of the oral 
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cavity have been observed in many human disorders. 
The advent of next-generation sequencing (NGS) has 
enabled the parallel identification of the multiple 
organisms present in a biological sample. Recently 
there has been a surge of studies that have used 
NGS to study the bacteriome associated with oral 
cancer and these have identified significant differ
ences in the relative abundances of bacteria in cancer 
patients compared to healthy individuals [5–7] and 
oral bacteriome is currently been explored as 
a potential biomarker for risk of oral cancer [7]. If 
particular microbiota were found to promote any 
aspect of the disease process, this would open the 
way to antimicrobial treatments as part of cancer 
therapy.

Given the ease and non-invasive nature of collection, 
the bacteriome of saliva, or what we choose to call 
‘whole mouth fluid (WMF)’ in recognition that it con
tains gingival crevicular fluid, mucosal transudates and 
serum exudates because inflammation is invariably pre
sent – is currently been explored for its potential to 
detect disease in a several body systems [4,8]. Several 
studies have identified particular bacterial taxa in WMF 
which, by association, may have a role in oral carcino
genesis [9,10]. However, the WMF bacteriome asso
ciated with oral leukoplakia is not defined yet. We 
performed 16S rRNA gene amplicon sequencing to 
identify bacterial signatures that have the potential to 
help us understand the risk of malignant transforma
tion, and pathogenesis. In this current study, for the 
first time in relation to the oral microbiome, we have 
used the phylogenetic tree placement method to study 
oral bacteriome, which utilizes a consensus genome 
constructed with all genomes shared by members of 
the same clade originating from each node on the 
phylogenetic tree [11].

Patients and methods

This study was approved by DY Patil Dental College 
Hospital, Pune, Maharashtra (DYPY/EC/74/17) and 
Acharya Harihar Regional Cancer Centre, Cuttack, 
Orissa (068-IEC-AHRCC), and University of Hong Kong 
(UW 17–242) Ethics Review Boards. Written informed 
consent was obtained from all participants and all methods 
in this study were performed following the relevant guide
lines of the Declaration of Helsinki on biomedical research 
involving human subjects. Seventy-four individuals were 
included in this cross-sectional study. Subjects were 
recruited from two institutions: DY Patil Dental College 
Hospital, Pune, and Acharya Harihar Regional Cancer 
Centre, Cuttack. Detailed demographic details of the sub
jects are presented in supplementary table 1. The first 
group of study subjects consisted of patients with histo
pathologically confirmed oral squamous cell carcinoma 
(International Classification of Diseases, 10th revision 
[ICD-10], codes C02–C06). These sites were chosen as 

they belong to homogenous paradigm of oral cancer, 
whereas the rest of the codes belongs to sites which have 
distinct clinical and molecular signatures [12]. The second 
group of subjects were patients with oral LKP with mod
erate or severe dysplasia, confirmed by two oral patholo
gists using WHO criteria [3]. Only cases with moderate-to 
-severe dysplasia was chosen so as to ensure the presence 
of dysplasia and to reduce bias owing to subjectivity in 
reporting of mild dysplasia. Healthy subjects reporting to 
these institutions for the removal of asymptomatic third 
molars were utilized as controls and were matched for age 
and gender. All subjects exposed to antibiotic therapy 
within 1 month prior to sample collection, as well as 
those with a co-existing debilitating illness, were excluded.

Unstimulated WMF was collected from controls and 
patients after clinical diagnosis of oral cancer or leuko
plakia, but prior to any biopsy, surgery, radiotherapy, or 
chemotherapy. Each subject was asked to refrain from 
smoking, drinking, or eating for at least 30 min before 
sample collection. Samples were collected by GeneFixTM 

Saliva DNA Collection device-1 ml (Isohelix, UK). 
Patients were asked to spit into the collection device 
that comes prefilled with stabilization buffer and 
a funnel for ease of collection. After collection of 1 ml 
WMF, the device was stored at room temperature. 
However, the final inclusion of the sample into the 
study was only after histopathologic confirmation of 
LKP with moderate or severe epithelial dysplasia or 
squamous cell carcinoma. The stored samples were 
shipped at room temperature to Rajiv Gandhi Centre 
for Biotechnology, Kerala, India, for processing.

Sample processing and sequencing

The DNA extraction was carried out according to man
ufacturer instructions using the Gene Fix Saliva Prep 2 
Isolation kit (Isohelix, UK) which was specifically opti
mized for the GeneFixTM Saliva DNA Collectors. Prior to 
Proteinase K treatment, samples were subjected to 
30 minutes of enzymatic lysis at 37°C with lysis buffer 
containing lysozyme (20 mg/ml) (Sigma-Aldrich, Dorset, 
UK). The extracted DNA was further stored at −20°C. 
Amplification of bacterial DNA was performed using 
PCR primers targeting the 16S rRNA gene V3-V4 
(319 F-806 R) and the products were purified with 
AmpureXPbeads (AGENCOURT). After quantification 
by real-time quantitative PCR (RT-qPCR – 
EvaGreenTM), the qualified libraries were sequenced 
on the Illumina MiSeq System using the PE300 
reagent Kit.

Bioinformatics and statistical analysis

A total of 2,862,675 raw sequences were obtained from 
MiSeq Illumina sequencing. The raw paired-end 
sequences were joined into contig, trimmed, and quality 
filtered using DADA2 [13]. The final dataset contained 
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an average of 29450 sequences per sample. The dataset 
was subsequently imported into PAPRICA pipeline for 
sequence binning and to infer taxonomic classification 
for further processing [12]. Briefly, the phylotype and 
gene inference analyses were performed by first aligning 
the quality-controlled query reads to the reference align
ment with Infernal, then placing them on the phyloge
netic reference tree with pplacer [14]. Separately, 
taxonomical classification and gene inferences were 
inferred based on edge placement and consensus identity 
with either internal or terminal nodes. It is noteworthy 
that this approach uses ‘phylogenetic placement’ instead 
of ‘operational taxonomic units’ and hence provides 
a more intuitive relatedness between taxa using their 
position in reference to the ‘guide tree’ rather than artifi
cially selected sequence homology [12]. To the best of 
our knowledge, this is the first use of this approach for 
the study of oral microbial communities. The sequences 
were binned into a total of 1646 edges based on 
PAPRICA. To prevent potential noise, edges with 
<1000 reads were filtered, and the final abundance table 
consisted of a total of 283 edges or an average of 73 edges 
per sample.

The abundance table obtained was next imported into 
Phyloseq [15] for alpha and beta diversity comparison. 
Specifically, alpha diversity indices, Shannon, Simpson, 
and Pielou’s evenness were used to compare the species 
richness and evenness across samples. On the other 
hand, the beta diversity or community overlap was 
derived using permutational multivariate analysis of var
iance (PERMANOVA), and sparse partial least squares 
discriminant analysis (sPLS-DA) implemented in the 
mixOmics R package [16]. sPLS-DA is an extension of 
the partial least square discriminant analysis (PLSDA). 
The conventional PLS-DA fitted the loading vectors into 
different orthogonal dimensions based on the loading 
weight of the feature in the partial least square regression 
model [17]. Building on the PLS-DA approach, sPLS-DA 
included the sparsity assumption in which only a small 
number of features are responsible in driving a biological 
event. As such, a LASSO penalization is included for 
feature selection. This optimized the model by removing 
the ‘noise’ and increase the prediction accuracy [18]. In 
this study, the sparsity parameter was determined using 
the ‘tune.splsda’ function (mixOmics R) that performed 
fivefold cross-validation. The accuracy of the model was 
evaluated using the area under the receiver operating 
characteristic (AUROC) curve. The relationship among 
the selected features, and with the disease groups was 
inferred using network analysis. Briefly, a network matrix 
was produced using the ‘network’ function, and the data 
were exported into cytoscape ver 3.8.1 to construct the 
network plot. This report conforms, where applicable, to 
the STROBE guidelines (Strengthening the Reporting of 
Observational Studies in Epidemiology).

Results

Bacteriome diversity and compositional profile of 
three groups

We plotted alpha diversity in samples from each 
patient group when compared with that found in 
the other patient groups using various metrics. No 
significant differences in richness (Shannon and 
Simpson Diversity Indices) and in evenness were 
detected (Figure 1(a)). The bacterial compositional 
differences have been illustrated at phylum and 
genus levels (Figure 1(b,c)). At the phylum level, 
Firmicutes were the most abundant phyla in the oral 
cancer group (CA) as well as in controls, whereas 
Bacteriodetes were more predominant in oral leuko
plakia (LKP) samples (Figure 1(c)).

Sparse partial least squares regression 
discriminant analysis

A Sparse Partial Least Squares Regression Discriminant 
Analysis (sPLS-DA) model was built using a subset of 
bacterial taxa that best discriminated the studied groups. 
This model demonstrated a considerable overlap 
between the LKP and CA group whereas the majority 
of healthy controls were separated from both these 
groups on component 1 (Figure 2). CA samples formed 
a tight cluster; LKP could be separated from CA to 
a certain extent on components 1 and 2 (Figure 2). 
Seventy taxa were included in the first component 
which separated normal from the other two groups. 
We have illustrated the most discriminative 30 taxa to 
reduce the complexity (supplementary figure 1). 
The second component was made up of 20 taxa that 
mainly discriminate between the CA group and LKP 
group (supplementary figure 2). The relative abundances 
of top 10 discriminating taxa based on the variable 
importance scores are illustrated using the box plot 
(Figure 3). These were identified to belong to the follow
ing genera: Megaspheara, unclassified enterobacteria, 
Prevotella, Porphyromonas, Rothia and Salmonella, 
Streptococcus, and Fusobacterium (Figure 3).

We used network analysis that offered a predictive 
model to categorize the most discriminant bacterial 
taxa between healthy controls and LKP/CA groups; 
the colour of lines connecting the nodes to the centre 
indicates the extent of negative and positive correla
tions with red and blue depicting the extremes 
(Figure 4). Most of these taxa in healthy controls 
belonged to the genus Streptococcus followed by 
Rothia and Fusobacterium. The genera Megasphaera, 
unclassified Enterobacteria, and Salmonella and 
Prevotella were positively correlated with LKP group 
and Porphyromonas with CA groups.
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Accuracy of the sPLS-DA model

The sPLS-DA model was accurate in separating healthy 
controls from CA and LKP. However, due to high similarity 
in bacterial composition, the model has a low resolution to 
separate between CA and LKP (supplementary figure 3).

Discussion

In this study, we utilized 16S rRNA metagenomics on 74 
WMF samples from cohorts in the Indian subcontinent to 
elucidate the differences in the bacterial community 

dynamics in patients with oral cancer and leukoplakia 
patients with epithelial dysplasia relative to healthy con
trols. Our results illustrate that there is a shift in bacterial 
communities in WMF of leukoplakia and oral cancer 
patients which highlights the possible biomarker attributes 
of the bacteriome in WMF. Using a sparse PLS-DA (sPLS- 
DA) derived from our current 16S metagenome analysis 
we demonstrated that the WMF bacterial signatures asso
ciated with leukoplakia patients with epithelial dysplasia 
resembled more towards oral cancer bacteriome than 
those in healthy controls which tend to cluster separately 
away from these two groups. It can be speculated that 
these changes may reflect the altered microenvironment 
and surface properties of the mucosa in diseased 
conditions.

With more WMF biomarker assays for clinical/ 
commercial use in the pipeline, the collection and 
storage at ambient temperature are key steps to be 
calibrated and controlled. We have utilized a room 
temperature collection kit to eliminate the complexity 
in sample collection and storage. The use of 
a commercial kit ensured uniform collection in the 
hands of different individuals at two centres, thus 
reducing the disparity between samples. Stabilization 
of DNA in collected samples is essential for precise 
measurement of the bacteriome and comparison 
across studies. Unstabilized samples might bring in 
redundant variations by differential microbial growth 
and potential DNA degradation that may result in 

Figure 1. (a) Box plot illustrating microbial diversities between the three groups. No difference in alpha diversity was detected 
between the groups. (b) Distribution of bacterial communities across three groups at the phylum level. (c) Distribution of 
bacterial communities across three groups at the genus level.

Figure 2. sPLS-DA plot based on the relative abundance of bac
terial genera in WMF from patients in normal, LKP, and CA groups.
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a bacterial snapshot which does not reflect the origi
nal community. The room temperature stabilization 
of DNA eliminates the requirement of −20°C/−80°C 
freezers for immediate storage of WMF as well as 
expensive and cumbersome dry ice or cold pack 
shipping. Since the samples are stabilized immedi
ately, it removes the multiple freeze-thaw cycles that 
are detrimental in microbiome studies. Moreover, it 
is also helpful for the collection of samples from 
geographic locations where access to these storage 
conditions does not exist.

At the compositional level, LKP patients exhibited 
a decrease in Firmicutes and an increase in 
Bacteroidetes. This is consistent with the findings 
reported by Hu et al. on the salivary microbiome in 
Chinese population [19] and Amer et al. who 
reported lower levels of Firmicutes and higher levels 
of Bacteroidetes in oral swabs from Leukoplakia 
patients relative to healthy controls [20]. However, 
these major compositional differences at the phylum 
level tend to revert in oral cancer patients in our 
study and thus may depict a transient imbalance 

Figure 3. Box plots of the top 10 discriminative taxa based on the variable importance scores.

Figure 4. Network matrix of discriminant bacterial genera in healthy control groups identified by sparse partial least square 
regression (sPLS-DA). The network is displayed graphically as lines; the colour of line indicating the association level.
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during LKP. We also observed a decrease in the 
abundance of Actinobacteria in WMF in LKP and 
oral cancer patients, relative to controls. This has 
been reported previously in precancer and oral cancer 
swabs by Schmidt et al. and Wang et al. in oral cancer 
tissues [21,22]. Members of this phylum may be out
competed by commensal bacteria that have rapid 
growth at the relatively acidic and hypoxic tumor 
environment [22]. However, these studies have 
reported swab and tissue samples directly from the 
tumor site, whereas our samples represent a more 
generalized oral microbiome. The similarity in our 
data to the afore-mentioned studies may suggest that 
WMF may reflect the microbial composition of 
tumor surface. However, further studies are required 
that compare the salivary samples and tissue samples 
from the same patients to elucidate their association.

The majority of discriminant bacteria from the WMF 
of healthy controls relative to diseased groups belonged 
to the genus Streptococcus; which is predictable as mem
bers of this genus account for the majority of bacterial 
species in the oral cavity of healthy individuals [23]. The 
most significant discriminating genera between the LKP 
and oral cancer groups belonged to the following genera: 
Megaspheara, unclassified Enterobacteria, Prevotella, 
Porphyromonas, Granulicatella, and Salmonella. The 
increased presence of members of genus Granulicatella 
[24–26] and Porphyromonas [27,28] in oral cancer group 
is consistent with previous reports. More importantly, 
our data demonstrate that the tetrad of Salmonella, 
unclassified Enterobacteriae, Prevotella and 
Megasphaera were discriminative for LKP group and 
Megasphaera was abundant only in LKP group. Certain 
bacteria belonging to genus Salmonella, being facultative 
anaerobes, have known ability to colonize hypoxic 
tumours. An effector protein AvrA secreted by 
Salmonella into host cells has been involved in activation 
of host β-catenin signalling as well as host AKT and ERK 
pathways. These pathways are shown to be involved in 
the transformation of naive cells, i.e. to promote carci
nogenesis in mice [29,30].

Some members belonging to the group of unclas
sified Enterobacteriae were also distinctive of LKP. 
Lee et al. have also described higher levels of genus 
Escherichia that belong to the group of 
Enterobacteriae in WMF of oral ‘epithelial precursor 
lesions’ (dysplasia, hyperplasia, and hyperkeratosis) 
relative to WMF of controls [10]. The 
Enterobacteria have the largest genomes amongst 
oral bacteria and have corresponding metabolic flex
ibility compared with other resident bacteria in the 
oral cavity [31,32]. Enterobacteriae have not been so 
far linked to oral cancer; however, because of their 
large genome it is likely that other bacteria with 
smaller genomes have less metabolic flexibility and 
may be at a disadvantage to Enterobacteriae in an 
inflammatory tumour milieu; further investigations 

are needed to identify and characterize this relatively 
complex group of organisms in the oral cavity [31].

The most discriminative taxa in WMF of LKP 
patients belonged to the genus Megasphaera. 
Members of this genus include gram-negative coc
coid-shaped obligate anaerobes who are commensals 
in the oral cavity and belong to phylum Firmicutes 
and class Negativicutes. Increase in the abundance of 
this group had been reported to be associated with 
dental caries [33] and with bacterial vaginosis [34]. 
Interestingly, Megasphaera, as well as other bacteria 
involved in bacterial vaginosis, have been speculated 
to play a role in promoting uterine cervical dysplasia 
and cervical intraepithelial neoplasia [30,35,36]. 
While none of these above-mentioned studies can 
establish the nature of the relationship between 
Megasphaera and dysplasia, members of this genus 
may exert a pro-inflammatory effect. This contention 
is also consistent with many studies that reported the 
extent and levels of inflammation histologically in 
oral epithelial dysplasia to be positively correlated 
with the progression of dysplasia [37–40]. However, 
further investigation is needed to establish the role of 
these pro-inflammatory bacteria in the progression of 
oral cancer. If these results are established, they sug
gest a new paradigm for the relationship between 
inflammation and dysplasia.

We did not find any difference in diversity 
indices for both the richness and the evenness of 
bacterial communities among the three groups. 
However, Lee et al. [10] and Guerrero-Preston 
et al. [41] reported a lower diversity in WMF of 
head and neck cancer patients when compared to 
controls, whereas Wolf et al. reported higher diver
sity in cancer patients [42]. Interestingly, another 
study reported higher diversity in late-stage oral 
cancer when compared to controls [43]. Such dis
parities in diversity among reported studies might 
be due to differences in stages of cancer included in 
particular studies or due to differences in sequen
cing depths [8]. Even though few studies have 
investigated the communities in WMF and oral 
rinses of oral cancer patients, it should be acknowl
edged that WMF samples represent the biome of 
the oral cavity as a whole and hence could be 
affected by periodontal or mucosal diseases, or 
dental caries.

Supervised analytic techniques which are suitable 
in handling such extremely complex and sparse data 
have rarely been used in microbiome data analysis 
until recently [44]. ‘Variable’ selection is inevitable to 
select relevant information and better characteriza
tion of the study groups in high throughput biologi
cal data. Using a supervised PLS-DA we illustrate that 
bacteriome composition in healthy controls was dis
tinctive while oral cancer and leukoplakia patients 
shared a relatively similar bacteriome profile.
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A limitation of this study is the modest sample 
size, which may be the reason for the average perfor
mance on AUROC plot. However, despite the sample 
numbers, the model works well in differentiating the 
control group from the diseased groups. A further 
limitation is the lack of quantitative information on 
other aspects of oral habitat, amongst which period
ontal status is likely to be a critical confounder [45]. 
Our data refer only to two populations from the 
Indian subcontinent, in which the incidence of both 
oral leukoplakia and oral cancer is amongst the high
est in the world, predominantly due to smokeless 
tobacco and areca nut habits: the nature of the micro
biome may be substantially different in Western 
populations in which heavy use of alcohol, smoked 
tobacco, and human papillomavirus infections play 
a larger aetiological role.

Conclusion

Oral cancer is often considered a complex disease, con
sequential to an interdependent series of host–environ
ment interactions. Thus, it is highly unlikely that oral 
cancer can be detected with high specificity and sensitivity 
with a single biomarker. Our study confirms that 
a dysbiotic WMF bacteriome is associated with oral leu
koplakia and that this resembles oral cancer more than 
normal healthy controls. Compositional shifts of WMF 
bacteriome may, therefore, be valuable in predicting the 
risk of malignant transformation. Longitudinal studies 
would be essential to test such a hypothesis.
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