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Abstract

Cognitive processes, such as the generation of language, can be mapped onto the brain

using fMRI. These maps can in turn be used for decoding the respective processes from the

brain activation patterns. Given individual variations in brain anatomy and organization, ana-

lyzes on the level of the single person are important to improve our understanding of how

cognitive processes correspond to patterns of brain activity. They also allow to advance clin-

ical applications of fMRI, because in the clinical setting making diagnoses for single cases is

imperative. In the present study, we used mental imagery tasks to investigate language pro-

duction, motor functions, visuo-spatial memory, face processing, and resting-state activity

in a single person. Analysis methods were based on similarity metrics, including correlations

between training and test data, as well as correlations with maps from the NeuroSynth

meta-analysis. The goal was to make accurate predictions regarding the cognitive domain

(e.g. language) and the specific content (e.g. animal names) of single 30-second blocks.

Four teams used the dataset, each blinded regarding the true labels of the test data. Results

showed that the similarity metrics allowed to reach the highest degrees of accuracy when

predicting the cognitive domain of a block. Overall, 23 of the 25 test blocks could be correctly

predicted by three of the four teams. Excluding the unspecific rest condition, up to 10 out of

20 blocks could be successfully decoded regarding their specific content. The study shows

how the information contained in a single fMRI session and in each of its single blocks can

allow to draw inferences about the cognitive processes an individual engaged in. Simple

methods like correlations between blocks of fMRI data can serve as highly reliable

approaches for cognitive decoding. We discuss the implications of our results in the context

of clinical fMRI applications, with a focus on how decoding can support functional

localization.
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Introduction

Paul Broca, whose work lay the foundations for the localization of cognitive functions in the

brain, speculated that “the large regions of the mind correspond to the large regions of the brain”
(“les grandes régions de l’esprit correspondent aux grandes régions du cerveau” in the French

original) [1]. Today, it is well established that broad cognitive domains, such as language,

memory or motor functions, can be reliably mapped onto particular regions of an individual’s

brain [2]. Although there is no one-to-one mapping between brain region and cognitive pro-

cess [3], functional localization has proven to be of direct practical use [4–5]. Functional mag-

netic resonance imaging (fMRI) is one non-invasive method allowing to localize brain

functions with limited but nevertheless remarkable detail [6]. In the clinical context, fMRI

plays an important role for planning surgery in patients with tumors or epilepsies, as it aids the

understanding of which parts of the brain need to be spared in order to preserve sensory,

motor or cognitive abilities [7].

To be useful for clinical diagnostics and prognostics, fMRI data must be interpretable on

the level of the individual case [8]. Because in group studies idiosyncratic activity patterns

can be obscured by averaging, the precise mapping of brain function in a single person has

become a vanguard of fMRI research [9–11]. These studies are important to deepen our

understanding of how the brain works, because the functional organization of brains

becomes more heterogeneous on a finer anatomical scale [9,12]. Also, when looking at

increasingly smaller ‘regions of the mind’, such as the neural correlates of specific words

instead of language in general, averaging on the group level can obscure the fine spatial infor-

mation which allows to differentiate these contents in the individual brain [10]. Single partic-

ipant studies can also provide valuable impulses for the use of fMRI as a clinical tool. This

includes the possibility to assess how stable results are within a single participant, and how

much data should be collected to provide a reliable description of the individual’s functional

brain organization [9,11]. While the group average is a composite of many individuals, the

activity map of the individual is likewise a composite of an underlying time course, consist-

ing of many separate observations of brain activity while performing a task. Variability over

the course of an fMRI session can be expected due to factors such as head movement, fatigue,

increasing familiarity with the task and changes in cognitive strategies [13–14]. The neurora-

diologist’s interpretation of a single patient’s fMRI might therefore be substantially

improved, if she knows how the patient’s cognitive states changed over time and how this

relates to changes in brain activity patterns. This is particularly important if no overt behav-

ior is collected during the fMRI task. For example, in a language production task, patients

might be asked to produce words from categories such as “fruits” or “animals” in a pre-

defined period of time [15]. Because overt articulation of words produces movement arti-

facts, the patients might be asked to use only internal speech. Without behavioral output

from the patient, interpretation of fMRI results is limited by the uncertainty about whether

the task was performed in the expected manner.

A possible solution might be the decoding of fMRI data, in order to learn what the patient

was thinking at each point in time. Decoding refers to an inference from brain activity pat-

terns to the cognitive processes that accompanied them [16–17]. In clinical practice, decoding

has proven to be highly valuable for communicating with unresponsive patients [18–20].

However, decoding methods are usually not being used in presurgical planning, where fMRI

is used to learn how cognitive processes can be mapped onto the brain (i.e. encoding instead

of decoding; [21]).

When interpreting an activity map, decoding might nevertheless be useful to better under-

stand how the patient performed the task: Comparing different observations within-patient
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might allow to assess the stability of task performance during the fMRI session, while compari-

sons with healthy controls allow to assess if the task was performed in a prototypical way [8].

The present fMRI study aimed at decoding the domains of language, motor functions,

visuo-spatial memory, face processing and task-free resting in a single individual. Each of

these task domains is relevant for presurgical planning and can be used clinically in the indi-

vidual patient (language [15]; motor [22]; visuo-spatial [23]; faces [24]). We used four mental

imagery tasks and one rest task, where the verbal instruction to engage one of the above men-

tioned functions was the only external input given to the participant, and the fMRI data was

the only output the participant produced.

In order to evaluate how well decoding works at the level of individual fMRI blocks, we first

analyzed a set of training data to learn how predictions of each cognitive domain could be opti-

mized using simple similarity metrics. Then, test blocks were decoded regarding their cogni-

tive domains as well as their specific contents. The study was carried out as part of a graduate

course in psychology at Bielefeld University, with four groups of students making predictions

for the test data.

Methods

Participant

Data was collected from one healthy, 25 years old, male psychology student. The participant

gave written informed consent, including written informed consent to have his brain data pub-

lished online. The study was approved by the ethics committee of Bielefeld University (ethics

statement 2016–171).

Mental imagery instructions

For the four cognitive domains of language, sensory-motor skills, visuo-spatial memory and

visual processing of faces, imagery instructions were adapted from the literature: For language,

a semantic verbal fluency task was used, in which the participant had to generate as many

words belonging to a certain superordinate class as possible (e.g. animals, fruits [15]). To

engage motor imagery, the participant was instructed to perform different sports (e.g. tennis,

soccer [18]). To test visuo-spatial memory, the participant was instructed to imagine walking

to different familiar locations (e.g. school, church [23]). To engage face processing mecha-

nisms, the participant was asked to imagine famous or familiar faces (e.g. actors, friends [25]).

During time periods of resting, the participant was told to engage in a state of relaxed wakeful-

ness. The main instructions given to the participant are outlined in S1 File.

For each task, we tried to derive predictions about the brain areas which should be active

when engaging in the respective cognitive process, based on the literature. The predictions for

each task are summarized in Table 1.

Study design

We acquired three runs of fMRI data, with 25 blocks per run, and a block length of 30 seconds.

Within each run, there were five blocks per condition and the order of the five conditions was

counterbalanced, so that they followed each other equally often. This was achieved using a sim-

plified version of a serially balanced sequence [28]. The full study design can be found in S2

File.

During the experiment, the participant lay in the MRI scanner with eyes closed. Instruc-

tions to start thinking about one of the four categories and the rest condition were given by

short verbal cues which were agreed upon beforehand (e.g. “language–fruits”). Contents of the
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blocks were customized in accordance with the participant’s preferences, whenever necessary

(e.g. “spatial–university” will not apply to every participant’s city). Audibility was ensured by

using an acquisition protocol with 1.2 second pauses between volumes, during which the

instructions were given.

Data acquisition

MRI data were collected using a 3T Siemens Verio scanner. A high-resolution MPRAGE struc-

tural scan was acquired with 192 sagittal slices (TR = 1900 msec, TE = 2.5 msec, 0.8mm slice

thickness, 0.75x0.75 in-plane resolution), using a 32-channel head coil. Functional echo-planar

images (EPI) were acquired with 21 axial slices oriented along the rostrum and splenium of

the corpus callosum (slice thickness of 5 mm, in-plane resolution 2.4x2.4 mm), using a

12-channel head coil. To allow for audible instructions during scanning, a sparse temporal

sampling strategy was used (TR = 3000ms with 1800ms acquisition time and 1200ms pause

between acquisitions). Excluding two dummy scans, a total of 253 volumes were collected for

each run. The full raw data are available on OpenNeuro (https://openneuro.org/datasets/

ds001419).

Data preprocessing

Basic preprocessing was performed using SPM12 (www.fil.ion.ucl.ac.uk/spm). Functional

images were motion corrected using the realign function. The structural image was co-regis-

tered to the mean image of the functional time series and then used to derive deformation

maps using the segment function [29]. The deformation fields were then applied to all images

(structural and functional) to transform them into MNI standard space and up-sample them

to 2mm isomorphic voxel size. The full normalized fMRI time courses are available online

(https://doi.org/10.6084/m9.figshare.5951563.v1). All further preprocessing steps were carried

out using Nilearn 0.2.5 [30] in Python 2.7. To generate an activity map for each of the 75

blocks, each voxel’s time course was z-transformed to have mean zero and standard deviation

one. Time courses were detrended using a linear function and movement parameters were

added as confounds. Then TRs were grouped into blocks using a simple boxcar design shifted

by 2 TR (the expected shift in the hemodynamic response function) and averaged, to give one

averaged image per block. These images were used for all further analyses and are available on

NeuroVault (https://neurovault.org/collections/3467).

Table 1. Overview of tasks used in the paradigm.

cognitive

domain

task content reference studies anatomical predictions

language semantic verbal

fluency

animals, tools, cities, countries, occupations, fruits,

clothing, vegetables, furniture, colors

Woermann et al. 2003 [15] Broca’s area, Wernicke’s area, left

SMA, VWFA

sensory-motor

skills

sports badminton, tennis, swimming, soccer, high jump,

climbing, hurdle race, archery, rope skipping, juggling

Owen et al. 2006 [18] SMA

visuo-spatial

memory

hometown walk city square, market, tram station, train station, school,

church, basement, promenade, city of Kiel, university

Jokeit et al. 2001 [23]; Owen

et al. 2006 [18]

parahippocampal gyrus, premotor

cortex, posterior parietal cortex

visual processing

of faces

famous and

familiar faces

family, friends, movie actors, TV actors, athletes,

politicians, lecturers, teachers

O’Craven & Kanwisher 2000

[25]; Haxby et al. 2000 [26]

OFA, FFA, STS

resting relaxed

wakefulness

Fox et al. 2005 [27] precuneus, medial prefrontal cortex,

lateral parietal cortex

SMA, supplementary motor area; VWFA, visual word form area; OFA, occipital face area; FFA, fusiform face area; STS, superior temporal sulcus

https://doi.org/10.1371/journal.pone.0204338.t001

Cognitive decoding of individual fMRI data

PLOS ONE | https://doi.org/10.1371/journal.pone.0204338 September 20, 2018 4 / 21

https://openneuro.org/datasets/ds001419
https://openneuro.org/datasets/ds001419
http://www.fil.ion.ucl.ac.uk/spm
https://doi.org/10.6084/m9.figshare.5951563.v1
https://neurovault.org/collections/3467
https://doi.org/10.1371/journal.pone.0204338.t001
https://doi.org/10.1371/journal.pone.0204338


Data analysis

Emulating the “common task framework” [31, 32], the study’s data were analyzed with regard

to a clearly defined objective and a metric for evaluating success. In the “common task frame-

work”, data for training are shared and used by different parties. The parties try to learn a pre-

diction rule from the training data, which can be applied to a set of test data. Only after the

predictions have been submitted, is the prediction of test data evaluated. It can then be

explored how different approaches to prediction compared to one another, given the same

dataset and objective.

Accordingly, the first two fMRI runs (50 blocks total, 10 blocks per condition) of our study

were used as a training set and the third fMRI run (25 blocks total, 5 blocks per condition) was

used as the held-out test set. To ensure proper blinding of test data, the block order was ran-

domly shuffled and the 25 blocks were then assigned letters from A to Y. The true labels of the

blocks were only known by the first author (MW), who did not participate in making predic-

tions for the test data. Fifteen of the authors formed four groups. Each group had to submit

their predictions regarding the domain (e.g. “motor imagery”) and specific content (e.g. “ten-

nis”) for each block in written form.

The authors making the predictions were all graduate students of psychology, enrolled in a

project seminar at Bielefeld University. Only after all predictions were submitted were the true

labels of the test blocks revealed.

The groups were allowed to analyze the training and test data in any way they deemed fit,

but all used a combination of the following methods: (i) Visual inspection with dynamic vary-

ing of thresholds using a software such as Mricron or FSLView. (ii) Voxel-wise correlation of

brain maps from the training and the test set, to find the blocks which are most similar to each

other. (iii) Voxel-wise correlations of brain maps with maps from NeuroSynth [33], to find the

keywords from the NeuroSynth database whose posterior probability maps are most similar to

the participant’s activity patterns. The basic principles of these analyses are presented in the

following sections of the manuscript. Full code is available online (https://doi.org/10.5281/

zenodo.1323665).

Similarity of blocks. For similarity analyses, Pearson correlations between the voxels of

two brain images were computed. This was done either by correlating the activity maps of two

individual blocks with each other, or by correlating an individual block with an average of all

independent blocks belonging to the same condition.

During training, a nested cross-validation approach was established, where the individual

blocks from one run were correlated with the averaged maps of the five conditions from the

other run. Each block was then assigned to the condition of the other run’s average map it cor-

related strongest with. This was done for all blocks to determine the proportion of correct

predictions.

To learn from the training data which features allowed for the highest accuracy in predict-

ing the domain of a block, the mask used to extract the data and the amount of smoothing

were varied: Different brain masks were defined by thresholding the mean z-score maps for

each of the five conditions on different levels of z-values and using only the remaining above-

threshold voxel with highest values for computing correlations. The size of the smoothing ker-

nel was also varied in a step-wise manner. The best combination of features (amount of voxels

included and size of smoothing kernel used) from the cross-validation of the training data

could then be used to decode the test data.

Similarity with NeuroSynth maps. In addition to these within-participant correlations,

each block was also correlated with 602 posterior probability maps derived from the Neuro-

Synth database [33]. From the 3169 maps provided with NeuroSynth 0.3.5, we first selected the
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2000 maps with the most non-zero voxel. This allowed to exclude many maps for unspecific

keywords such as “design” or “neuronal”, with which no specific activation patterns are associ-

ated. The selected maps were then clustered using K-Means, as implemented in Scikit-learn

0.17 [34]. K-Means clustering was performed starting with two clusters and then successively

increasing the number of clusters to be identified. For solutions of nine or more clusters,

groups of keywords representing language, auditory, spatial, motor, reward, emotion, default

mode and visual processing emerged, plus additional large clusters of further unspecific key-

words which were still present in the dataset (e.g. “normalization”, “anatomy”). To exclude

these unspecific keywords, we eliminated the largest cluster of the nine cluster solution and re-

ran the K-Means clustering on the remaining 602 maps. This clustering resulted in the same

eight interpretable clusters found previously (Fig 1). To visualize the similarity between the

clusters and the relationship of keywords within each cluster, we computed the Euclidean dis-

tances between all maps and projected the distances into two dimensions using multi-dimen-

sional scaling (MDS; cf. [35]) as implemented in Scikit-learn. The resulting ’keyword space’

showed a strong agreement between the clustering and MDS, with keywords from the same

cluster being close together in space (Fig 1).

This ’keyword space’ was then used for decoding, by correlating our fMRI data with all

NeuroSynth maps. The resulting correlations were then visualized in the 2D space, allowing to

inspect not only which keywords correlated the strongest, but also if there were consistent cor-

relations within each cluster. To be computationally feasible, a gray matter mask with

4x4x4mm resolution was used for computing correlations, reducing the number of voxel to be

correlated from ~230.000 to ~19.000.

Results

Results for the training data

Mean activity maps. A visualization of the average activity map for each condition is

shown in Fig 2. For the language task, a clear left-lateralized network of regions, including infe-

rior frontal gyrus, superior temporal sulcus, left supplementary motor area (SMA) and left

fusiform gyrus, emerged. For the motor imagination task, SMA and premotor areas, as well as

superior parietal cortex were active. The visuo-spatial memory task gave rise to activity in para-

hippocampal gyrus, premotor cortex and posterior parietal cortex. The face imagery condition

showed activity around the mid-fusiform sulcus in both hemispheres, but mainly activity in

the precuneus and medial frontal areas. For the rest condition, there was only weak activity in

the precuneus, as compared to the other four conditions. Deactivations for resting were stron-

gest in dorsolateral frontal and superior parietal regions.

Feature selection for correlation analyses. For computation of similarity metrics, corre-

lations of individual blocks from one run with the mean activity maps from the respective

other run were used (i.e. blocks of run 1 correlated with the five mean activity maps from run

2, or the other way around). The decision to which domain a block belonged was then made

by assigning the block to the domain it had the highest correlation with. Using this approach

without voxel selection or smoothing, an accuracy of 72% was reached (p<10−14; for a bino-

mial test with chance at 20%). Using feature selection (varying the voxels included and the

smoothing kernel used), accuracies of up to 92% (p<10−27) could be reached, using only the

top 1–3% of voxel from each domain and moderate or no smoothing (Fig 3).

The correlations of individual blocks from one run with the mean activity blocks from the

respective other run, using the best feature combination, are shown in Fig 4. Of the 50 blocks,

one motor block was mistaken for rest, another motor block was mistaken for a visuo-spatial
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memory block, and two visuo-spatial blocks were mistaken for motor blocks, corresponding

to 46 out of 50, or 92%, correct predictions.

Decoding using NeuroSynth data. To evaluate how completely independent data can be

used to decode the five conditions, each mean activity map (averaged over both training runs)

was correlated with the NeuroSynth data and the strength of the correlation visualized in MDS

Fig 1. ’Keyword space’ derived from the NeuroSynth database. Colors were assigned based on K-means clustering and distances in space were

derived using multi-dimensional scaling (MDS). Note how both approaches give very similar results, in terms of similar colors being close together in

space. There are some exceptions, i.e. BA 47 being in the default mode cluster but closer to the auditory-related keywords in MDS-space. There are clear

gaps between many of the clusters, indicating that they might be categorically distinct. Regarding the arrangement of clusters, the emotion and reward

clusters are close together, as well as the motor and spatial, and the language and auditory clusters. The keywords on the borders of the clusters often

represent concepts shared by multiple domains, for example “characters” bridging the clusters of vision and language, “visual motion” close to vision

and spatial processing, or “avoidance” related to emotion and reward processing. To allow for good readability, keywords in the figure had to be a

certain distance from each other in the space to be plotted.

https://doi.org/10.1371/journal.pone.0204338.g001
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space (Fig 5). Four of the five conditions showed strongest correlations with keywords from

the respective related cluster (language-”reading”, motor-”motor”, visuo-spatial—“spatial”,

rest—“theory [of] mind”). The correlations of the face condition indicated that the cognitive

processes our participant engaged in during this task had more to do with episodic and work-

ing memory than with object and face processing (cf. Fig 5).

Results for the test set

Activity maps for individual blocks. Fig 6 shows the activity maps for all 25 individual

blocks of the held-out test data. Here, robust activity in the networks already identified in the

average training data (Fig 2) can be seen on a block-by-block basis. With the exception of

block #60 for the motor imagery task, block #57 for the rest condition and block #64 for faces,

Fig 2. Activity maps for the five conditions of the training data. For visualization purposes, t-maps for the comparison

of each condition against the remaining four were generated (smoothed with an 8mm kernel and thresholded at t = 3.31,

corresponding to p<0.001). Results were projected on an inflated surface of the participant’s normalized structural scan,

using PySurfer. Interactive unthresholded versions of these maps are available on NeuroVault (https://neurovault.org/

collections/3467/).

https://doi.org/10.1371/journal.pone.0204338.g002
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specific activity in at least one of the most important regions for each domain could be found

(language: superior temporal areas; motor: superior parietal areas; visuo-spatial: parahippo-

campal gyrus; faces: mid-fusiform sulcus; rest: precuneus).

Correlation analysis with winner-take-all decision rule. A correlation approach using

the same parameters as for the training data (top 1% of voxel, no smoothing), allowed to cor-

rectly label 24 of the 25 test blocks (96% correct; p<10−15; cf. Fig 7). The only misclassification

occurs for block #60, where the “swimming” block from the movements condition is misclassi-

fied as belonging to the rest condition.

In addition to the correlation with mean training data, each of the 25 test blocks was also

correlated with each of the 50 individual training blocks (Fig 8). Here, an optimal outcome

would be if each test block had its ten highest correlations with the corresponding ten training

blocks of the same condition. The results showed that for 20 of the 25 test blocks, at least eight

of the highest correlations were with the correct corresponding training blocks. Only the

“swimming” block had less than half of the ten highest correlations with training blocks from

its correct domain.

Decoding using NeuroSynth data. When using the NeuroSynth data to decode each test

block, 15 of the 25 of blocks (60%) were correctly decoded using the cluster of the keyword

with the highest correlation (p<0.0001). The best predictions were possible for the motor, spa-

tial and rest domains, while language and faces showed more ambiguous correlation patterns

(Fig 9).

Predictions made by the four teams. Based on these sources of information (visual

inspection; correlation with mean training data; correlation with individual training blocks;

correlation with NeuroSynth maps) the four teams submitted their predictions (Table 2).

Fig 3. Accuracies for the predictions of training data, as a function of voxel selection and smoothing kernel.

Highest accuracies (in dark red) were reached using only the top 1–3% of voxel active for each condition (i.e. using the

99-97th percentile to threshold the data). The percentile cutoff was applied to each map of the five conditions

individually and the maps were then combined (conjunction of maps). Therefore, given that overlap between maps

was low, percentile 80 contained 71% of whole-brain voxel and percentile 99 contained 5% of the whole-brain voxel.

https://doi.org/10.1371/journal.pone.0204338.g003
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Fig 4. Correlation of single blocks (rows) of one run with the mean activity maps (columns) of the respective other run. Results are based on

unsmoothed data using a 99th percentile cutoff to threshold the mean activity maps with which the individual blocks are correlated. For each block, the

name of the condition (i.e. “language”), the number of the block in the experiment (i.e. “002” for the second block of the experiment) and the content

(i.e. “animals”) are indicated in the row labels.

https://doi.org/10.1371/journal.pone.0204338.g004
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Fig 5. NeuroSynth decoding of average activity map for each training condition (averaged over both training runs).

Stronger correlations with a keyword are indicated by a bigger circle, bigger font size and less transparency of font. To

improve readability, the correlations are min-max scaled, so that the largest correlation is always of the same pre-defined

size. Furthermore, the sizes of the scaled correlations have been multiplied with an exponential function, so that large

correlations appear larger and small correlations smaller than they actually are (sizes are more extreme that the

underlying data). To further enhance readability, if two keywords were too close in space so they would overlap, only the

higher correlating keyword was printed. Color assignment is based on K-means clustering of the NeuroSynth data.

https://doi.org/10.1371/journal.pone.0204338.g005
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Three of the four teams made 23 correct predictions (p<10−13), all making the same mistake

of classifying the swimming block as rest. In addition, the teams made at least one additional

mistake, and therefore one mistake more than the correlation analysis in Fig 7. One team

which weighted the results of visual inspection more strongly in their results reached an accu-

racy of only 76% (p<10−8).

Regarding the prediction of content, the rest blocks had to be excluded, as they had no con-

tent, leaving 20 blocks from four conditions. Making the conservative assumptions that one

can predict all categories perfectly and that there are only 5 possible contents within each con-

dition, guessing would be at 20% and at least 40% correct would be needed to reach above-

chance (p<0.05) accuracies. Only two of the four teams scored better than chance, with one

team making 10 correct predictions out of 20 (p = 0.003) and the other team 9 out of 20

(p = 0.01; cf. Table 2). As all teams used a combination of all methods to guess the content,

the results do not allow to infer the role each individual method played for reaching these

Fig 6. Example views of the individual activity maps of the test set. Only one view per block is shown. Maps depict the

average z-values of each block, smoothed with an 8mm kernel and individually thresholded at different levels to best

visualize the typical activity patterns. Red-yellow colors indicate activations and blue-lightblue colors indicate

deactivations, in relation to the voxel’s grand mean over the whole time course. Unthresholded and interactively

explorable maps of each block are available on NeuroVault (https://neurovault.org/collections/3467/). For each block, the

name of the condition (i.e. “language”), the number of the block in the experiment (i.e. “052” for the second block of the

test run, which comprises blocks 51–75) and the content (i.e. “countries”) is indicated above the brain map.

https://doi.org/10.1371/journal.pone.0204338.g006
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accuracies. However, using only the automated procedure of selecting the content of the train-

ing block with the highest correlation (cf. Fig 8), only chance performance (4 out of 20) could

be reached.

Discussion

We showed that decoding “large regions of the mind” [1], namely language, motor functions,

visuo-spatial memory, face processing, and task-free resting is possible using individual

30-second blocks of fMRI data. As in previous studies [19–20], we were able to reach almost

perfect accuracies when deciding between these cognitive domains using training data from

the same participant. This was confirmed by visual inspection of the data (Fig 6), which

showed that activity patterns on single block level were highly robust.

We were also able to show how single blocks of a person’s fMRI data can be decoded,

regarding their cognitive domains, using an independent database which maps activations of

hundreds of keywords onto the brain [33]. This demonstrated the potential to decode a

completely new observation of brain activity in a person, even when no training data were

available and no feature selection had been performed.

Our results also showed that it is possible to predict the contents within some of the

domains with moderate accuracy. Predictions worked best for the language and motor

domains, in line with previous work: The contents of our language task can be considered

superordinate categories in their own right (i.e. animals and tools as animate and inanimate

Fig 7. Correlation of single blocks (rows) of the test run with the mean activity maps (columns) of the two training runs. Results are based on

unsmoothed data using a 99th percentile cutoff to threshold the mean activity maps with which the individual blocks are correlated. For each block, the

name of the condition (i.e. “language”), the number of the block in the experiment (i.e. “052” for the second block of the test run, which comprises

blocks 51–75) and the content (i.e. “countries”) is indicated in the row labels.

https://doi.org/10.1371/journal.pone.0204338.g007
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objects), and thus their differential activity patterns can be expected to differ on a relatively

large anatomical scale [36]. The different sports used in the motor task activated different parts

of the body, and could potentially be identified based on the somatotopic organization of SMA

and superior parietal cortex [37,38]. Because predictions of content were not explicitly trained

and were only at chance using the automatic methods, the interpretation of this part of the

results is limited.

On the level of the five cognitive domains, the activity patterns were broadly in line with

our a priori predictions (cf. Table 1). However, the motor imagery task recruited predomi-

nantly superior parietal areas, which have previously been shown to be important for move-

ment planning [38], but are not always active in imagery tasks (for example [18]). This also

reflects the issue that while mental imagery tasks are easy to setup and integrate into the clini-

cal routine, they have some natural limits regarding the localization of functions. In the case of

the motor imagery task, one cannot reliably map the primary motor cortex [39], where the exe-

cution of actual movements would be represented. While SMA and superior parietal areas are

certainly also important for carrying out movements [37,38], it would thus be a mistake to use

motor imagery as the only functional localizer in this domain. Despite this limitation of our

paradigm, it is also conceivable that activity maps based on imagining complex movements

could be a useful complement to simple real movement tasks, such as finger tapping. This is

especially true since the organization of primary motor areas can be well approximated from

brain structure alone, while this is not the case for movement planning [38].

In contrast to our prediction, the face imagery task predominantly recruited the precuneus

instead of the core face processing areas [26]. This might reflect a strong involvement of auto-

biographical memory recall when thinking of known faces [40]. Although unexpected, these

patterns were very stable across blocks and sufficiently different from the resting activity to

allow for perfect accuracies when predicting the face blocks. The resting condition produced

Fig 8. Correlation of the 25 blocks of the test run (051–075, rows) with the single blocks of the two training runs (001–050, columns).

https://doi.org/10.1371/journal.pone.0204338.g008
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only weak activity in the precuneus, but strong deactivations in the task-positive network,

which is anti-correlated with the default mode network [27]. This information was probably

most important for allowing successful prediction of the rest blocks.

Finally, while the activity in the superior temporal sulcus in the verbal fluency task might

correspond to part of Wernicke’s area [41], a more prototypical activity pattern would have

included posterior parts of the superior temporal gyrus as well [42]. It is also rather atypical

that the peak of activity in a language production task is in temporal and not in inferior frontal

areas [15]. Apart from that, the language and visuo-spatial conditions produced activity

Fig 9. NeuroSynth decoding of individual blocks of the test run. For each block, the name of the condition, the number of the block and its content

are indicated above the respective image of the space. An asterisk in the title indicates that the block was correctly decoded by assigning it to the cluster

of the NeuroSynth keyword it correlated strongest with. For visualization, stronger correlations with a keyword are indicated by a bigger circle, bigger

font size and less transparency of font. To improve readability, only the keywords with the highest correlations are labeled. Color assignment is based

on K-means clustering of the NeuroSynth data.

https://doi.org/10.1371/journal.pone.0204338.g009
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patterns that were very close to what would be expected if the tasks would be actually carried

out, which makes these paradigms especially useful for clinical applications [15,23].

Another limitation of the present mental imagery task concerns the question how well

activity patterns are comparable between individuals. When using external stimulation, every

participant receives the same low-level inputs, but between-participant variance is still sizable

[43]. Therefore, when using potentially idiosyncratic mental imagery, even larger variation

between individuals should be expected. Given that we collected data from only one person,

the generalization of our results is particularly limited. However, we were able to make reason-

able predictions about our participant’s cognitive processes using independent data from Neu-

roSynth. The NeuroSynth data represents a different metric (posterior probabilities; cf. [33]),

from different participants who performed different tasks on different scanners and were ana-

lyzed using different software and statistical methods. That our data still converged rather well

with this meta-analytical information provides tentative support that the activity patterns we

found were not merely idiosyncratic but to a substantial degree prototypical for the cognitive

domains of interest. Furthermore, because no kind of training was performed to optimize the

performance of the NeuroSynth approach, it might serve as a demonstration of ‘ad hoc’ decod-

ing. This immediacy of application might make it especially appealing in the clinical context,

where there might be no time to collect and analyze training data for each patient. However,

more sophisticated methods which use the NeuroSynth database for decoding also exist [44],

and should be compared to the current approach in future studies.

A crucial question regarding how the present results can inform clinical applications, is

how well the present results can generalize from healthy participants to patients: While the

block-wise analyses worked very well with a cognitively unimpaired and highly motivated par-

ticipant, cognitive deficits, medication and a general tendency for increased movement arti-

facts [45] will all contribute to altered or weaker signal in patient populations. Being able to

collect healthy normative samples [8] is one of the major advantages of fMRI over other meth-

ods used in presurgical planning (i.e. intracrianal EEG, Wada-testing). However, this is moot

if the clinical data of actual patients cannot be reasonably collected and analyzed in the first

place. Therefore, future studies are needed to show if the signal yield necessary for block-wise

analyses is attainable when examining presurgical patients.

Table 2. Results of the predictions made for the held-out test data.

cognitive domain correlations NeuroSynth group

MH,MG,DN SH,FH,LB,AH,SH RV,AK,JS DP,MS,JA,SZ

language 5 (0) 2 (-) 5 (1)

fruits

5 (3)

animals, tools, fruits

5 (3)

animals, tools, fruits

5 (3)

animals, tools, fruits

sensory-motor skills 5 (2)

tennis, climbing

5 (-) 4 (1)

climbing

4 (3)

badminton, tennis, climbing

3 (2)

tennis, climbing

4 (3)

badminton, tennis, climbing

visuo-spatial memory 5 (0) 3 (-) 5 (0) 5 (1)

market

5 (0) 5 (1)

market

visual processing of faces 5 (2)

athletes, friends

1 (-) 5 (1)

movie actors

4 (3)

movie actors, athletes, friends

3 (1)

athletes

5 (2)

athletes, friends

resting 4 (-) 4 (-) 4 (-) 5 (-) 3 (-) 4 (-)

total 24 (4) 15 (-) 23 (3) 23 (10) 19 (6) 23 (9)

Number of correct predictions for each domain, for the 5 blocks of the test data per condition. Predictions are based on the correlation approach (top 1% of voxel, no

smoothing), the NeuroSynth analysis, and based on the submissions made by the four teams of human raters. Numbers in brackets indicate the number of correct

predictions regarding content. (-) indicates that content predictions were not preformed. Content predictions were made for all cognitive domains except rest.

Abbreviations indicate author names.

https://doi.org/10.1371/journal.pone.0204338.t002
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It is also important to note that the four teams making predictions were very homogeneous

regarding their background and approach. This leaves open the question how well the current

approach would have fared against the visual inspection done by trained neuroradiologists.

Also, the way in which the teams combined information from the different analyses was not

made explicit. Ideally, each team would have submitted clearly formalized algorithms, which

could have been compared against each other in more detail.

While we outlined some important limitations above, we believe that the current study pro-

vides some valuable impulses for the clinical application of task-fMRI, including its use in pre-

surgical planning:

Analysis of fMRI data can benefit from splitting a dataset into smaller

subsets

If the patient has consistently preformed the task as required, splitting the fMRI run into

smaller parts (ideally blocks) can increase the neuroradiologist’s confidence in the resulting

activity map. If the activity patterns of the patient are highly inconsistent across the run, the

neuroradiologist might be able to retain some diagnostic information by re-analyzing those

subsets of the data which are most indicative of task compliance. Splitting the data can also

reveal if a patient’s activity pattern is atypical but stable, as was the case for our face condition.

Here, we saw that although the patterns were not as expected, they were highly similar across

blocks. Such analyses might allow to better decide if an inconclusive looking activity pattern is

due to noise or is a veridical representation of an unexpected cognitive strategy the patient

engaged in.

Pattern analysis methods do not have to be ‘black-box’

The pattern analyses in the present study were all based on the notion of minimizing the sums

of squared differences between two observations. While these methods certainly do not take

advantage of all the information contained in the data, they are highly versatile and robust

[46], and work well for fMRI data [47]. With the rise of artificial intelligence methods in medi-

cal imaging [48], there is growing concern that the decisions made by algorithms might be

excellent but the reasoning behind them will remain impenetrable to a human [49]. Therefore,

it could prove beneficial to accompany methods of high sophistication with more transparent

(‘glass box’) analyses like the present ones.

Localization and decoding of functions is complementary

While presurgical diagnostics are usually only concerned with brain mapping, the main benefit

of decoding might be to better understand what exactly is being mapped. Even for a well-

defined language task, the way the task is performed will not be identical for two different indi-

viduals. One patient might produce an activity pattern encompassing Broca’s area, SMA, Wer-

nicke’s area and visual word-form area (VWFA). This patient’s activity would allow for a

relatively safe interpretation of lateralization, depending on whether this network of activation

is localized in the left or right hemisphere. If, on the other hand, another patient’s activity pat-

tern for the language task resembled a default mode network, one would conclude that the

task was not performed at all and not use the map to determine the degree of lateralization.

Between these two extreme cases, a whole continuum of prototypical vs. improper task perfor-

mance will occur in clinical practice. For example, a language production task will pose differ-

ent demands on working memory or executive functions, depending on how difficult a patient

finds the task overall, or for a specific category. The same frontal activity could be part of a

strongly lateralized language network, or of a bilateral task-positive network, which typically
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includes frontal and parietal areas. Whether one is willing to use the frontal activity to draw

conclusions about the language lateralization of a patient, could thus depend on how strongly

each of those patterns is expressed in the whole-brain activity map.

Therefore, the localization of functions (knowing where things are) could be aided by quan-

tifying what cognitive demands the task poses for each patient (knowing what is being

mapped). However, for such an approach to make sense, one has to derive maximally indepen-

dent information for both localization and decoding. One possibility might be to use informa-

tion at different spatial scales: Confidence in determining the dominant hemisphere would be

conditional on how plausible the activity patterns within the hemispheres looked like. Another

possibility might be to use different regions for localization and decoding: The confidence in a

frontal activity corresponding to Broca’s area would depend on whether the region co-activates

with other language-related areas in the rest of the brain. Finally, one could use different con-

trasts. For example, decoding would be performed only during rest, to check for prototypical

activity in the default mode network. If this is established, an unconstrained analysis of activity

during task performance would be performed.

In the case of processing language, semantic maps of word meaning have been shown to

be represented as very fine-grained and globally distributed activity patterns, comprising

regions which are not part of the core language network [10]. If it would be possible to decode

the content of each block (e.g. producing names of animals vs. names of tools in a verbal flu-

ency task), this would allow for a very close monitoring of the patient’s covert behavior, inde-

pendent of the patient’s lateralization. Therefore, such types of decoding could be a valuable

substitute for the lack of behavioral output which currently limits the applicability of mental

imagery tasks.

Conclusion

The present study showed how brief periods of covert thought can be decoded regarding the

cognitive domains involved. The categories of language production, motor imagination,

visuo-spatial navigation, face processing, and task-free resting were reliably differentiated

using basic similarity metrics. This was possible using both training data from the same partic-

ipant as well as independent meta-analytical data from other studies, which allow for immedi-

ate decoding without prior training. Capitalizing on the non-invasive nature of fMRI, we

showed how exploratory approaches towards collecting and analyzing fMRI data can provide

new impulses regarding its application in the individual case.
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