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Abstract

Background: Horizontal gene transfer is the main source of adaptability for bacteria, through which genes are
obtained from different sources including bacteria, archaea, viruses, and eukaryotes. This process promotes the rapid
spread of genetic information across lineages, typically in the form of clusters of genes referred to as genomic islands
(GIs). Different types of GIs exist, and are often classified by the content of their cargo genes or their means of
integration and mobility. While various computational methods have been devised to detect different types of GIs, no
single method is capable of detecting all types.

Results: We propose a method, which we call Shutter Island, that uses a deep learning model (Inception V3, widely
used in computer vision) to detect genomic islands. The intrinsic value of deep learning methods lies in their ability to
generalize. Via a technique called transfer learning, the model is pre-trained on a large generic dataset and then
re-trained on images that we generate to represent genomic fragments. We demonstrate that this image-based
approach generalizes better than the existing tools.

Conclusions: We used a deep neural network and an image-based approach to detect the most out of the correct GI
predictions made by other tools, in addition to making novel GI predictions. The fact that the deep neural network
was re-trained on only a limited number of GI datasets and then successfully generalized indicates that this approach
could be applied to other problems in the field where data is still lacking or hard to curate.
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Background
Interest in genomic islands surfaced in the 1990s, when
some Escherichia coli strains were found to have exclu-
sive virulence genes that were not found in other strains
[1, 2]. These genes were thought to have been acquired
horizontally and were referred to as pathogenicity islands
(PAIs). Further investigations showed that other types of
islands carrying other types of genes exist, giving rise to
names such as “secretion islands,” “resistance islands,” and
“metabolic islands,” since the genes carried by these islands

*Correspondence: rida@uchicago.edu
1Department of Computer Science, University of Chicago, S. Ellis Ave., 60637
Chicago, USA
Full list of author information is available at the end of the article

could promote not only virulence but also symbiosis or
catabolic pathways [3–5]. Aside from functionality, diffe-
rent names are also assigned to islands on the basis of
theirmobility. SomeGIs aremobile and can thusmove them-
selves to new hosts, such as conjugative transposons, inte-
grative and conjugative elements (ICEs), and prophages,
whereas other GIs lose their mobility [6, 7]. Prophages
are viruses that infect bacteria and then remain inside
the cell and replicate with the genome [8]. They
are also referred to as bacteriophages, and constitute
the majority of viruses, outnumbering bacteria by a
factor of ten to one [9, 10]. A genomic island (GI) then
is a cluster of genes that is typically between 10 kbp (Kilo
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base pairs) and 200 kbp in length and has been transferred
horizontally [11].
Horizontal gene transfer (HGT) may contribute to any-

where between 1.6% and 32.6% of a bacterial genome [12].
This percentage implies that a major factor in the variabil-
ity across bacterial species and clades can be attributed
to GIs [13]. Thus, GIs impose an additional challenge to
our ability to reconstruct the evolutionary tree of life. The
identification of GIs is also important for the advancement
of medicine, by helping develop new vaccines and antibi-
otics [14] or cancer therapies [15]. For example, knowing
that PAIs can carry many pathogenicity genes and vir-
ulence genes [16–18], researchers found that potential
vaccine candidates resided within them [19].
We propose that the problem of predicting genomic

islands computationally is an excellent candidate for
transfer learning on visual representations, which allevi-
ates the problem of the extreme limitation of available
ground-truth datasets and enables the use of powerful
deep learning technologies.We present a method (Shutter
Island) that uses deep neural networks, previously trained
on computer vision tasks, for the detection of genomic
islands. Using a manually verified reference dataset, Shut-
ter Island proved to be superior to the existing tools in
generalizing over the union of their predicted results.
Moreover, Shutter Island makes novel predictions that
show GI features.

Related work
Methods proposed for the prediction of GIs fall under
two categories: those that rely on sequence composition
analysis and those that rely on comparative genomics. We
present an overview of some of these methods next.
Islander works by first identifying tRNA genes and

their fragments as endpoints to candidate islands, then
disqualifying candidates through a set of filters such as
sequence length and the absence of an integrase gene [3].
IslandPick identifies GIs by comparing the query genome
with a set of related genomes selected by an evolution-
ary distance function [20]. It uses Blast and Mauve for
the genome alignment. The outcome heavily depends on
the choice of reference genomes selected. Phaster uses
BLAST against a phage-specific sequence database (the
NCBI phage database and the database developed by Sriv-
idhya et al. [21]), followed by DBSCAN [22] to cluster the
hits into prophage regions. IslandPath-DIMOB considers
a genomic fragment to be an island if it contains at least
one mobility gene, in addition to 8 or more consecutive
open reading frames with dinucleotide bias [23]. SIGI-
HMM uses the Viterbi algorithm to analyze each gene’s
most probable codon usage states, comparing it against
codon tables representing microbial donors or highly
expressed genes, and classifying it as native or non-native
accordingly [24]. PAI-IDA uses sequence composition fea-

tures, namely, GC content, codon usage, and dinucleotide
frequency, to detect GIs [25]. Alien Hunter uses k-
mers of variable length to perform its analysis, assigning
more weight to longer k-mers [26]. Phispy uses ran-
dom forests to classify genomic windows based on fea-
tures that include transcription strand directionality, cus-
tomized AT and GC skew, protein length, and abundance
of phage words [8]. Phage Finder classifies 10 kbpwindows
with more than 3 bacteriophage-related proteins as GIs
[27]. IslandViewer is an ensemble method that combines
the results of three other tools—SIGI-HMM, IslandPath-
DIMOB, and IslandPick—into one web resource [28].

Results
No reliable GI dataset exists that can validate the pre-
dictions of computational methods [26]. Although several
databases exist, they usually cover only specific types of
GIs [Islander, PAIDB, ICEberg], which would flag as false
positives any extra predictions made by those tools. More-
over, as Nelson et al. state, “The reliability of the databases
has not been verified by any convincing biological evi-
dence” [6].We validate the quality of the predictions made
by our method first by using metrics reported in previous
studies, then by introducing novel metrics and presenting
some qualitative assessments of the predictions.
In Table 1, we present the total number of GI predictions

made by each tool over the entire testing dataset, which
consists of 34 genomes and is described in more detail in
the “Methods” section.
We can see from Table 1 that Alien Hunter calls the

most GIs, with almost double the amount called by Shut-
ter Island and IslandViewer if measured by base pair
count, and even more if measured by island count. How-
ever, it is worth mentioning that one island predicted by
one tool could be predicted as several islands by another,
partly due to the different length filters the tools apply.
The number of predictions made by Shutter Island is

Table 1 The number of islands and their total base pair value
predicted by each tool over the testing genomes dataset

Tool Number of Islands Number of Base Pairs

ShutterIsland 649 10,700,492

AlienHunter 1919 19,561,593

IslandViewer 701 10,571,974

IslandPath-Dimob 339 6,871,312

Phaster 109 4,334,225

Phispy 96 3,979,173

PhageFinder 85 3,656,950

IslandPick 362 3,020,733

SIGI-HMM 359 2,543,145

Islander 50 2,019,610
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close to that made by IslandViewer, which is an ensemble
method combining four other tools’ predictions.

Validation following previously accepted methods
In this section, we present a comparison of the tools’ per-
formance following definitions accepted by the scientific
community and accepted as part of an earlier study intro-
ducing Phispy [8]. To distinguish the results presented in
this section, we use Phispy as a pre-fix to the names of
the metrics used. Namely, We refer to the metrics used as
Phispy True Positives (PTP), Phispy False Positives (PFP),
and Phispy False Negatives (PFN). Note that Phispy did not
define true negatives. A true positive can be verified by
the presence of phage-related genes, and a false positive
by their absence. But while a region that exhibits GI fea-
tures but is not predicted as a GI can be defined as a false
negative, regions not showing any GI features cannot be
labeled as true negatives, due to our limited understand-
ing of GI features. Even the task of deciding the region size
would not be trivial.
Table 2 was constructed with the following definitions:

• A Phispy True Positive is a region predicted as a GI
and:

– Contains six phage-related genes, or
– With at least 50% of its genes having unknown

functions.

• A Phispy False Positive is a region predicted as a GI
but does not satisfy the above conditions.

• A Phispy False Negative is a region with six
consecutive phage-related genes that is not predicted
as a GI.

We followed a similar approach as the one used by
Phaster to determine the presence of phage-related genes,

Table 2 True positive rate (Sensitivity) and the percentage of
Phispy False Positives, as defined in the Phispy study, for
predictions made by each tool over the entire testing dataset,
comprised of 34 genomes

Tool Sensitivity (%) False positives (%)

ShutterIsland 92.4 29

AlienHunter 91.8 50.7

IslandViewer 88.2 30

IslandPath-Dimob 80.9 2.7

Phaster 73.2 0

Phispy 68.6 0

PhageFinder 65.9 0

IslandPick 62.5 44.8

SIGI-HMM 66.4 30.6

Islander 31.8 0

which is looking for certain keywords present in the genes’
annotations. The set of relevant keywords can be found
in the repository linked to at the end of the manuscript.
Throughout the remainder of the paper, we refer to genes
with annotations that contain such keywords as GI fea-
tures.
Using the Phispy metrics defined earlier, we present the

true positive rate (sensitivity) and the percentage of false
positive predictions in Table 2.
Note that While some tools report 0 Phispy False Pos-

itives, they also score significantly lower on the true pos-
itive rate metric, the reason being that these tools make
much fewer predictions in general.

Validation using novel metrics
In this section, we present more general metrics to per-
form a more objective cross-tool comparison. Since every
tool predicts a subset of all GIs, we capture the coverage
of each tool across other tools’ predictions in Table 3. We
omit the tools we were not able to run, and use the default
parameters for all the listed tools.
Table 3 shows that Alien Hunter’s predictions over-

lap the most with those made by other tools, which is
expected given that it has the highest base-pair cover-
age. Shutter Island comes next and overlaps the most with
three of the presented tools’ predictions. Note that while
Shutter Island was trained only on the intersection of the
predictions made by Phispy and IslandViewer, it general-
izes and scores the highest overlap with predictions made
by Phage Finder and Phaster.
Since some tools make many more predictions than

do others, we used the GI features mentioned earlier to
get a better idea about the quality of these overlapping
predictions. In Table 4, we present the percentage of over-
lapping predictions that show GI features, followed by
the percentage of non-overlapping predictions showing
GI features. Tools that use these features to perform their
classifications were omitted. We can see that on aver-
age, Shutter Island’s overlapping predictions include GI
features the most. Shutter Island also misses the least
predictions made by other tools that show GI features.
Finally, Shutter Island has the most predictions show-
ing GI features that are not being predicted by other
tools.
Table 5 shows each tool’s novel predictions that

do not overlap with any of other tools’, in addition
to the percentage of those predictions with GI fea-
tures. Alien Hunter’s unique predictions almost out-
number every other tool’s total predictions, and average
8 kbp in length. Shutter Island’s unique predictions
have an average length of 14 kbp. Applying the
same length cutoff threshold (8 kbp) on Alien Hunter’s
unique predictions reduces them to 301 islands with
a total of 3,880,000 bp, which is on par with those
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Table 3 Cross-tool comparison of GI results: The percentage of GIs predicted over the testing dataset Target, that overlap with
predictions made by other tools (Predictor)

Target ShutterIsland IslandViewer Phispy PhageFinder Islander Phaster AlienHunter IslandPick Dimob SIGI

Predictor

ShutterIsland N/A 45.7% 97.8% 99.1% 67.4% 92.9% 27% 20.3% 54% 28.8%

IslandViewer 42.8% N/A 89.3% 89.2% N/A 82.1% 39.4% N/A N/A N/A

Phispy 29.1% 23.7% N/A 98.3% 52.8% 79.3% 9% 10.8% 29.1% 11.5%

PhageFinder 28.1% 23.6% 92.8% N/A 50.4% 79.8% 9% 10.1% 29/3% 12%

Islander 9.2% 21.2% 23.7% 25.7% N/A 22.2% 8.3% 15.5% 22.9% 17%

Phaster 26.4% 22.5% 82.4% 86% 44.5% N/A 10.4% 11.3% 27.5% 12.7%

AlienHunter 56.8% 78.9% 87.2% 86.5% 98% 87.2% N/A 67.1% 82.8% 92.6%

IslandPick 10.6% 43.3% 25.4% 28.7% 51.7% 29% 13.8% N/A 28.4% 31.2%

Dimob 34.9% 70.5% 86.1% 85.2% 87.8% 76.9% 25.7% 29.5% N/A 50.3%

SIGI 17.2% 47.7% 34.4% 31.6% 63.2% 27.8% 22.6% 30.9% 44.8% N/A

made by Shutter Island. However, a larger percentage
of unique predictions made by Shutter Island exhibit GI
features.
Next, we show the receiver operating characteristic

(ROC) curve of our classifier in Fig. 1. The construc-
tion of a ROC curve requires a definition of true negative
predictions. Since our classifier performs its predictions
on every gene in a genome, we consider the four genes
flanking each side of every query gene, and introduce the
following definitions. A region is:

• A true positive, if predicted as a GI and:

– Includes a phage-related gene, or
– Overlaps with a prediction made by another

tool.

• A false positive, if predicted as a GI but does not
satisfy the above conditions.

• A true negative, if not predicted as a GI and does not
include a phage-related gene.

• A false negative , if not predicted as a GI but includes
a phage-related gene.

Qualitative assessment
To qualitatively assess the unique predictions made by
Shutter Island, we present snapshots of the cargo genes
typically found in these predicted regions in Fig. 2, which
shows that a significant number of the included genes
carry GI related annotations.
We also present the most common gene annotations

found in the unique predictions made by Shutter Island
and Alien Hunter in Fig. 3. We focus on these tools since
they are the ones with a significant number of unique pre-
dictions to perform the analysis on. We notice that the
most frequent genes that are common to these predicted
regions are either of unknown functionality or are GI-
related, which adds to our confidence in these predictions.

Discussion
We presented a new method, called Shutter Island, which
demonstrates the effectiveness of training a convolutional
neural network on visual representations of genomic
fragments to identify genomic islands. In addition to
using powerful technologies, our approach may add an
extra advantage over whole-genome alignment methods

Table 4 Quality of overlapping predictions: The percentage of GIs predicted over the testing dataset by the Target tool, that overlap
with predictions made by other tools (Predictor), that include GI features | The percentage of predictions made by the Target tool but
not the Predictor, that include GI features

Target ShutterIsland IslandViewer AlienHunter IslandPick SIGI Average

Predictor

ShutterIsland N/A 91% | 64% 87% | 47% 89% | 31% 87% | 36% 89% | 45%

IslandViewer 94% | 67% N/A 89% | 45% 80% | n/a 87% | n/a 88% | 56%

AlienHunter 74% | 70% 66% | 60% N/A 73% | 21% 71% | 42% 71% | 48%

IslandPick 69% | 76% 34% | 86% 49% | 53% N/A 54% | 44% 52% | 65%

SIGI 67% | 75% 45% | 77% 48% | 51% 50% | 35% N/A 53% | 60%
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Table 5 The total number and base-pair count of unique
predictions made by each tool over the testing genomes dataset,
and the percentage of those predictions showing GI features

Tool Unique GIs
(Count)

Unique GIs
(Base pairs)

Unique GIs
(GI features)

ShutterIsland 280 3,647,377 65%

AlienHunter 1155 9,583,497 40%

Phaster 2 30,814 0%

Phispy 1 26,890 100%

because performing the alignment over each gene may
provide a higher local resolution and aid in resisting evolu-
tionary effects such as recombination and others that may
have happened after the integration and that usually affect
GI detection efforts.
One challenge in assessing GI prediction is getting pre-

cise endpoints for predicted islands. Since different tools
report a different number of islands owing to the nature of
the features they use, where one island could be reported
as many or vice versa, we considered a tool to predict
another’s islands if any of its predictions overlap with
the other tool’s predictions. We counted the percentage
of base pair coverage of that other tool as represented
by its predicted endpoints. This allowed us to compare
overlapping islands predicted by different tools even if
their coordinates did not match.

Note that when assessing the tools’ predictions, our
definitions for the statistical metrics differ from those
proposed in the Phispy study: where they rely on the
presence/absence of at least six phage related genes,
we realize that the available datasets are much larger
than what was accessible at the time of their publica-
tion, and thus the number six that was claimed to have
been determined empirically may not be relevant any-
more. We argue that if a region is suspected to be a
GI, the mere presence of a phage related gene in that
region adds to the confidence in its prediction as part
of a GI. Moreover, we find that the database used by
the study to determine phage functionality may be out-
dated, and we thus resort to certain keywords in the
gene annotations generated by our system PATRIC to
determine functionality. This is similar to Phaster’s vali-
dation method, whereby the presence of certain keywords
(e.g, caspid) is used to verify predictions made by the
tool. To identify these keywords, we scoured the liter-
ature and identified certain gene annotations that are
related to GIs. Such annotations of gene identity are either
directly curated by humans or reflect human assessment
through exemplar-based computational propagation. We
constructed a standard vocabulary of the GI-related key-
words that were also in agreement with the more exten-
sive list of keywords used by Phaster for the same pur-
pose.

Fig. 1 ROC curve for our genomic island binary classifier. The ROC curve plots the true positive rate as a function of the false positive rate. The
greater the area under the curve is (the closer it is to the ideal top left corner point), the better
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Fig. 2 Examples of regions uniquely predicted by Shutter Island

Fig. 3Most common gene annotations found in the unique predictions made by Shutter Island and Alien Hunter, with the percentage of unique
predictions they reside in
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No single tool is able to detect all GIs in all bacterial
genomes. Methods that narrow their search to GIs that
integrate under certain conditions, such as into tRNAs,
miss out on the other GIs. Similarly, not all GI regions
exhibit atypical nucleotide content [30]. Evolutionary
events such as gene loss and genomic rearrangement [5]
present more challenges. For example, the presence of
highly expressed genes or having closely related island
host and donor might lead to false negatives [14]. Tools
that use windows face difficulty in adjusting their size:
small sizes lead to large statistical fluctuation, whereas
larger sizes result in low resolution [31].
For comparative genomics methods, the outcomes

depend strongly on the choice of genomes used in the
alignment process. Very distant genomes may lead to false
positives, and very close genomes may lead to false neg-
atives. In general, the number of reported GIs may differ
across tools, because one large GI is often reported as a
few smaller ones or vice versa, making it harder to detect
end points and boundaries accurately. The lack of exper-
imentally verified ground-truth data-sets spanning the
different types of GIs makes point-to-point comparison
across the tools extremely challenging. Moreover, differ-
ent tools follow different custom-defined metrics to judge
their results, typically by using a threshold representing
the minimum values of features (e.g., number of phage
words) present in a region to be considered a GI, which
adds to the complications of validating GI predictions and
comparing tools’ performances.
Our initial inspiration for representing genome features

as images came from observing how human annotators
work. These experts often examine a graphical compara-
tive genomics interface for a long time before they decide
on the gene identity. A critical piece of information they
rely on is how the focus gene compares with its homologs
in related genomes. This information is cumbersome to
represent in tabular data because (1) explicit all-to-all
comparison is computationally expensive; (2) the compar-
isons need to be done at both individual gene and cluster
levels including coordinates, length, and neighborhood
similarities; and (3) human experts integrate all these dif-
ferent levels of information with an intuition for fuzzy
comparison, something that is hard to replicate in tabular
learning without additional parameterization or augmen-
tation. Representing genomic features as images mitigates
all three issues.
An additional benefit of learning from images is the

ability to leverage the state-of-the-art deep learning mod-
els. The idea of transforming data from a tabular to a
visual representation found success in different domains
[32–34]. In another study, we used the same method to
detect operons in bacterial genomes, and outperformed
the previous state-of-the-art methods especially in identi-
fying the predicted operon endpoints [35]. Applying such

transformations presents the underlying information in a
way that convolutional neural networks may learn more
easily from. We hypothesize that this emerging trend of
representing data with images will continue until model
tuning and large-scale pre-training in scientific domains
start to catch up with those in computer vision.

Conclusions
We demonstrate that the problem of predicting genomic
islands, which suffers from extremely limited ground-
truth datasets, can benefit greatly from transfer learning.
By using visual representations of genomic fragments,
our method (Shutter Island) leverages deep neural net-
works previously trained on computer vision tasks. Shut-
ter Island demonstrated superiority in capturing the union
of the predictions made by other tools, in addition to
making novel predictions that exhibit GI features.

Methods
Datasets
PATRIC (the Pathosystems Resource Integration Cen-
ter) is a bacterial bioinformatics resource center that
we are part of (https://www.patricbrc.org) [29]. It pro-
vides researchers with the tools necessary to ana-
lyze their private data and to compare it with public
data. PATRIC recently surpassed the 200,000 publicly
sequenced genomes mark, ensuring that enough genomes
are available for effective comparative genomics stud-
ies. For our training data, we used the set of refer-
ence+representative genomes found on PATRIC. For each
genome, our program produced an image for every non-
overlapping 10 kbp window. A balanced dataset was then
curated from the total set of images created. Since this
is a supervised learning approach and our goal is to gen-
eralize over the tools’ predictions and beyond, we used
Phispy and IslandViewer’s predictions to label the images
that belong to candidate islands. IslandViewer captures
the predictions of different methods, and Phispy captures
different GI features. To increase our confidence in the
generated labels, we labeled a genomic fragment as a GI
only if it was predicted as a GI by both of these tools.
To make predictions over novel genomes, our method

generates an image for every gene in the genome. Each
image is then classified as either part of a GI or not. This
process generates a label for every gene in the genome. A
length filter of 8 kbp is then applied, so that every group
of genes labeled as part of a GI that spans more than 8 kbp
is reported as a single GI.
Since no reliable benchmark is available, we used the set

of genomes mentioned in Phispy to test our classifier. The
set consists of 41 bacterial genomes, and the authors of
Phispy reported that the GIs in these genomes have been
manually verified [8]. Some of the tools used in the com-
parison have not been updated for a while, but most of the

https://www.patricbrc.org
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tools had predictions made over the genomes in this test-
ing set. We discarded the genomes for which not all the
tools reported predictions over, or that were part of the
training set used to train our classifier, and ended up with
a total of 34 genomes, listed in the repository linked to at
the end of the manuscript.

Feature encoding using images
We present some of the most prominent features of
genomic islands, listed by decreasing order of importance:
[1, 36].

• One of the most important features of GIs is that they
are sporadically distributed; that is, they are found
only in certain isolates from a given strain or species.

• Since GIs are transferred horizontally across lineages
and since different bacterial lineages have different
sequence compositions, measures such as GC content
or, more generally, oligonucleotides of various
lengths (usually 2–9 nucleotides) are used [26, 37, 38].
Codon usage is a well-known metric, which is the
special case of oligonucleotides of length 3.

• Since the probability of having outlying
measurements decreases as the size of the region
increases, tools usually use cut-off values for the
minimum size of a region (or gene cluster) to be
identified as a GI.

• The presence of certain genes (e.g., integrases,
transposases, phage genes) is associated with GIs [16].

• In addition to the size of the cluster, evidence from
mycobacterial phages [39] suggests that the size of
the genes themselves is shorter in GIs than in the rest
of the bacterial genome. Different theories suggest
that this may confer mobility or packaging or
replication advantages [8].

• Some GIs integrate specifically into genomic sites
such as tRNA genes, introducing flanking direct
repeats. Thus, the presence of such sites and repeats
may be used as evidence for the presence of GIs
[40–42].

Other research suggests that the directionality of the tran-
scriptional strand and the protein length are key features
in GI prediction [8]. The available tools focus on one or
more of the mentioned features.
PATRIC provides a compare region viewer service,

that aligns a query gene against other related genes,
and presents the pileups along with their neighborhoods
graphically, allowing users to visualize the genomic areas
of interest. To ensure efficiency and consistency, we
implemented an offline version of the visualization part.
To generate the images, first the Compare Region ser-
vice is called via PATRIC’s command line interface. The
call accepts parameters such as the query gene, region
size, the set of genomes to be used for alignment, and the

number of genomes to be displayed. We chose a region
size of 10,000 base pairs, to be aligned against 20 genomes,
using the set of representative and reference genomes
found on PATRIC. The call to the Compare Region ser-
vice returns information that includes the location, family,
direction, and size of every gene in the region. This infor-
mation is then transformed into the position, color, and
size of the arrow representing each gene in the image.
These steps are explained further in the repository linked
to at the end of the manuscript.
In the produced images, genomic islands appear as gaps

in alignment as opposed to conserved regions. Figure 4
shows sample visualizations of different genomic frag-
ments belonging to the two classes. Each gene is rep-
resented as an arrow, scaled to capture its size and
strand directionality. Colors represent functionality. The
red arrow is reserved for the query gene, which is placed
in the middle of the first row, and at which the alignment
with the rest of the genomes is anchored. Some colors are
reserved for key genes: green for mobility genes, yellow
for tRNA genes, and blue for phage related genes. By using
these color-coded arrows of various sizes, the images cap-
ture the protein length, functionality, strand directionality,
and the sporadic distribution of islands. Figure 4a and b
are examples of a query genome with a non-conserved
neighborhood. The focus gene lacks alignments in general
or is aligned against genes with different neighborhoods
than the query genome. In contrast, Fig. 4c and d show
more conserved regions, which are what we expect to see
in the absence of GIs (labelled as continents in the image).

Transfer learning
This kind of visual representation makes it easier to lever-
age the powerful machine learning (ML) technologies that
have become the state of art in solving computer vision
problems. Deep learning is the process of training neu-
ral networks with many hidden layers. The depth of these
networks allows them to learn more complex patterns and
higher-order relationships, at the cost of being more com-
putationally expensive and requiring more data to work
effectively. So, while PATRIC provides a lot of genomic
data, the challenge comes down to building a meaningful
training dataset. The databases available are still limited in
size and specific in content, which in turn limits the ability
even for advanced and deep models to learn and general-
ize well. To avoid over-fitting, we applied transfer learning
[43], by using Google’s Inception V3 neural network archi-
tecture that has been previously trained on ImageNet [44].
Inception V3 is a 48-layer-deep convolutional neural net-
work. Training such a deep network on a limited dataset
such as the one available for GIs is unlikely to produce
good results. The idea behind transfer learning is that a
model trained on ImageNet is better than an untrained
model initialized with random weights at visual recogni-
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Fig. 4 Examples of images generated using the compare region viewer. Each arrow represents a gene color coded to match its functionality. The
first row is the genome neighborhood of the focus gene (red), and the subsequent rows represent anchored regions from similar genomes sorted
by their phylogenetic distances to the query genome

tion and feature extraction. By removing the top layer of
the pre-trained model and training a new one on the GI
dataset, the model can apply the knowledge learned using
the much more extensive dataset towards the new task.
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