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A high-fat diet promotes depression-like
behavior in mice by suppressing
hypothalamic PKA signaling
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Miles D. Houslay3 and George S. Baillie2

Abstract
Obesity is associated with an increased risk of depression. The aim of the present study was to investigate whether
obesity is a causative factor for the development of depression and what is the molecular pathway(s) that link these
two disorders. Using lipidomic and transcriptomic methods, we identified a mechanism that links exposure to a high-
fat diet (HFD) in mice with alterations in hypothalamic function that lead to depression. Consumption of an HFD
selectively induced accumulation of palmitic acid in the hypothalamus, suppressed the 3′, 5′-cyclic AMP (cAMP)/
protein kinase A (PKA) signaling pathway, and increased the concentration of free fatty acid receptor 1 (FFAR1).
Deficiency of phosphodiesterase 4A (PDE4A), an enzyme that degrades cAMP and modulates stimulatory regulative G
protein (Gs)-coupled G protein-coupled receptor signaling, protected animals either from genetic- or dietary-induced
depression phenotype. These findings suggest that dietary intake of saturated fats disrupts hypothalamic functions by
suppressing cAMP/PKA signaling through activation of PDE4A. FFAR1 inhibition and/or an increase of cAMP signaling
in the hypothalamus could offer potential therapeutic targets to counteract the effects of dietary or genetically
induced obesity on depression.

Introduction
Obesity predominantly develops in response to

increased consumption of energy-dense diets and a
sedentary lifestyle1. Rare genetic mutations in the central
melanocortin pathway are responsible for the develop-
ment of monogenic obesity in humans2. The main clinical
consequences of obesity are abnormalities characteristic
of the metabolic syndrome (e.g., hypertension, insulin
resistance, or dyslipidemia) and an increased risk of dis-
eases such as cancer3,4. Furthermore, obesity has been
linked to depression5,6, with both epidemiological and
clinical studies demonstrating a positive association

between these two disorders7. Nonetheless, the precise
mechanism underlying the interaction between obesity
and depression has yet to be elucidated.
Although the neuropathophysiology of depression

remains unclear, abnormalities in monoamine signaling
components, such as serotonin and dopamine, have been
implicated in the development of this condition8. Clinical
observations around mid-90s suggested that depression
results from decreased monoamine function in the brain8.
Some of the key drugs currently used to treat depression
target monoamine signaling8; however, not all patients
benefit from such intervention9. The presence of obesity,
or overweight, places patients with major depression at
risk of resistance to the antidepressant fluoxetine,
regardless of the severity of depression at baseline10.
When compared with patients of normal body weight,
overweight and obese patients showed a substantially
slower response to antidepressant treatment, less
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improvement in neuroendocrinology and cognitive pro-
cessing, and less antidepressant-induced weight gain11.
This observation suggests the involvement of unique
pathways for depression in the overweight and obese
population.
The neurocircuitry of depression is complex and

involves portions of the limbic system, such as hippo-
campus, amygdala, thalamus, cortex, and hypothalamus12.
From all these brain regions that play a crucial role in
depression, hypothalamus is the main regulator of energy
homeostasis, located in a region highly vascularized with
ample communication with the periphery, and has been
implicated in both obesity and depression13. Signaling via
3′, 5′-cyclic AMP (cAMP) appears to have a key role in
the pathophysiology and pharmacology of depression14.
Even though the mechanism of action of antidepressants
is very complex and not well understood, it is believed
that antidepressant treatments involve adaptations of the
cAMP signaling cascade15. Generation of cAMP by ade-
nylyl cyclase activity occurs after stimulation of the G
protein-coupled receptors (GPCRs). Antidepressants
often increase coupling of stimulatory G proteins with
adenylyl cyclases16, thereby increasing both the activity of
cAMP-dependent protein kinase A (PKA)17 and the
expression and function of cAMP response element-
binding protein (CREB)18. Protein phosphorylation by
PKA regulates a vast variety of neuronal functions19.
In depression signaling via cAMP may be impaired by

cyclic nucleotide phosphodiesterases (PDEs), which pro-
vide the sole route for cAMP degradation in cells20. Of all
the different PDEs, members of the PDE4 gene family play
a major role in regulating cognition and depressive dis-
orders21. The PDE4 gene family (PDE4A, PDE4B, PDE4C,
and PDE4D) gives rise to >20 different isoforms22. PDE4C
is the only one not expressed in brain according to pre-
vious studies23. Although much of the PDE4 sequence is
conserved between isoforms, the unique N-terminal
region confers direct isoform-specific targeting to intra-
cellular signaling complexes24 and interaction with
anchor/scaffold proteins25, allowing the fine tuning of
cAMP signaling to discrete subcellular locations and
specific pathways26.
The most important neuronal pathway for human

obesity is the central melanocortin signaling pathway, as
the majority of genes responsible for human monogenic
obesity are components of this pathway2. The central
melanocortin pathway is regulated by dietary fatty
acids27,28, which bind to different fatty acid receptors, a
subfamily of the GPCRs superfamily, to convey intracel-
lular signaling pathways29. There are four main free fatty
acid (FFA) receptor divisions according to the length and
saturation of fatty acids they bind to: FFA receptor 1
(FFAR1 also known as GPR40) that binds medium and
long chain saturated fatty acids such as palmitic acid30,

FFA receptor 3 (FFAR3 also known as GPR41) and FFA
receptor 2 (FFR2 also known as GPR42) that both bind
short chain fatty acids31, and finally the FFA receptor 4
(FFAR4 also known as GPR120) that binds ω-fatty acids32.
Just as PDEs may have a mechanistic role in the devel-
opment of depression, they may also influence the
development of obesity. Members of the PDE4 family can
interact with GPCRs33 via β-arrestin proteins, which act
as scaffolds to localize PDE4s to ligand-activated
GPCRs34,35.
Even though a positive association between obesity and

depression has been established, which of the two plays a
causative role for the development of the other one and
what is the molecular mechanism(s) of this phenomenon
remains unknown. In the present study, we found that
either dietary or genetically induced obesity (GIO) in mice
lead to depression phenotype and this phenomenon
occurs via the disruption of the cAMP/PKA signaling
pathway. Furthermore, we identified that loss of PDE4A
can prevent both dietary and genetically induced
depression-like behavior phenotype in mice. In addition,
we found that the consumption of a fat-dense diet leads to
an influx of dietary fatty acids specifically in the hypo-
thalamus. These fatty acids can directly modulate the
PKA signaling pathway that is responsible for the devel-
opment of depression. These findings suggest that the
influx of saturated fatty acids due to the consumption of
an high-fat diet (HFD) can alter the cAMP/PKA signaling
cascade and that result in the development of depression
phenotype.

Results
Dietary-induced obesity (DIO) is accompanied by
a depression-like phenotype in mice
To determine whether the consumption of a fat-dense

diet plays a causative role in the development of depres-
sion, we first examined depression-related behaviors
among mice fed a HFD for 3 or 8 weeks (Fig. 1a), where
60% of caloric intake is derived from fat. Induction of
depression-like behavior, as assessed by increased
immobilization time during the tail suspension and forced
swim tests, was observed after just 3 weeks and persisted
at 8 weeks (Fig. 1b, c). Consumption of an HFD was also
accompanied by the consumption of less sucrose solution
than was observed for wild-type (WT) aged-matched
control mice maintained on a normal diet (ND), a test
related to anhedonia (Supplementary Fig. S1A), a char-
acteristic feeling of depressed patients that describes their
inability to experience pleasure by enjoyable activities.
As expected, mice fed an HFD gained substantially

more weight than the control mice fed ND, even from the
first week of the intervention (Supplementary Fig. S1B).
Increased body weight did not correlate with increased
immobilization during the tail suspension and forced
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Fig. 1 Dietary or genetically induced obesity is accompanied by a depression-like phenotype in mice. a Schematic of the experimental plan
for dietary-induced obesity (DIO) and a series of behavioral tests (EPM elevated plus maze, FST forced swim test, HFD high-fat diet, ND normal diet,
OF open field, SPT sucrose preference test, TST tail suspension test). b TST and c FST for aged-matched wild-type (WT) C57BL/6J mice maintained for
a period of 3 weeks or 8 weeks on either ND or HFD (n= 10 per group, experiment repeated twice; *P < 0.05, **P < 0.01 by linear mixed model fit by
restricted maximum likelihood (REML). d Schematic of the experimental plan for genetically induced obesity (GIO) and a series of behavioral tests. e
TST and f FST for wild-type (WT) C57BL/6J and ob/ob mice maintained on a ND for a period of 12–16 weeks (n= 8–10 per group, experiment
repeated twice; **P < 0.01, ****P < 0.0005 by unpaired Student's t-test)
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swim tests after 3 weeks (Supplementary Fig. S1C), sug-
gesting that the performance of the mice in these tests was
not affected by their increased body weight. In agreement
with that, the depression-like phenotype developed on
mice fed an HFD was not accompanied by less locomotor
or rearing activity during the open field test compared
with mice on ND (Supplementary Fig. S2A).
These results suggest that consumption of an HFD can

contribute to the development of depression-like
behavior.

GIO is accompanied by a depression-like phenotype
in mice
To determine whether GIO also results in the

depression-like phenotype, we conducted the behavioral
tests with the leptin-deficient mice (ob/ob), which develop
obesity from the third week of age even when maintained
on an ND (Fig. 1d). During both the tail suspension and
forced swim tests, the immobilization time was greater in
8-week-old ob/ob mice than in WT aged-matched mice
(Fig. 1e, f). As expected, even from the third week of life,
ob/ob mice on an ND gained significantly more weight
than WT mice on an ND (Supplementary Fig. S2B). Even
though the DIO did not affect the locomotor activity of
mice measured by the open field test, the ob/ob mice had
less locomotor and rearing activity compared with their
WT aged-matched control mice (Supplementary Fig.
S2A).
These results suggest that like DIO, GIO promotes the

development of a depressive-like phenotype in mice.

DIO alters gene expression profiles in the hypothalamus
Given the early onset of the depression-like phenotype

in the group of mice fed an HFD, which did not correlate
with body weight, we hypothesized that consumption of
an HFD alters the molecular signaling pathways in the
hypothalamus, which is a brain region with major role in
the control of both obesity and depression36. We used
genome-wide microarray analysis to determine the
hypothalamic gene expression profile of WT mice fed an
ND versus WT mice fed an HFD for a period of 4 or
8 weeks.
A total of 68 genes exhibited altered expression patterns

in the hypothalamus of mice fed an HFD for 8 weeks
compared with mice fed an ND, with false discovery rate
(FDR) < 0.05 (Fig. 2a). Moreover, the most highly sig-
nificant upregulated and downregulated genes affected by
the consumption of a HFD are shown (Fig. 2a). The PKA
signaling was the most affected pathway upon the con-
sumption of HFD for 8 weeks (P= 0.0000398) (Fig. 2b, c).
Genes regulating the PKA signaling pathway were sig-
nificantly decreased after 8 weeks on an HFD (Table 1).
Other pathways were also suppressed, including the
GPCR signaling nodes and GABA receptor signaling

pathways, which are involved in neuronal functions (Fig.
2b, c). Gene ontology (GO) enrichment analysis revealed
that the hypothalamic adenylate cyclase pathway, a major
contributor in the regulation of PKA signaling, were also
affected by consumption of an HFD (Fig. 2d). Analysis of
hypothalamic samples from mice fed either ND or HFD
uncovered a decrease in the total phosphorylation levels
of PKA substrates in samples from HFD-fed animals (Fig.
2e) and decreased phosphorylation at serine 133 of CREB,
a key downstream target of PKA (Fig. 2f).
These results suggest that the consumption of a HFD

regulates the PKA signaling pathway in the hypothalamus
and might be responsible for the development of the
obesity-induced depression-like phenotype in mice.

HFD increases expression levels and activity of PDE4A5
in the hypothalamus
Next, we sought to investigate whether DIO alters the

activity of PDE4 enzymes in the hypothalamus. There was
a slight trend, but one that did not reach statistical sig-
nificance, for increased total PDE4 activity in mice fed an
HFD for 3 weeks vs. mice fed an ND (Supplementary Fig.
S3A).
A variety of different PDE4 isoforms are expressed in

the brain, so we decided to perform real-time PCR ana-
lysis to investigate whether DIO or GIO in mice can alter
the mRNA levels of particular PDE4 isoforms in the
hypothalamus. Levels of PDE4B mRNA in the hypotha-
lamus were undetectable, whereas no statistically sig-
nificant difference was found for PDE4D transcripts
among mice fed ND, mice fed HFD or ob/ob mice (Sup-
plementary Fig. S3B). In contrast to this, the total levels of
the PDE4A isoforms were somewhat increased, in
response to DIO and GIO, although such changes did not
attain statistical significance (Supplementary Fig. S3C).
However, when we analyzed transcript levels for each of
the different PDE4A isoforms encoded by the PDE4A
gene, then we found that transcripts for the PDE4A5
isoform were specifically upregulated in response to both
DIO and GIO (Fig. 3a). Furthermore, PDE4A5 protein
levels were increased in the hypothalamus after 3 weeks
on the HFD (Fig. 3b), as was the level of PKA-mediated
phosphorylation of the PDE4A5 population that was
located within the membrane fraction (Fig. 3c). PKA
phosphorylation of PDE4 long isoforms, such as PDE4A5,
has been shown to elicit their activation, which serves as a
critical negative feedback loop by engendering increased
cAMP degradation37.
Such results of ours revealed that both DIO and GIO

lead to the specific upregulation of the PDE4A5 isoform
in the hypothalamus. Furthermore, the level of protein
expression and the PKA phosphorylation-mediated acti-
vation status of PDE4A5 were both increased in the
hypothalamus of HFD-fed mice.

Vagena et al. Translational Psychiatry           (2019) 9:141 Page 4 of 15



PDE4A is involved in the depression-like phenotype
induced by obesity
Given the potential central role of PDE4A, we assessed

whether mice lacking PDE4A (PDE4A−/−) were protected
from the depression-like behavior induced by obesity.
Genetic ablation of PDE4A in vivo prevented both DIO
and GIO depression, as shown by the tail suspension and
forced swim tests (Fig. 3d, e). PDE4A−/− and their WT
litter mate controls (PDE4A+/+) showed similar increases
in body weight when maintained on ND or HFD (Sup-
plementary Fig. S3D, S3E). The ob/ob and the double
knockout PDE4A−/−:ob/ob showed similar body weight
gains when fed an ND (Supplementary Fig. S3E). These
results suggest that loss of PDE4A protects mice from
obesity-associated depression phenotype, despite similar
weight gains in response to an HFD.
To elucidate further any subcellular regulation of PDE4,

due to the consumption of HFD, PDE4 activity assays
were performed on both cytosolic and membrane frac-
tions from hypothalamus. PDE4 activity was greater in the
membrane fraction of mice fed an HFD for 3 weeks than
on an ND (Fig. 3f). This increase was abolished in the
PDE4A−/− mice (Fig. 3f), suggesting that membrane-
associated PDE4A, namely PDE4A5, is the functionally
relevant PDE4A species whose activity is upregulated in
the hypothalamus after the consumption of a HFD for
3 weeks. No difference was detected for PDE4 activity in
the cytosolic fraction of either WT or PDE4A−/− mice
maintained on ND or HFD (Supplementary Fig. S3F).
The amygdala is involved in depression with many

neuronal circuits within the hypothalamus; however, this
brain region showed no statistical difference in PDE4
activity levels between the ND and HFD in either WT or
PDE4A−/− mice (Supplementary Fig. S4A, S4B). Other
brain areas involved in the depression-related behaviors,
such as the cortex, hippocampus, and cerebellum, also
showed no differences in PDE4 activity differences among
mice fed either an ND or HFD (Supplementary Fig. S4C-
E), further suggesting that the hypothalamus is a key locus

affected in obesity-induced depression that leads to the
upregulation of PDE4 activity.
The behavior phenotype induced by the GIO and DIO

was not due to the development of any motor or anxiety
deficits (Supplementary Fig. S5A, S5B). Measurement of
motor anxiety (open field test) revealed no major differ-
ences between WT and PDE4A−/− fed either ND or HFD
or between the ob/ob and PDE4A−/−:ob/ob mice (Fig.
S5A). Use of the elevated plus maze test for the anxiety
phenotype showed no difference between WT and
PDE4A−/− mice or between the ob/ob and PDE4A−/−:ob/
ob (Supplementary Fig. S5B).
The loss of PDE4A gene products prevented both the

DIO and GIO in mice. Moreover, from all the brain
regions that have been shown to be involved in the neu-
rocircuitry of depression hypothalamus is the specific
brain region with increased PDE4 activity due to the
development of DIO. Furthermore, we found that the
membrane compartmentalization of cAMP hydrolyzing
PDE4A activity is critical for the cAMP/PKA signaling
pathway in the depression-like phenotype.

Saturated fats accumulate specifically in the hypothalamus
of mice fed the HFD and they can regulate PKA signaling in
a neuronal cell line
Next, we hypothesized that dietary fatty acids might

play pivotal roles as molecular transducers of cell signal-
ing in the hypothalamus to regulate mood disorders such
as depression. Increased accumulation of FFAs in the
hypothalamus was found among mice fed an HFD for
either 4 or 8 weeks on HFD compared with mice fed an
ND (Fig. 4a, Supplementary S6A). One of the fatty acids
with the highest upregulation in the hypothalamic sam-
ples of mice fed an HFD compared with mice maintained
on the ND was the palmitic acid (Fig. 4a, Supplementary
S6A). By contrast, fatty acid profile analysis of the cortex
revealed no differences between the two dietary groups
(Fig. 4a), suggesting that the hypothalamus was a specific
brain region with FFAs accumulation after HFD.

Table 1 Changes in expression of genes regulating the PKA signaling pathway following HFD

Entrez gene name Fold change P-value False discovery rate (q-value)

Adenylate cyclase 1 (brain) −1.605 9.77E–07 5.09E–03

Lymphoid enhancer-binding factor 1 −2.577 2.72E–06 9.62E–03

Myosin, light chain 2, regulatory, cardiac, slow −2.137 4.51E–05 2.80E–02

Protein kinase C, delta −5.952 1.30E–05 1.89E–02

Protein tyrosine kinase 2 beta −1.634 1.29E–05 1.89E–02

Protein tyrosine phosphatase, non-receptor type 3 −5.155 5.65E–05 3.07E–02

Protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) 12.114 1.88E–07 4.25E–03

Transcription factor 7-like 2 (T-cell specific, HMG-box) −2.703 5.60E–05 3.07E–02
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as mean ± SEM
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To test whether dietary fatty acids have a direct role in
regulating PKA signaling in a neuronal cell line, we used a
Förster (or fluorescence) resonance energy transfer
(FRET)-based biosensor, based on the structure of PKA,
to gauge dynamic cAMP signaling38. This probe enables
quantitative, real-time detection of rapid changes in
cytosolic PKA activity after cell treatment. Treatment of a
neuronal cell line, which had been co-transfected to
express both PDE4A5 and the PKA-R1 FRET sensor, with
forskolin, an adenylyl cyclase activator, led to a marked
increase in cellular PKA activity (Fig. 4b, f). However,
pretreatment of such cells with palmitic acid abolished the
forskolin-induced PKA activation (Fig. 4c, f). This effect
was specific to palmitic acid as neither oleic acid nor
myristic acid had any effect on forskolin-induced PKA
activation in such cells (Fig. 4d–f). In accordance with
this, pretreatment of the cells with palmitic acid abolished
the forskolin-induced increase in cAMP levels in such
cells (Fig. 4g).
These data indicate a differential effect of fatty acids on

intracellular PKA activity. Namely, consumption of an
HFD leads to an efflux of dietary fatty acids specifically in
the hypothalamus and the entrance of dietary palmitic
acid in the brain suppress the PKA pathway. Moreover,
different fatty acids have differential effects on the PKA
signaling cascade in a neuronal cell line.

The increased accumulation of the dietary fatty acid
palmitic correlates with the upregulation of the FFAR1 and
modulates the association of this receptor with PDE4A5
We next sought to investigate whether the expression of

the different FFA receptors is altered in the hypothalamus
of mice upon DIO or GIO. Real-time PCR analysis
revealed a statistically significant upregulation of FFAR1
in the hypothalamus in response to an HFD and in the ob/
ob mouse (Fig. 5a). Hypothalamic gene expression of
FFAR3, a receptor that belongs in the same family as
FFAR1, was not affected after the consumption of the
HFD (Supplementary Fig. S6B); however, the FFAR4
receptor was increased in the hypothalamus of the ob/ob
mouse (Supplementary Fig. S6C).
Next, we tested whether the PDE4A5 isoform interacts

with Ffar1. In vitro co-immunoprecipitation assays from
lysates derived from a human embryonic kidney cell line
(HEK293) exhibited a time-dependent interaction between
Ffar1 and PDE4A5 after treatment with palmitic acid
(Fig. 5b). Palmitic acid treatment increased the transloca-
tion of the PDE4A5 protein, as well as β-arrestin-2, to the
membrane fraction of the N2a cells in a time-dependent
manner (Fig. 5c). Given that PDE4A5 is known to bind to
β-arrestin-239, these data are consistent with the translo-
cation of a PDE4A5–β-arrestin-2 complex to the mem-
brane (Fig. 5b, c). Oleic acid treatment did not induce the
translocation of PDE4A5 to the membrane, highlighting

the specificity of the fatty acid receptor–ligand signaling
cascade (Supplementary Fig. S6D).
These data suggest that HFD specifically increases

FFAR1 gene expression in the mouse hypothalamus,
which in turn can lead to a potential association of Ffar1
and PDE4A5. The translocation of PDE4A5 to the
membrane fraction will lead to a re-programming of the
pattern of compartmentalization of the cAMP signaling
pathway in these cells.

Discussion
Using behavioral paradigms in mice, we demonstrated,

as have others previously40,41, that either DIO or GIO can
be causative for the development of depression. This
relationship is mechanistically coupled to regulation of
cAMP/PKA signaling in the hypothalamus. Interestingly,
such an effect is independent of the increases in body
weight caused by consumption of an HFD or induction of
stress as shown by the EPM behavioral assay.
Protein and mRNA analysis identified PKA signaling as

the main pathway altered in the hypothalamus after
consumption of an HFD. PKA is a tetrameric enzyme that
phosphorylates its protein targets when cAMP binds its
regulatory subunits42. The PKA signaling cascade and
depression have been previously linked14—but not in the
context of diet composition—as chronic administration of
antidepressant drugs or electroconvulsive seizures targets
PKA signaling in the brain16,43. The present study reveals
that the accumulation of different fatty acids in the
hypothalamus alters PKA signaling, suggesting a potential
mechanism of action of dietary fatty acids in the regula-
tion of mood disorders, such as depression, via the PKA
signaling pathway. Although mice show depressive
behavior after 3 weeks on HFD, most of the PKA-
mediated gene expression manifest at 8 weeks. This can
be explained by the fact that transient changes in cAMP
can lead to both short and delayed/extended gene
expression changes. For example, short- and long-term
memory actions44. Another potential mechanism that
may result in the development of obesity-induced
depression phenotype is inflammation45. Indeed, in this
regard, palmitic acid has been shown to activate Toll-like
receptor 4 (TLR4) signaling46.
To the best of our knowledge, the present findings are

the first to show that the consumption of an HFD induces
an influx of dietary fatty acids specifically in the hypo-
thalamus, leading to an impairment of the cAMP/PKA
signaling cascade and this downregulation of the PKA
pathway can be implicated behaviorally for the develop-
ment of depression in mice.
Signaling via cAMP is downregulated among patients

with depression47. Many antidepressant drugs act by
upregulating molecules involved in cAMP signaling,
which is the major regulator of PKA15. Cyclic nucleotide
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PDEs provide the sole route for cellular degradation of
cAMP48, with each PDE isoform displaying distinct roles
and intracellular localization26. PDE4 enzymes are major

regulators of the cAMP signaling in the brain and localize
in brain regions that are associated with reinforcement,
movement, and affect, all of which actions are altered
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among people with depression49. A similar mechanism of
the action of antidepressant drugs that act by the upre-
gulation of the cAMP signaling pathway has been pro-
posed for rolipram, a selective PDE4 inhibitor with known
antidepressant activity in mice50. Chronic administration
of rolipram leads to a sustained elevation of cAMP levels51

and increases the expression of CREB, brain-derived
neurotrophic factor (BDNF) and tropomyosin receptor
kinase B (TrkB), all of which are believed to facilitate the
action of antidepressants18,52. Despite initial promise, the
therapeutic potential of rolipram as an antidepressant has
been limited by compromising adverse side effects, par-
ticularly nausea and vomiting50,53 because this compound
inhibits all PDE4 isoforms54.
Identifying the specific PDE4 isoform that mediates the

antidepressant action of rolipram could enable the
development of selective inhibitors that offer therapeutic
effects with minimal adverse reactions55. Here we show
that the loss of PDE4A in vivo prevented the depression-
like phenotype observed in mice in response to DIO or
GIO. PDE4A5 appears to be the specific PDE4 isoform
responsible for the depression phenotype. Consumption
of an HFD increases the PDE4 activity specifically in the
hypothalamus. Of note, such an increase was abolished in
the PDE4A−/− mouse model. Levels of PDE4A5 mRNA
and protein (including the phosphorylated form) were
higher in hypothalamic samples collected from mice fed
an HFD versus an ND. Interestingly, it has been pre-
viously shown that PDE4A5 interacts with disrupted in
schizophrenia 1 (DISC1), a major genetic risk factor for
the development of schizophrenia56. Therefore, our novel
findings suggest that PDE4A5 may have potential ther-
apeutic importance for the design of a PDE4A5, isoform-
selective inhibitor that would minimize the adverse effects
associated with the use of a generic PDE4 inhibitor (note
that the cognate enzyme in humans is termed PDE4A4).
Such a novel, isoform-selective inhibitor might rescue the
depression phenotype caused by obesity.
Considerable focus has been placed on developing

agents targeting monoamines and their metabolism8 for
the treatment of depression. However, 50% of all patients
do not respond to the currently available antidepressant
drugs57. Moreover, the majority of overweight and obese
individuals do not respond to current antidepressant
treatments, which suggested that other molecular path-
ways are involved in the development of depression
among this subpopulation10. Interestingly, a previous
connection between activation of PDE4A isoforms by
fatty acids has been established in immune cells58,59. FFA
receptors in the brain might explain how dietary fatty
acids can link food intake with mood disorders such as
depression. Regulation of the expression of different FFA
receptors at the mRNA level, especially FFAR1, in the
hypothalamus in response to DIO and GIO represent a

potential mechanism to regulate depression. Despite the
potential role of FFAR1 signaling in the hypothalamus for
lipid sensing that controls energy balance and food
intake13, the present study shows for the first time that
FFAR1 signaling might also play an important role in
mood disorders such as depression. There was a trend for
the FFAR3 to increase with the consumption of an HFD,
however, it did not reach statistical significance. This
might be due to the small number of animals used for the
real-time PCR analysis. Further studies, however, are
needed to characterize any potential involvement of the
short chain fatty acid receptor FFAR3 in contributing to
the phenomenon we uncover here, namely of a novel,
obesity-induced depression phenotype. As such, in addi-
tion to the established role of fatty acid receptors pre-
dominantly acting in the regulation of metabolic
pathways, such as insulin secretion60, data in this study
suggest that fatty acid receptors in the brain may promote
signaling related to mood disorders.
In conclusion, our study shows that FFAR1 associates

with the PDE4A5 isoform. This discovery highlights the
possibility that developing small molecules aimed at inhi-
biting the association between PDE4A5 and FFAR1 could
provide novel therapeutics for treating patient’s depression
caused by their diet. Further studies are required, however,
to investigate the potential for either a direct interaction of
FFAR1 and PDE4A5 or an indirect one involving β-arrestin.
Determination of the exact interaction sites for these spe-
cies is needed to better understand that pathway and to
develop novel therapeutics based upon disrupting the
interaction of such components. Indeed, small molecules
that selectively target the interaction of the PDEs with FFA
receptors might represent a new generation of anti-
depressants with increased specificity for either overweight
and/or obese individuals.

Materials and methods
Mice and diets
WT C57BL/6J mice and leptin-deficient mice (Lepob or

ob/ob) on a C57BL/6J background were obtained from
The Jackson Laboratory. The PDE4A−/− mouse line was a
kind gift from Marco Conti that was generated as
described61 and crossed with a C57BL/6J background (11
or 12 crossings). Heterozygous PDE4A+/− were crossed to
obtain PDE4A−/− and PDE4A+/+ male littermates that
were used in this study and had access to food and water
ad libitum. All animal study protocols and procedures
were reviewed and conducted in accord with the Guide
for the care and use of laboratory animals (LARC) at
UCSF, approved by the institutional animal care and use
committees of UCSF, and are in compliance with stan-
dards set by the National Institutes of Health. Mice were
fed a ND (LabDiet 5053) or a HFD (Research Diets 12492)
for 3 or 8 weeks.
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Behavioral assays
Behavioral tests were conducted to assess the depres-

sion phenotype to the following sequence: open field,
elevated plus maze, sucrose preference test, tail suspen-
sion, and forced swim test. Open field test was used to
assess the total locomotor activity using the Digiscan
locomotor activity monitor (Model RXYZCM, Omnitech
Electronics; Columbus, OH). Tail suspension62 and forced
swim63 tests were performed to assess the depression-
related phenotype. In both tests, immobilization time is
defined as the average time the mouse does not struggle
to escape in these tests. A modified protocol of the
sucrose preference test64 was performed to assess the
anhedonia phenotype that correlates with depression in
humans. Briefly, for 3 days prior to experimental start,
mice were singly housed and habituated with ad libitum
food and drink from two bottles: tap water and a 2%
sucrose solution. Bottles were reversed every day
throughout the time of the habituation to avoid side
preference. On the day of the test, mice were deprived
from both water and sucrose for 8 h. At the end of the day,
the two bottles were put back for 2 h. Bottles were placed
in a different order in every cage to avoid side preference.
The consumption of water and sucrose solution was
estimated simultaneously in control and experimental
groups by weighing the bottles. The preference for
sucrose was calculated as a percentage of total liquid
consumed. The elevated plus maze test was performed for
the measurement of anxiolytic or anxiogenic behaviors in
rodents65.

Gene expression analysis
RNA extraction, reverse transcription, and real-time

PCR were performed as described66. Primers used were:
PDE4A: Fwd 5′-CGAGCACTACAGTGGTGGAA-3′, Rev
5′-AAAAGGATCAGGCAGGGTCT-3′; PDE4B: Fwd 5′-
GTCCCAGGTTGGTTTCATTG-3′, Rev 5′-ACACAGG
GATGGAATCGAAG-3′; PDE4D: Fwd 5′-GTCCCAT
GTGTGACAAGCAC-3′, Rev 5′-TCAGTGTCTGACTC
GCCATC-3′; PDE4A5: Fwd 5′-TCGCCGCACCGGCC-
CATAGA-3′, Rev 5′-GACGAGGGCCAGGACATGCG-
3′; FFAR1: Fwd 5′-AATGCCTCCAATGTGGCTAG-3′,
Rev 5′-AGTCCTCGTCACACATATTG-3′, FFAR3: Fwd
5′-CTTGTATCGACCCCCTGGTTTT-3′, Rev 5′-GCTG
AGTCCAAGGCACACAAGT-3′; FFAR4: Fwd 5′-TTCA
TATGGGGTTACTCGGC-3′, Rev 5′-GATTTCTCCTAT
GCGGTTGG-3′; GAPDH: Fwd 5′-CAAGGCCGAG
AATGGGAAG-3′, Rev 5′-GGCCTCACCCCATTT-
GATGT-3′.

Gene expression profiling by microarray analysis
Microarray analysis was performed on hypothalamic

areas of mice fed a ND or a HFD for 4 or 8 weeks as
described66. Briefly, hypothalamic area was dissected using

the brain slicer matrix (Zivic Instruments), and total RNA
was isolated with RNeasy Mini kit/RNeasy Lipid tissue mini
kit (Qiagen). Probes were prepared using NuGEN Ovation
Pico WTA V2 kit and NuGEN Encore Biotin Module, and
hybridized to Rat and Mouse Gene 1.0 ST GeneChip arrays
(Affymetrix). Arrays were scanned using an Affymetrix
GCS3000 scanner and Affymetrix Command Console
software, and data were normalized using the RMA algo-
rithm in Affymetrix Expression Console. Microarrays were
normalized for array-specific effects using Affymetrix’s
“Robust Multi-Array” (RMA) normalization and were
reported on a log2 scale. For statistical analyses, we removed
all array probe sets in which no experimental groups had an
average of log2 intensity >3.0. Linear models were fit for
each gene using the Bioconductor “limma” package in R67.
Moderated t-statistics, fold change, and the associated
P-values were calculated for each gene. To account for the
fact that thousands of genes were tested, we reported
FDR-adjusted values, calculated using the
Benjamini–Hochberg method68. Pathway analysis was per-
formed using the GO enrichment and Ingenuity IPA
analysis.

Subcellular fractionation, western blotting, and antibodies
Tissue or cell extracts were lysed in TNE buffer (10 mM

Tris pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% NP40)
supplemented with protease and phosphatase inhibitors
(Calbiochem). Lysates were centrifuged at 4 °C at
16,000 × g for 15 min and the supernatant was stored at
−80 °C for further protein analysis. For the
membrane–cytosol fractionation experiments, cells or
tissue were lysed in HKEM buffer (50 mM KCl, 50 mM
HEPES, KOH pH 7.2, 10 mM EGTA, 1.92 mM MgCl2)
supplemented with protease and phosphatase inhibitors
(Calbiochem) and placed on ice for 30min. Lysates were
spun down for 10 min at 1000 g at 4 °C, and the super-
natant was centrifuged at 100,000 g for 1 h at 4 °C. The
supernatant was saved as the cytosol fraction. The pellet
was resuspended in KHEM buffer+ 1% Triton and
150mM NaCl and incubated for 30 min on ice with
occasional agitation before the second centrifugation for
100,000 g for 1 h at 4 °C. The supernatant was saved as the
membrane fraction. Equal amounts of protein were then
analyzed by western blotting as described69. The following
antibodies were used: rabbit anti-Gapdh (1:4000; Abcam),
rabbit anti-Creb (1:1000; Cell Signaling), rabbit anti-
phospho-Creb (1:2000; Cell Signaling), rabbit anti-Ffar1
(1:2000; Abcam), mouse anti-βarrestin-2 (1:800; Santa
Cruz), mouse anti-Flag (1:3000; Sigma), rabbit anti-
phospho-Pka (1:1000; Cell Signaling), and mouse anti-
Vsv (1:4000; Sigma). For the detection of PDE4A and
phospho-PDE4A, antibodies raised in rabbit and pro-
duced in house were used at 1:1000 as described70.
Densities of the protein bands were measured by ImageJ
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software, and the statistical analysis was done by Graph-
pad prism 7.

Cell culture and in vitro fatty acid treatment and
co-immunoprecipitation (Co-IP)
The human embryonic kidney 293 (HEK293) cells were

maintained in growth medium containing Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10% (v/v) fetal bovine serum, 1% (v/v) L-glutamine, and
1% (v/v) penicillin–streptomycin. The mouse neuro-
blastoma cell line (N2a) were maintained in growth media
containing DMEM supplemented with 10% (v/v) fetal
bovine serum, 1% (v/v) L-glutamine, and 1% (v/v)
penicillin–streptomycin and 1% (v/v) non-essential amino
acid. Transfections were performed at 50–60% confluence
with 5 μg of total circular plasmid DNA using the linear
MW~25000 polyethylenimine (Polysciences Inc.). For the
HEK293, we used 2 μg of PDE4A5-vsv with 2 μg of GPR40
and 1 μg of arrestin-2. For the N2a, we used 2.5 μg of
PDE4A5-vsv with 2.5 μg of arrestin-2. After 24-h trans-
fection, the medium was replaced with fresh pre-warmed
culture medium and further incubated for 24 h before the
cells were treated with palmitic, oleic, and myristic (Nu-
check). Treatment of cells with the different fatty acids
was done by reducing the serum before the actual
experiment. Co-IP was performed as described71. Briefly,
cell lysates were prepared in 1% Nonidet P-40, 150mM
NaCl, 1 mM EDTA, and 10mM Tris·HCl, pH 8.0 supple-
mented with phosphatase and protease inhibitors.
Immunoprecipitations (IPs) were performed with an anti-
Flag antibody and immunoblot with anti-Vsv and
Arrestin-2β (ARB2).

PDE4 activity assays
The PDE4 activity in the brain homogenates was

assayed as described72. The samples were lysated in
KHEM buffer (50 mM KCl, 50 mM HEPES pH 7.2,
10 mM EGTA, 1.9 mM MgCl2) supplemented with pro-
tease (COmplete EDTA-free, Roche) and phosphatase
(PhosSTOP, Roche) inhibitor cocktail tablets. Pilot assays
were carried out to verify PDE4 activity and ensure
activity fell within the linear range of 6000–16,000 counts.
Each sample was done in triplicate and was incubated
with and without the PDE inhibitor rolipram. Rolipram
was dissolved in 100% dimethyl sulfoxide (DMSO) as a
10mM stock solution and diluted in 20mM Tris/HCl,
10 mM MgCl2 buffer (final pH 7.4) to a final concentra-
tion of 10 μM. The difference between the two different
measurements represents the specific PDE4 activity in
each sample.

cAMP measurement of N2a cells
Measurements of cAMP were performed using the

CatchPoint Cyclic-AMP fluorescent assay kit (Molecular

Device, CA). Briefly, cells were lysed in lysis buffer pro-
vided by the manufacturer and left on ice for 15min.
Lysates were spun down for 10min at 1000 g at 4 °C (low-
speed pellet, cell debris, and nuclei) and the supernatant
assayed according to the manufacturer’s instructions.

Fatty acid analysis by gas chromatography–mass
spectrometer
The total concentrations of palmitic acid (16:0), stearic

acid (18:0), myristic acid (14:0), behenic acid (22:0), ara-
chidic acid (20:0), gondoic (20:1), oleic (18:1), and linoleic
(18:2) were determined from tissues by gas
chromatography–mass spectrometry73. A known quantity
of tissue was hydrolyzed and extracted after adding a
known amount of heptadecanoic acid (17:0). Fatty acids
were analyzed as their trimethylsilyl derivatives under
electron impact ionization mode using an Agilent 5973N-
MSD equipped with an Agilent 6890 GC system and a
DB17-MS capillary column (30m × 0.25-mm internal
diameter × 0.25-μm film thickness).

FRET imaging
FRET imaging experiments were performed 24–48 h

after transfection with the PKARI sensor on mouse neu-
roblastoma (N2a) cell line that were seeded onto glass
cover slips. The PKARI probe is based on the AKAP-
binding domain of PKA-RIa fused to the cAMP-binding
domain of EPAC. Cells were maintained at room tem-
perature in dulbecco’s phosphate buffered saline (DPBS)
(Invitrogen, UK), with added CaCl2 and MgCl2, and
imaged on an inverted microscope (Olympus IX71) with a
PlanApoN, 60 × , NA 1.42 oil, 0.17/FN 26.5, objective
(Japan). The microscope was equipped with a CCD
camera (cool SNAP HQ monochrome, Photometrics),
and a beam-splitter optical device (Dual-channel
simultaneous-imaging system, DV2 mag biosystem (ET-
04-EM)). Imaging acquisition and analysis software used
was Meta imaging series 7.1, Metafluor, and processed
using ImageJ (http://rsb.info.nih.gov.ucsf.idm.oclc.org/ij/).
FRET changes were measured as changes in the
background-subtracted 480/545-nm fluorescence emis-
sion intensity on excitation at 430 nm and expressed as
either R/R0, where R is the ratio at time t and R0 is the
ratio at time= 0 s, or ΔR/R0, where ΔR= R–R0. Values
are expressed as the mean ± SEM. Cells were pretreated
with 100 μM of either palmitic or oleic before 5 μM of
forskolin treatment. At the end of every experiment,
saturated doses of forskolin (25 μM) or IBMX (100 μM)
were used to check for the responsiveness of the cells.

Statistical analysis
Data were expressed as mean value ± standard error of

the mean (SEM) and an alpha level of 0.05 was used as
marker of statistical significance. Statistical significances
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between two groups of data were determined using
unpaired, two-tailed Student’s t-test. Statistical analysis of
several groups was carried out either by using two-way
analysis of variance (ANOVA) with different post-test
comparisons against control experiments using GraphPad
Prism 7 or mixed model analysis with fixed and random
factors using R. A P-value >0.05 was not considered
significant (NS), P-value < 0.05 was labeled as (*),
P-value < 0.01 was labeled as (**), and P-value < 0.001 was
labeled as (***).
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