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Simple Summary: The hippocampus region of birds is a pivotal area for learning and memory.
Early-life conditions can have a long-lasting impact on animals. However, the influence of early-life
and later-life environments on animals’ health and welfare has not been well-studied. This study
addresses the impact of early-life enrichment and the later environment on the learning ability and
hippocampal responses in chicks. We found that the early-life environmental complexity did not
prepare better for learning ability in response to life challenges in the future. This study indicates
that perches and litter materials, which enriched early-life conditions, were conducive to improved
stress responses later in life in terms of neural- and immune-related gene expression and functional
pathways. This can be attributed to the “silver spoon” effect. However, the enrichment through
litter materials alone in early life does not improve the hippocampal plasticity in later stressed
environments. In addition, early-life barren conditions that match later-life conditions have beneficial
impacts on neural development, supporting the match and mismatch theory. This study helps us
to understand the relationship between early- and later-life environments from the perspective of
animal neural- and immune-related development. It also has the potential to guide the treatment of
mental problems and personal health in humans based on the interactions between the early-life and
later-life environments.

Abstract: In this study, we hypothesized that complex early-life environments enhance the learning
ability and the hippocampal plasticity when the individual is faced with future life challenges.
Chicks were divided into a barren environment group (BG), a litter materials group (LG), and a
perches and litter materials group (PLG) until 31 days of age, and then their learning abilities were
tested following further rearing in barren environments for 22 days. In response to the future life
challenge, the learning ability showed no differences among the three groups. In the hippocampal
KEGG pathways, the LG chicks showed the downregulation of neural-related genes neuronal growth
regulator 1 (NEGR1) and neurexins (NRXN1) in the cell adhesion molecules pathway compared
to the BG (p < 0.05). Immune-related genes TLR2 in Malaria and Legionellosis and IL-18 and
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IL18R1 in the TNF signaling pathway were upregulated in the LG compared to in the BG (p < 0.05).
Compared to the BG, the PLG displayed upregulated TLR2A in Malaria (p < 0.05). The PLG showed
upregulated neural-related gene, i.e., neuronal acetylcholine receptor subunit alpha-7-like (CHRNA8)
in the nicotine addiction pathway and secretagogin (SCGN) gene expression, as compared to the LG
(p < 0.05). In conclusion, early-life environmental complexities had limited effects on the learning
ability in response to a future life challenge. Early-life perches and litter materials can improve neural-
and immune-related gene expression and functional pathways in the hippocampus of chicks.

Keywords: early and later life; enriched environment; learning; hippocampus; chick

1. Introduction

The hippocampus region in birds is a pivotal area for learning and memory [1,2] and
is highly responsive to evolutionary adaptations. Memory and learning ability have a
crucial role in the adaptability and fitness of animals. For example, the memory of specific
routes and landmarks could be related to the locations of food or dangerous situations [3].
Developing and maintaining learning ability is also associated with neurogenesis and the
establishment of neural pathways in the hippocampus [4]. Thus, the development of birds’
hippocampus is crucial for adaptability, fitness, and welfare. Hippocampal volume can be
altered through learning processes induced by food-storing activities [5] and migration
experience [6] in birds. Environmental complexity influences the hippocampal morphology
of adult birds [7,8]. On the contrary, exposure to early-life stress (e.g., a barren system or
poor environment) may impact neural plasticity and impair hippocampal plasticity in birds,
suggesting that birds in the wild have a complex hippocampus with more neurons than
adult aviary birds [4]. These studies indicate that environmental complexity is conducive
to hippocampal plasticity in birds. However, how early-life environmental complexity
influences hippocampus gene expression and function into later life has not been well-
studied in birds.

Animals retrieve and memorize information from the environment to maximize the
cost–benefit ratio, and the environment influences their development and adaptability.
Early-life environmental complexity has profound effects on individual abilities, which
is partly mediated by developmental plasticity to cope with future life challenges. Fur-
thermore, ontogeny depends not only on the environment during early life, but also on
the later-life environment, according to the match–mismatch theory [9,10] and the “silver
spoon” hypothesis [10]. The match–mismatch theory suggests that individuals benefit
from environments similar to their early environment (i.e., matching conditions), while
individuals in a “mismatched environment” suffer poor development [9,10]. The “sil-
ver spoon” hypothesis suggests that excellent conditions experienced early in life allow
superior development later in life, regardless of the adult environment [10].

A wider framework, known as the developmental origins of health and disease
(DOHaD), also refers to the conditions of early and later life, life history, and evolutionary
concepts. In human beings, postnatal conditions play a vital role in later disease [11]. It
points out that “mismatch between the anticipated and the actual mature environment
exposes the organism to risk of adverse consequences—the greater the mismatch, the
greater the risk” [11]. In addition, the combination of exposure to stress early in life and
environmental changes later in life may influence metabolic processes in humans [12]. In
rhesus monkeys, a lack of a secure attachment relationship has adverse long-term effects
on health, even when they have a normal social environment later in life [13]. In mice,
a lack of maternal care during the early-life stage programs the glucocorticoid receptor
(GR) gene promoter in the hippocampus, which can be reversed by cross-fostering later in
life [14]. Severe maternal deprivation impairs learning ability and neurogenesis in early
life, while it can enhance hippocampal functionality in later life [15]. In pigs, early and
later life environmental enrichment can affect behavior and growth [16], personality [17],
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specific antibody responses, and blood leukocyte subpopulations [18]. In birds, rearing
in a barren environment causes the long-term impairment of short-term spatial cognition
in chickens [19]. Stressful events in early life can alter stress resilience or vulnerability to
later-life challenges through the epigenetic regulation of corticotropin-releasing hormone
(CRH) [20]. Therefore, in both human beings and non-human beings, the conditions of
early life and later life influence organism plasticity and development. However, changes in
learning ability and the hippocampal transcriptome profile due to environmental changes
between early life and later life have not been well-studied in birds.

This study, therefore, aimed to investigate the effects of early-life environmental
complexity on the learning ability and transcriptome plasticity of the hippocampus of
Weining chicks placed in barren conditions later in life. Our study gave new perspectives
on how early-life environmental complexity can be optimized to enhance coping and
improve animal welfare, even following adaptation due to environmental changes.

2. Materials and Methods
2.1. Experimental Design

The trial was performed in an organic farm in Nayong county, Bijie city, Guizhou
province, China. One hundred and twenty newly hatched Weining chicks (ratio of male
and female = 1:5), a Chinese dual-purpose native breed, were randomly provided by
Guizhou Nayong Yuanshengmuye Ltd. (Bijie, China). The chicks were equally brooded
in three different early-life environmental groups, which were as following: (1) a barren
environment group (without enrichment materials) (BG, n = 40); (2) an environment
enriched with a litter materials group (wood shavings and sand) (LG, n = 40); and (3) an
environment enriched with two perches and a litter materials group (wood shavings and
sand) (PLG, n = 40), from post-hatching to 31 days of life. Each group was housed in a unit
(2 × 2 × 1.2 m3) 0.5 m above the ground with a wire flooring (diameter: 10 mm). Drinkers
and feeders were available from hatching onwards. The BG birds had no environmental
enrichment. The LG birds had access to substrate litter materials offered on a solid plate
(sand (1 × 1 m2) and wood shavings (1 × 1 m2)), which were replenished daily. Birds in
the PLG treatment had two perches (length: 2 m; diameter: 0.05 m), plus the litter material
as described for the LG. Each unit was heated by a lamp to guarantee that the temperature
exceeded 32 ◦C from hatching to 16 days of age. The temperature and humidity in the room
were recorded every two minutes and measured at least five times, ignoring the highest
and lowest, taking the average value. The temperature and humidity were recorded every
day during the experiment. The temperatures were 32–35 ◦C (1–16 days) and 22–28 ◦C
(17–53 days), and the relative humidity was around 60–65%. A comfortable temperature
was maintained, so that the chicks were active and did not gather together. Ventilation was
through a natural system. The lighting regime was 16 h light followed by 8 h darkness.
The chicks were all fed the same diet: a commercial starter feed during the first 30 days,
followed by a grower feed (New Hope Group, Chengdu, Sichuan, China) from 31 days to
the end of the experiment at 53 days. From 31 days to the end of the experiment, the BG,
LG, and PLG were reared in original pens, but in uniform environmental conditions, with
two drinkers, two feeders, and no enrichment.

2.2. Data Collection
2.2.1. Learning Test

The learning test was conducted in a T-maze, as previously detailed, with a slight
change [21]. Briefly, at 49 and 50 days, 10 female birds in two batches randomly selected
from each treatment were marked with a 16 mm foot ring and deprived of food from 18:00
the day before the test and water for 3 h during the testing. The area connected to the start
box was 200 cm long, and it was 40 cm wide at the end, where the end turning a 90◦ to the
left or right was located, followed by another 120 cm long arm (Figure 1). The chicks were
habituated to the T-maze for 1 h, and there was regular food with live worms available at
both ends of the maze during this time. Testing was conducted during the daytime, and
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food was situated at the far end of one of the arms, out of the chick’s sight. For a test bird,
the food was always situated at the same end of the maze, and the direction was balanced
in the test. Each test session was recorded by video, until the bird found the food and had
fed for 30 s or a maximum of 10 min. The chick was considered to have made a choice
when it reached the end of either arm. When a bird chose the objective arm (food existed)
first in five out of six consecutive test sessions, it was considered to have solved the task,
was recorded as “success” and then was returned to its pen. Birds that failed to habituate
and did not reach the food during the initial test session were returned to their home pens,
recorded as “failure”, and replaced with a different bird.
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2.2.2. Creatine Kinase Concentration

Creatine kinase is a stress sign used to evaluate stress-related physiological responses [22,23].
At 53 days of age, 10 random female birds per treatment were humanely euthanized. Plasma
samples were collected and immediately stored in an anticoagulation tube. This was cen-
trifuged at 4000× g for 5 min at 4 ◦C and stored in a 1.5 mL tube at −20 ◦C. Creatine
kinase concentrations (ng/mL) were measured using the commercial assay ELISA kit
(ColorfulGene, JYM0024Ch, USA).

2.2.3. Transcriptome Profiles of the Hippocampus

At 53 days of age, 10 randomly selected female birds from each group were humanely
euthanized. The right hemisphere of the hippocampus was immediately collected and
stored in dry ice, and then at –80 ◦C until further processing. Total RNA was extracted with
the TRIzol reagent (Invitrogen, Life Technologies Corporation, Carlsbad, CA, USA) accord-
ing to the published protocols. RNA samples were checked by a 2100 Bioanalyzer (Agilent
RNA 6000 Nano Kit, Molecular Probes, Inc., Eugene, OR, USA). After checking the quality,
cDNA libraries were constructed and prepared using a NEBNext® Ultra™ RNA Library
Prep Kit for Illumina® (NEB, Beverly, MA, USA). An Illumina Hiseq platform was used to
generate paired-end 150 bp reads. The raw sequences were quality-controlled by removing
adapters and low-quality reads. The clean data were aligned to the reference genome
Gallus gallus (Ensembl genome browser 97) using the software HISTA v0.1.6-beta [24]. The
clean data were aligned to the reference sequence calculated by the Bowtie2 [25]. Then,
gene expression level counts were enumerated with RBGM v1.2.12 by the ratio of fragments
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per kilobase of exon per million fragments mapped (FPKMs) values [26]. Novel genes were
discovered and identified based on new transcripts by StringTie and Cufflinks.

The ratio of FPKM values was used to calculate gene expression levels. The dif-
ferentially expressed genes (DEGs) were set as a fold change of ≥2 with an adjusted
p-value of <0.05 (also called the false discovery rate, FDR) [27]. The heat map was created
using the package “pheatmap” of software R (v3.1.1), reflecting the hierarchical cluster-
ing of samples. Gene ontology (GO) annotation was implemented by using phyper (R
package) [28,29]. After obtaining the GO annotation for DEGs, WEGO software was used
to perform GO functional classification for DEGs and to understand the distribution of
gene functions of the species at the macro level, with a p-value of ≤0.05 as the statistical
criteria [30]. The enrichment of DEGs in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway was analyzed by the phyper (R package), with a p-value of ≤0.05 as the
statistical criteria.

2.3. Statical Analysis

All data were analyzed using IBM SPSS Statistics 21. The chi-square test was used
to analyze learning ability (success or failure) through SAS 9.2 (SAS Inst. Inc., Cary, NC,
USA). Creatine kinase values (n = 30; 10 birds/treatment) were checked for the normality
and homogeneity of variance and analyzed using the Kruskal–Wallis test. p-values of <0.05
were regarded as statistically significant. Data are presented as means ± SE (Standard
Error).

3. Results
3.1. Learning Ability

Learning ability was not statistically different among the BG (mean rank: 13.50), LG
(mean rank: 15.00), and PLG (mean rank: 18.00) (χ2 = 1.94, p = 0.38). The percentages of
success were 40%, 50%, and 20% in the BG, LG, and PLG, respectively (Figure 2).
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Figure 2. Learning ability in the future barren life challenge. BG, barren environment group; LG,
environment enriched with a litter materials group; PLG, environment enriched with perches and a
litter materials group.

3.2. Plasma Hormone Concentrations

At 53 days of age, creatine kinase concentrations (means ± SE, ng/mL) in the BG
(16.26 ± 0.68), PLG (16.24 ± 0.45), and LG birds (18.11 ± 0.27) were significantly different
(p = 0.034). The LG birds (18.11 ± 0.27) were higher as compared to the BG (p = 0.023) and
the PLG (p = 0.026), whereas the BG and the PLG did not differ from each other (Figure 3).
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3.3. Hippocampal Transcriptome
3.3.1. DEGs

The 30 hippocampal samples generated, on average, 6,1768,598 total clean reads
among the BG, LG, and PLG. Of these reads, 85.12% were mapped onto the reference
genome, with 83.63% being paired. The gene expressions among the three groups are
shown in Figure 4A. The Venn diagram (Figure 4A) displayed a co-expression of 26,212
genes and specifically expressed 1006 genes in the BG and 1202 genes in the LG. The genes
showed a co-expression of 26,391 genes between the PLG and LG and specifically expressed
924 genes in the PLG and 1023 genes in the LG. The genes showed 26,156 co-expressions
between the BG and the PLG and specifically expressed 1062 in the BG and 1159 in the
PLG.

DEGs are shown in Figure 4B (fold change ≥ 2, adjusted p-value < 0.05). We obtained
424 DEGs, including 218 genes that were upregulated and 206 genes that were downregu-
lated in the LG as compared to in the BG. We obtained 307 DEGs, including 212 genes that
were upregulated and 95 genes that were downregulated in the PLG as compared to in the
BG. We obtained 13 DEGs, including six genes that were upregulated and seven genes that
were downregulated in the PLG as compared to in the LG. The DEGs are shown in the heat
map (Figure 4C).

3.3.2. GO Terms

The GO annotation analysis of the DEGs was divided into three classifications: biolog-
ical process, cellular component, and molecular function. The DEGs were more enriched
in the biological process area, including the metabolic process (72 genes), response to
stimuli (50 genes), reproductive process (five genes), growth (12 genes), developmen-
tal process (49 genes), localization (45 genes), response to stimulus (50 genes), immune
system process (21 genes), locomotion (12 genes), and behavior (five genes, including
LMX1A (ENSGALT00000005411.6), HTR2B (ENSGALT00000012451.6), neuronal growth
regulator 1 (NEGR1; ENSGALT00000018520.3 and ENSGALT00000093001.1), and ZIC1
(ENSGALT00000056152.2)) in the LG compared to in the BG. Three DEGs were enriched in
the synapse part (cellular component area), and three DEGs were enriched in the synapse,
in the LG compared to in the BG (Figure 5; Table S1 in Supplementary Materials).
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The DEGs were more enriched in the biological process area, including the growth
(seven genes), reproductive process (six genes), immune system process (seven genes),
reproduction (six genes), localization (28 genes), response to stimulus (35 genes), locomotion
(eight genes), behavior (five genes), and developmental process (31 genes), in the PLG as
compared to in the BG. Eight DEGs were enriched in the synapse (cellular component area),
and five genes were enriched in the synapse part (cellular component area) in the PLG as
compared to in the BG (Figure 6; Table S2 in Supplementary Materials).
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One DEG was enriched in the immune system process, and one DEG was enriched in
the response to stimulus attributed to the biological process, in the PLG as compared to
in the LG. One DEG was enriched in the synapse (cellular component area) in the PLG as
compared to in the LG (Figure 7; Table S3 in Supplementary Materials).

3.3.3. KEGG Pathway

Compared to in the BG, NEGR1 and neurexins (NRXN1) in the cell adhesion molecules
were downregulated in the LG (p < 0.05; Table 1). TLR2 in Malaria and Legionellosis and
IL-18 and IL18R1 in the TNF signaling pathway were upregulated in the LG compared to
in the BG (p < 0.05; Table 1).

Compared to in the BG, neuronal acetylcholine receptor subunit alpha-7-like (CHRNA8),
associated with nicotine addiction, was upregulated, while glucokinase (GCK), associ-
ated with amino sugar and nucleotide sugar metabolism, was downregulated in the PLG
(p < 0.05; Table 2). Compared to the BG, PLG chicks displayed an upregulated TLR2A in
Malaria (p < 0.05; Table 2).
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Figure 7. Enriched GO terms for the LG and the PLG. The vertical axis indicates GO terms, and
the horizontal axis represents the number of DEGs. The numbers of enriched genes in each GO
term are shown in the biological process (red color) area, cellular component (blue color) area, and
molecular function (green color) area. LG, environment enriched with a litter materials group; PLG,
environment enriched with perches and a litter materials group.

Table 1. DEGs enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the BG
and the LG.

BG—LG 1
DEGs

Upregulated Downregulated

Fatty acid biosynthesis ACSL5

Primary bile acid biosynthesis CH25H, BAA

TNF signaling pathway VCAM1, CASP18, MAP3K5, IL-18,
IL18R1, and BGLE TRAF5

Cell adhesion molecules
VCAM1, TROJAN, ITGBL1,
PTPRK, BGLECTIN, MHC-I,

SIGLEC1, and ICOS

neuronal growth regulator 1
(NEGR1) and neurexins (NRXN1)

Apoptosis CRCBL, CTSS, CASP18, and
MAP3K5 RAPGEF4, PTPN13, and KNDC1

Regulation of actin cytoskeleton ITGBL1, AKAIN1, SASH3, MYL9,
LPXN, and APC

RASGEF1A, ARPC1A, ABI2,
FGF12, ARHGEF4, DAZAP2, and

KNDC1

Malaria TLR2, VCAM1, CR1L, BGLP, and
BGLE

Legionellosis TLR2, CR1L, and CASP18

Pathways in cancer

ITGBL1, CASP18, AGTR1, SASH3,
SPI1, ADCY8, GLI2, CDKN2A,

GMSRAL, APC, CSF2RA,
LAMA3/5, and NIPA1

TRAF5, FGF12, RASGEF1A,
RUNX1, and KNDC1

1 indicates that the latter group was compared to the former group. BG, barren environment group; LG, environ-
ment enriched with a litter materials group. Only genes that significantly differed at p < 0.05 are shown.
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Table 2. DEGs enriched in KEGG pathways in the BG and the PLG.

BG—PLG 1 DEGs

Upregulated Downregulated

Proteasome PSMB7

Amino sugar and nucleotide
sugar metabolism

UXS1, glucokinase (GCK),
GPI, and GFPT1

VEGF signaling pathway AKT2, MAPKAPK3, and
TGFB1I1

Regulation of lipolysis in
adipocytes MGLL AKT2

Malaria TLR2A

Nicotine addiction
Neuronal acetylcholine

receptor subunit alpha-7-like
(CHRNA8)

EHD2 and GRIA4

1 indicates that the latter group was compared to the former group. BG, barren environment group; PLG,
environment enriched with perches and a litter materials group. Only genes that significantly differed at p < 0.05
are shown.

The upregulation in the LG as compared to in the PLG was observed for secreta-
gogin (SCGN), which is associated with endocrine and other factor-regulated calcium
reabsorption, and 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 (HMGCS1), which
is associated with synthesis and degradation of ketone bodies, butanoate metabolism,
terpenoid backbone biosynthesis, valine, leucine, and isoleucine degradation (p < 0.05;
Table 3).

Table 3. DEGs enriched in KEGG pathways in the LG and the PLG.

LG—PLG 1
DEGs

Upregulated Downregulated

Synthesis and degradation of ketone bodies HMGCS1

Butanoate metabolism HMGCS1

Terpenoid backbone biosynthesis HMGCS1

Homologous recombination NBN

Endocrine and other factor-regulated calcium
reabsorption Secretagogin (SCGN)

Aminoacyl-tRNA biosynthesis KARS

Valine, leucine and isoleucine degradation HMGCS1
1 indicates that the latter group was compared to the former group. LG, environment enriched with a litter materi-
als group; PLG, environment enriched with perches and a litter materials group. Only genes that significantly
differed at p < 0.05 are shown.

4. Discussion

For early-life environmental complexity, substrate and perches allow the expression of
natural behavior in chickens and have a positive impact on chicks’ early-life behavioral
development and welfare [31–35]. In the later barren condition challenge, no significant
difference was observed among the three groups in learning ability or mRNA expression
of genes in the hippocampus related to learning ability, including N-methyl-D-aspartic
acid (NMDA) [36,37] and brain-derived neurotrophic factor (BDNF) [38,39]. Enriched
environments generally exert a positive effect on learning performance in laboratory an-
imals and farm animals [40,41]. Due to environmental changes from early life to later
life, our results are inconsistent with previous studies that demonstrated early-life barren
environments adversely impair [19] and enriched environments improve learning ability
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in birds [32]. Our findings may be in line with a study that found that short-term (seven
days) enrichment in housing conditions had a positive effect on learning performance but
did not have a long-lasting effect after a memory test [42]. Our findings are inconsistent
with earlier findings that early- and later-life conditions can modulate learning ability in
rats [12]. Based on our results, learning ability in a future barren conditions challenge may
not be improved through early-life environmental complexity.

In general, plasma creatine kinase, a stress indicator hormone, increases, when an
individual is exposed to external stress (e.g., heat stress) [43]. The creatine kinase concen-
trations in the BG and the PLG were lower than in the LG, suggesting higher stress in
chicks reared in a substrate enriched environment, which was in line with a previous study
involving corticosterone [44]. The later-life mismatch did not explain why the levels in
PLG were similar to those in the BG. Our results are inconsistent with previous studies
that demonstrated an early-life barren environment adversely impairs the stress response.
The inconsistency with previous findings may potentially be due to the change in the
environments from early life to later life. A possible explanation for this is that the bene-
ficial effects of early-life enrichment are transient and overruled by later-life challenges.
Nevertheless, our results do support the match–mismatch theory [9,10], as barren-reared
chicks performed equally well as enriched reared chicks in a barren environment. In this
case, enriched chicks experienced a mismatch, but a matched environment was provided
for the barren-reared chicks. The results showed support for the “silver-spoon” theory [10],
in that perches with litter materials did have a benefit in later life.

In the later-life barren condition, differences did exist in the hippocampal gene ex-
pression of chicks, especially between the barren-reared chicks and both enriched groups.
The heat map revealed that the exposure to various enrichment materials did influence
the gene expressions of the hippocampus in later life. In rats, these long-term effects are,
at least in part, mediated by epigenetic alterations in the hippocampus [14]. In our study,
early-life environmental complexity also influenced the transcriptome profile in a later-life
challenge. When it comes to KEGG pathways, environmental complexity can influence
neural plasticity. Regarding the neural development, NEGR1 [45] and NRXN1 [46] in the
cell adhesion molecules pathway are mainly associated with neural growth and synaptic
plasticity and were found to be upregulated in the BG as compared to in the LG. Meanwhile,
the DEGs were enriched in the synapse part of the GO terms in the LG as compared to in the
BG. The previous literature has indicated that an enriched environment improves neural
development and brain plasticity [36,47], while early-life adversity or stress may increase
the risk of neurodevelopmental disorders and induce a reduction in hippocampal plasticity,
with studies including humans [48] and birds [4]. In our study, the neural plasticity in
the BG and the LG was inconsistent with those previous findings. Our findings again
agreed with the match–mismatch effect between the BG and the LG. In addition, the DEGs
enriched in the localization, locomotion, and behavior of the GO terms may respond to the
memory or learning ability differences between the LG and the BG, although the learning
abilities were not different, and previous studies have proven that early-life environments
influence learning ability [19,32]. Our results indicated that early-life environmental effects
influencing learning ability were not long-lasting until later-life period. The DEGs enriched
in the reproductive process, developmental process, and growth relating to fitness are in-
fluenced by environmental complexity [10]. When it comes to the response to the stimulus
and the immune system process of GO terms, combined with KEGG pathways, DEGs were
enriched in the pathways in cancer, Legionellosis, Malaria, and the TNF signaling pathway
in the LG compared to in the BG. TLR2, IL-18, and IL18R1 were upregulated in the LG
compared to in the BG. TLR2, as one of the important components of the innate immune
response, has a pivotal role in the early recognition of pathogens, as well as in the initiation
of a robust and specific adaptive immune response in chickens [49]. Previously, early-life
adversity was found to be detrimental to the immune phenotype [50], which is similar
to the results for the BG. Additionally, early-life environmental complexity is associated
with the immune development and the stimulation response in broilers and layers [51].
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Thus, the results related to the immune system illustrated that early-life litter materials
may improve the immune development, consistent with the “silver spoon” theory.

CHRNA8 (also known as CHRNA7L) is involved in neuronal survival and synaptic
plasticity [52] and was upregulated in the PLG as compared to in the BG. GCK, which was
increased in the PLG as compared to in the BG, plays an important role in maintaining
blood glucose homeostasis by increasing insulin release and promoting glucose utilization
to provide energy [53]. A more enriched environment can lead to more complex neural
brain structures [7]. At the same time, the DEGs were enriched in the synapse part and
synapse of the cellular component at GO terms. The development and maintenance of
knowledge through learning may be costly in terms of energy required for neurogenesis and
the establishment of neural pathways [54]. Our results suggest that the neural development
of the PLG was better than that of the BG, despite the later barren environment being
relatively worse for the PLG. Similarly, in GO terms, when the PLG was compared to
the BG, the DEGs were enriched in the growth, reproductive process, reproduction, and
developmental process relating to fitness, localization, locomotion, and behavior associated
with memory and learning ability areas, with the LG sharing the same trend with the BG.
However, learning ability was not significantly different, which may be attributed to the
early-life limited effect for memory in our study. Additionally, DEGs were enriched in the
immune system process and response to stimulus areas in the GO terms, and TLR2A was
enriched in Malaria in the KEGG pathways. From this, we can conclude that early-life
enriched environments are conducive to the immune system [55], and further evidence for
the positive effect of an early-life enriched environment was found based on the PLG.

Meanwhile, SCGN, as a novel neuroendocrine marker [56], was upregulated in the
PLG as compared to in the LG in the endocrine and other factor-regulated calcium reab-
sorption pathways. HMGCS1, which acts as a control enzyme in cholesterol synthesis, was
upregulated in the PLG when compared to the LG in pathways including the synthesis and
degradation of ketone bodies, butanoate metabolism, and terpenoid backbone biosynthe-
sis [57]. Cholesterol is abundant in the central nervous system and is involved in dendrite
outgrowth, the hyperplasia of the stellate cell, and the development and remodeling of
nerves [58,59]. DEGs were enriched in the synapse of the cellular component at the GO
term. Additionally, the downregulated gene ENSGALT00000003855.5 was enriched in the
immune system process, and the response to stimulus attributed to the biological process,
in the PLG as compared to in the LG. Thus, the PLG did not result in vulnerability but
promoted the resilience capacity of nerves which equips organisms to respond more effec-
tively when facing the challenges of barren conditions later in life [60]. Hence, the PLG
showed positive adaptations, which means encountering perches and litter materials in
early life may prepare the birds for dealing with the later-life environmental context, which
is a crucial factor for animal development [61]. Overall, the hippocampal gene expression
suggests a “silver spoon” effect, whereby perches and litter materials in early life improve
the neural plasticity in the hippocampus, leading to better coping abilities in the later-life
barren condition challenge.

This study initially explored how early- and later-life environmental complexities
regulated the learning ability and the hippocampal plasticity. However, the limitations
of this paper include the lack of a balanced treatment for early good–late good and early
poor–late good groups. In addition, the mechanisms of early- and later-life environmental
complexities were not identified, especially in terms of epigenetic regulation. Epigenetics
is closely linked to host phenotype responses to the effects of the environment [62]. For
example, an associated study indicated that the regulation of the GR gene promoter methy-
lation [14], as well as CRH histone modification and DNA methylation [20], can modulate
plasticity and metabolic homeostasis. Thus, future studies should pay more attention to
mechanisms by which environmental factors influence phenotypic plasticity and adaptive
programming.
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5. Conclusions

Early-life environments influencing learning ability are not a long-lasting effect in
a future life challenge. Based on the results of hippocampal gene expression, an envi-
ronment with perches and litter materials in early life offered the condition for the more
optimal development of neural-related (CHRNA8) and immune-related (TLR2A) gene
expressions, thereby possibly supporting the “silver-spoon” theory. Chicks given early-life
litter materials showed improvements only in immune-related gene expressions (TLR2,
IL-18, and IL18R1) and functional pathways in a barren environment challenge, which may
be attributed to the mismatching effect. Overall, this study contributes to an increased
understanding of the role of the early-life environmental complexity in the learning ability
and hippocampal plasticity of chicks that are later kept in barren conditions.
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