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Transplantation is a treatment option for patients diagnosed with end-stage organ
diseases; however, long-term graft survival is affected by rejection of the transplanted
organ by immune and nonimmune responses. Several studies have demonstrated that
both acute and chronic rejection can occur after transplantation of kidney, heart, and
lungs. A strong correlation has been reported between de novo synthesis of donor-
specific antibodies (HLA-DSAs) and development of both acute and chronic rejection;
however, some transplant recipients with chronic rejection do not have detectable HLA-
DSAs. Studies of sera from such patients demonstrate that immune responses to tissue-
associated antigens (TaAgs) may also play an important role in the development of chronic
rejection, either alone or in combination with HLA-DSAs. The synergistic effect between
HLA-DSAs and antibodies to TaAgs is being established, but the underlying mechanism is
yet to be defined. We hypothesize that HLA-DSAs damage the transplanted donor organ
resulting in stress and leading to the release of extracellular vesicles, which contribute to
chronic rejection. These vesicles express both donor human leukocyte antigen (HLA) and
non-HLA TaAgs, which can activate antigen-presenting cells and lead to immune
responses and development of antibodies to both donor HLA and non-HLA tissue-
associated Ags. Extracellular vesicles (EVs) are released by cells under many
circumstances due to both physiological and pathological conditions. Primarily
employing clinical specimens obtained from human lung transplant recipients
undergoing acute or chronic rejection, our group has demonstrated that circulating
extracellular vesicles display both mismatched donor HLA molecules and lung-
associated Ags (collagen-V and K-alpha 1 tubulin). This review focuses on recent
studies demonstrating an important role of antibodies to tissue-associated Ags in the
rejection of transplanted organs, particularly chronic rejection. We will also discuss the
important role of extracellular vesicles released from transplanted organs in cross-talk
between alloimmunity and autoimmunity to tissue-associated Ags after solid
organ transplantation.
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INTRODUCTION

Emerging research shows that small extracellular vesicles (sEVs)
are potential biomarkers and immune mediators in the field of
transplantation (1–3). After lung transplantation (LTx), sEVs
identified in the circulation and locally in the bronchoalveolar
lavage fluid had distinct RNA profiles under normal and
inflammatory conditions (4, 5). Our reports demonstrate the
presence of mismatched donor human leukocyte antigens
(HLAs) and lung associated-antigens on sEVs surfaces after
LTx, suggesting that sEVs with lung TaAgs can be a biomarker
for monitoring allograft rejection (6). SEVs derived from donor
dendritic cells have been demonstrated to promote allograft-
targeting immune responses by transferring immune-activating
signals and donor HLA molecules (7). Studies have shown that
the development of de novo antibodies (Abs) to mismatched
donor-HLA is associated with chronic rejection after LTx, which
is clinically diagnosed as bronchiolitis obliterans syndrome
(BOS) (8, 9). Evidence also suggests that anti-donor responses
leading to rejection are often due to de novo donor-specific
antibodies (HLA-DSAs) and donor HLA reactive immune T cells
(cellular rejection) (10). Recent evidence clearly demonstrates
that Abs against donor HLA present either before
transplantation or developed de novo after transplantation are
strongly associated with antibody-mediated rejection (AMR),
and repeated episodes of AMR are an important risk factor for
chronic lung allograft dysfunction (CLAD) (11, 12). We have
demonstrated that the development of Abs to TaAgs increases
the risk for the development of HLA-DSAs and vice versa,
indicating crosstalk between allo- and auto-immunity, both of
which are implicated in the development of BOS (13). Abs to
HLAs combined with a loss of the T regulatory cell population is
also implicated in chronic rejection (14, 15). Several risk factors
have been identified for chronic rejection, including donor organ
ischemia, HLAmismatches, development of de novoHLA-DSAs,
recurrent/refractory acute rejections, and viral infections
(16, 17). We postulate that any of these risk factors can lead to
inflammation and tissue remodeling, which facilitates the
induction and release of extracellular vesicles (EVs), leading to
immune responses against donor alloantigens and TaAgs and the
development of allo- and auto-immunity. Although sEVs may
have many relevant biological functions, including the induction
of rejection and/or tolerance, data supporting the contribution of
sEVs to these processes are currently limited. Therefore, the
mechanisms by which sEVs regulate immune responses need
further investigation.
IMMUNE RESPONSES AGAINST HLA AND
NON-HLA TAAGS AND ALLOGRAFT
REJECTION

Immune responses are recognized immediately after organ
transplantation due to ischemia and reperfusion injury of the
transplanted organ (18–21). Recent studies demonstrate a strong
correlation between ischemia-reperfusion injury and de novo
Frontiers in Immunology | www.frontiersin.org 2
HLA-DSAs (22), thus increasing the risk for development of
chronic rejection after human LTx (23–25), and many reports
strongly support the concept that de novo HLA-DSAs after
transplantation can lead to allograft dysfunction, including
AMR (23, 26–28). It is also clear that de novo HLA-DSAs are
an important player in allograft dysfunction during cellular
rejection as many transplant recipients with cellular rejection
have evidence of both T cells mediated immune response and
Abs specific to mismatched HLA (29–31). De novo HLA-DSAs
are an established biomarker for predicting AMR (32–35) and
also play a significant role in the immune-pathogenesis of
chronic rejection (36). Earlier studies have demonstrated that
even a transient presence of de novo HLA-DSAs can be an
important risk factor for the development of chronic rejection,
indicating that persistent HLA-DSAs may not be necessary
(37, 38).

Employing sera from LTx recipients diagnosed with BOS but
without detectable HLA-DSAs in the circulation, we defined
immune responses to lung tissue–associated Ags expressed on
airway epithelial cells and their possible role in the development
of BOS (39). Further, serial analysis of antibody development
after LTx demonstrated that HLA-DSAs can induce immune
responses to lung TaAgs, which may lead to the pathogenesis of
chronic rejection (13). From these studies, we concluded that
HLA-DSAs may induce immune responses to TaAgs, which
either alone or in combination of both increases the risk of BOS.
Significantly, primary graft dysfunction (PGD) is also a well-
known risk factor for the development of BOS (40–42).
Inflammation and tissue remodeling in the recipient and the
surgical stress during transplantation can lead to the expression
of sequestrated antigenic epitopes of TaAgs present in the lungs,
and pre-existing immune responses to TaAgs can lead to PGD
(43). Therefore, it is important to determine the role of pre-
existing immune response to TaAgs after LTx so that rejection
can be avoided.

Several well-studied non-HLA antigens may play a role in
immune responses following organ transplantation. Immune
responses against collagen V (Col-V) and K-alpha 1 tubulin
(Ka1T) have been shown to play an important role in eliciting
both cellular and humoral immune responses leading to lung
allograft rejection (44, 45). Furthermore, Abs against cardiac
myosin (MYO) and vimentin (VIM) have been reported to be
present during cardiac allograft rejection (46, 47). After human
kidney transplantation, Abs against perlecan (48), Col-IV, and
fibronectin (FN) have been associated with rejection (49). In
addition, immune responses against major histocompatibility
complex (MHC) class I-related chain A (MICA) molecules have
been identified in patients undergoing lung, kidney, and heart
allograft rejection (50–52). These Abs to non-HLA antigens
often precede the diagnosis of chronic rejection in lung, heart,
and kidney recipients, suggesting a causal relationship (50–52).
Recently, the International Society of Heart and Lung
Transplantation guidelines proposed AMR as a distinct
clinicopathological entity characterized by the presence of
allograft dysfunction in concert with histological findings of
capillary injury, positive immunofluorescence for C4d in lung
April 2022 | Volume 13 | Article 861583

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ravichandran et al. Extracellular Vesicles in Solid Organ Transplants
tissue biopsies, and detection of circulating HLA-DSAs (11, 53).
Accumulating evidence now suggests that early post-transplant
events promote the development of inflammatory processes
which subsequently lead to the development of de novo HLA-
DSAs, increasing the risk for rejection of the transplanted organ
(9, 27, 35). We demonstrated the role of HLA-DSAs to
mismatched HLA molecules and Abs against two important
lungs TaAgs (Col-V, Ka1T) in LTx recipients diagnosed with
BOS (54–56). The presence of HLA-DSAs during AMR has also
been associated with the development of Abs to Col-V and Ka1T
in LTx recipients (55).
TISSUE ASSOCIATED AGS: ROLE IN
LUNG ALLOGRAFT REJECTION

Col-V is a collagen intercalated within fibrils of type I collagen
present in lung tissue. Yoshida et al. have demonstrated that Col-
V is exposed and also released in bronchoalveolar lavage fluid
due to ischemia-reperfusion injury during LTx (57). Iwata et al.
have shown that graft injury mediated by HLA-DSAs can also
modify Col-V and release Col-V fragments that serve as a major
target in the transplanted organ for the development of Abs
against TaAgs (58). Our laboratory analyzed pre-transplant sera
from 317 LTx recipients between 2000 and 2011 with a diagnosis
of chronic obstructive pulmonary disease, idiopathic pulmonary
fibrosis, cystic fibrosis, or other end-stage lung diseases for Abs to
Col-V and demonstrated that patients with idiopathic
pulmonary fibrosis and cystic fibrosis had the highest
prevalence of Abs to lung TaAgs. The Abs to lung TaAgs
increased the risk for development of HLA-DSAs, PGD, and
BOS (59). Tiriveedhi et al. demonstrated that Col-V epitopes
shift from both a1 and a2 to only a1during BOS; this shift in
immunodominant epitopes is correlated with a decreased
expression of IL-10 and increased expression of IFN-g (60).
Col-V-specific Th17 cells and monocyte/macrophage accessory
cells have been shown to cause progressive airway obliteration
(61). De novo immunity to Col-V resulting in BOS was
associated with donor-lung HLA-DR15+, suggesting that
donor-derived HLA-DR15 presents novel self-peptides to
recipient T cells (62).

We also demonstrated that administration of Abs to lung
TaAgs (Col-V, Ka1T) in animal models of LTx resulted in
antigenic epitope spreading between lung TaAgs and allo-
MHC molecules leading to marked lung graft cellular
infiltration, bronchiolar fibrosis, and loss of tolerance (63).
Passive administration of Abs to Ka1T also led to cellular and
humoral immune responses to Col-V, demonstrating a spreading
of immune responses leading to the development of fibrosis in
the transplanted organ and signifying the importance of immune
responses to TaAgs in the pathogenesis of chronic rejection (45).

Studies have shown that tolerance to a lung allograft can be
induced when CD4+ Col-V-specific regulatory T cells, which can
downregulate Th17-mediated acute rejection, are administered
after LTx (64). T regulatory cells that mediate Col-V-induced
tolerance to lung allografts are phenotypically CD4+CD45RC
Frontiers in Immunology | www.frontiersin.org 3
high, lacking Smad7, and have not been associated with TGF-b-
mediated signaling (65). We also investigated the role of B cells
and their antigen-presenting properties in the induction of
obliterative airway disease model where Abs to MHC class I
were administered in B cell −/− and wild-type mice. Incidence of
Ka1T- and Col-V-specific IL-17 cells significantly decreased in
B−/−mice, and Abs against TaAgs and germinal center formation
did not develop in B−/− mice (66). Our study has also described
that induction of a transcription factor, zinc finger, and BTB
domain-containing protein 7a (Zbtb7a) in alveolar macrophages
were critical regulators of the inflammatory circuit associated
with development of Abs to TaAgs in an obliterative airway
disease model (67).

Ka1T is an epithelial gap junction-associated protein
expressed also in the lungs (36). In a clinical study of adult
LTx recipients (N=142), we demonstrated that the presence of
Abs to Ka1T pre-transplant led to an increase in
proinflammatory cytokines IL-1 (2.1 fold increase), IL-2 (3.0
fold increase), IL-12 (2.5 fold increase), and IL-15 (3.0 fold
increase) and chemokines IP-10 (3.9 fold increase) and MCP-1
(3.1 fold increase) and increased the risk of PGD and BOS (68).

Budding et al. demonstrated the presence of anti-ETAR and
anti-AT1R auto-Abs in both pre- and post-transplant sera from
43 LTx patients transplanted due to chronic obstructive
pulmonary disease, cystic fibrosis, or interstitial lung disease
(69). Pre- and post-transplant sera from 162 LTx recipients at
three centers between 2011 and 2013 were tested for Abs
to AT1R and ETAR. Recipients with strong/intermediate
binding of Abs to AT1R and ETAR had increased AMR onset
and development of de novo HLA-DSA (70). After organ
transplantation, development of Abs to AT1R and ETAR is
likely due to damage to the endothelium of the host or
transplanted organ followed by shedding of the extracellular
particles of the receptors (71).
TAAGS IN CARDIAC ALLOGRAFT
REJECTION

Abs to tissue-associated antigens have been validated as
important mediators of rejection, allograft dysfunction, and
cardiac allograft vasculopathy (CAV) after heart transplantation
(72, 73). In heart transplant recipients, increased levels of AT1R
have been associated with AMR, cell-mediated rejection, and
early onset of micro vasculopathy at 1-year post-transplant (74).
A recent study has demonstrated an association of VIM Ab with
other non-HLA Abs in heart transplant recipients even when the
patient is treated for AMR (75). Analysis using a non-HLA
antigen multiplex panel has also documented, and validated, an
important role for non-HLA Abs in heart transplantation (76).

An earlier study demonstrated allogeneic heart transplantation
in mice resulted in a breakdown of immune tolerance to cardiac
MYO, and pre-transplant sensitization of recipient mice with
cardiac MYO caused a marked acceleration of rejection of
allogeneic heart grafts. This strongly suggests that allogeneic
transplant-induced autoimmunity to cardiac MYO contributes
April 2022 | Volume 13 | Article 861583
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to cardiac graft rejection (77). Humoral autoimmune responses
against cardiac MYOwere associated with dilated cardiomyopathy
and increased the frequency and severity of acute rejection after
heart transplantation (78). Further studies that evaluated Abs to
cardiac MYO in pre- and post-transplant sera from 41 adult
cardiac allograft recipients suggested a pathogenic role for anti-
MYO Abs in both acute and CAV-related heart transplant
rejection (46, 79).

Earlier studies in nonhuman primates also demonstrated the
role of humoral immunity to VIM and its association with cardiac
allograft injury (80). Mahesh B, et al. (81, 82) demonstrated that
autoimmune responses to VIM in conjunction with alloimmune
responses accelerate CAV progression in murine cardiac allografts.
RENAL SAGS: ROLE IN KIDNEY
TRANSPLANTATION

Tissue-associated Ags are cryptic epitopes that can serve as
targets for the development of autoimmunity when exposed
(83). Studies have demonstrated that Abs against kidney TaAgs
Frontiers in Immunology | www.frontiersin.org 4
contribute to the process of acute AMR after kidney
transplantation (83, 84) and to the development of transplant
glomerulopathy (49). Well-characterized renal TaAgs include
AGT1R perlecan, Col-IV, and FN. Perlecan, a proteoglycan
embedded within the vascular basement membrane, when
degraded by metalloproteinases or cathepsin-L, releases
endorepellin and a truncated C-terminal fragment harboring a
laminin G motif (LG3) (85). Increased urinary levels of LG3 have
also been observed in kidney transplant recipients with chronic
rejection (86, 87). Endothelial apoptosis is associated with acute
and chronic vascular rejection of solid allografts (88). Apoptotic
endothelial cells release LG3, a regulator of obliterative vascular
remodeling during rejection, which can lead to development of
autoimmunity (86). Yang et al. demonstrated that the presence of
pre-transplant LG3 was associated with reduced allograft
function at 1 year in kidney transplant recipients; severity of
renal injury at the time of transplantation had a negative impact
on long-term outcomes (89). Recent studies have also
demonstrated that Abs against perlecan can cause acute
humoral rejection in pre-sensitized patients regardless of
development of Abs to HLA after kidney transplantation (90).
FIGURE 1 | EVs interact with cells via numerous ligand–receptor interactions and sEVs can activate not only direct and indirect pathways of antigen presentation
but also via the semidirect pathway in which T cell activation occurs via donor-derived sEVs.
April 2022 | Volume 13 | Article 861583
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Col-IV is a major constituent of glomerular basement
membranes (91, 92). Studies have demonstrated that Col-IV is
upregulated in acutely deteriorated renal allografts, and
differential staining of Col-IV in glomerular basement
membranes and the interstitium may help to diagnose chronic
transplant nephropathy (93).

BK virus–associated nephropathy (94) and persistent BK
viremia (defined as lasting >140 days) were also associated
with de novo development of Abs against mismatched donor
HLA antigens (HLA-DSA) (95). We demonstrated polyomavirus
reactivation was associated with early de novo development of
Abs to the kidney-associated Ag FN; the immune responses to
FN along with Col-IV were associated with an increased risk of
acute rejection (96). Dragun et al. first demonstrated the role of
Abs to AT1R and its association in renal transplant recipients
Frontiers in Immunology | www.frontiersin.org 5
with acute vascular rejection with refractory hypertension (97).
Abs to AT1R that bind to G-protein–coupled receptors can
induce stress in endothelial cells via activation of distinct
intracellular cell-signaling pathways (98). Several studies have
associated pre- and post-transplant AT1R and ETAR Abs with
AMR and adverse late graft outcomes in kidney transplantation
(99–101).
EVS: ROLE FOR ELICITING IMMUNE
RESPONSES TO TAAGS

Our group, including others, demonstrated that the development
of Abs to mismatched donor HLA as well as immune responses
to lung TaAgs are strongly associated with the development of
FIGURE 2 | Composition of sEVs from lungs, heart and kidney transplant patients. (A) Col-V and Ka1T TAgs on lung specific sEVs (B) MYO and VIM TAgs on heart
specific sEVs (C) Perlecan and Fibronectin TAgs on kidney specific sEVs.
April 2022 | Volume 13 | Article 861583
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BOS (55, 102, 103). Studies have shown that lung injury due to
PGD, acute rejection, and respiratory viral infections, known risk
factors for the development of CLAD, also induce circulatory
sEVs with lung TaAgs (6, 104). sEVs (68, 105–107). Based on
these results, we propose that stress to the transplanted organ
either by PGD, respiratory viral infections, rejection episodes, or
HLA-DSAs can release circulating sEVs with lung TaAgs.
Persistence of these sEVs in the circulation can lead to
continued immune activation and the development of allo-
and auto-immunity, which can increase the risk of BOS. EVs
interact with cells via numerous ligand–receptor interactions,
and sEVs can activate not only via direct and indirect pathways
of antigen presentation but also via the semidirect pathway, in
which T cell activation occurs via donor-derived sEVs (Figure 1)
(108, 109).

EVs, or sEVs, are released by all cells, and EVs are
heterogeneous in size and composition. EVs are classified by
size: microvesicles (100–1000 nm in diameter), apoptotic bodies
(>50-5000 nm in diameter), and sEVs (50–150 nm in diameter)
(110, 111). All the secreted vesicles carry proteins/peptides,
lipids, nucleic acids (DNA, RNA), and small metabolites; the
composition and functional impact of vesicles depend on their
cellular origin (112). The composition of sEVs is critical as they
can be a potential biomarker for function in biological processes.
In addition, there are certain markers, apart from size, are
enriched in sEVs than other vesicles (e.g., TSG101, syntenin,
tetraspanins, CD9, CD63, and CD81) (113, 114). Focus here is to
discuss the role and importance of sEVs in the development of
immune responses to TaAgs (autoimmunity) in lung allograft
and other solid organ transplant recipients.

SEVs are involved in several biological and immune processes
(115). Our group has recently validated the use of circulating
sEVs with lung TaAgs as a potential biomarker in the early
diagnosis of BOS after LTx (116). In addition, different clinical
conditions after LTx that increase the risk for CLAD, e.g., PGD,
AR, HLA-DSAs, and respiratory viral infections, can induce
circulating sEVs with lung TaAgs (117). Increasing evidence
supports a possible role of sEVs in the pathogenesis of various
human diseases (108, 118–120). We have reported that sEVs
isolated from LTx recipients contain increased levels of the lung
TaAgs (Col-V, Ka1T) during acute and chronic rejection (6).
Preliminary studies have also shown association of sEV’s
containing cardiac TaAgs (VIM and MYO) in syngeneic
cardiac transplant rejection induced by antibodies to cardiac
myosin rejection (121). Our preliminary studies also
demonstrated sEV’s containing kidney antigens (FN and Col-
IV) in kidney transplant recipients was associated with
transplant glomerulopathy and interstitial fibrosis and tubular
atrophy (IFTA) (unpublished data) (Figure 2).
EVS IN ELICITING IMMUNE RESPONSES

The development of alloimmunity and Abs to TaAgs
(autoimmunity) after transplantation is likely due to the
induction and release of sEVs from the transplanted organ
Frontiers in Immunology | www.frontiersin.org 6
under varying conditions resulting in stress to the allograft. We
and others have demonstrated that circulating sEVs released
from the transplanted organ indeed play an important part in
eliciting immune responses leading to rejection (7, 109,
122, 123). The presence of mismatched donor HLA and lung
TaAgs (Col-V, Ka1T) in sEVs isolated from LTx recipients
diagnosed with rejection demonstrates that the sEVs originated
from the transplanted organ (6, 104). In a murine model of
chronic lung allograft rejection (124) in which a single lung from
B6D2F1 (H2b/d) mice was orthotopically transplanted into DBA/
2(H2d) recipients, sEVs containing mismatched donor MHC
(H2b) and lung TaAgs (Col-V, Ka1T) were released (days 14 and
28), and Abs to donor MHC developed, a known risk factor for
pathogenesis of CLAD (12, 27). Furthermore, passive
administration of these sEVs to DBA/2 recipient mice led to
the development of Abs to donor MHC (H2b) and Abs to lung
TaAgs, signifying that sEVs stimulate immune responses that
lead to rejection (125). SEVs also contained MHC class II
molecules; costimulatory molecules CD40, CD80, and CD86;
and transcription factors class II MHC trans-activator, NF-kB,
hypoxia inducible factor-1a, IL-1R–associated kinase 1, MyD88,
and 20S proteasome (123). These molecules often increase in
sEVs in LTx recipients with BOS in comparison to stable LTx
recipients (123). We have also demonstrated that sEVs isolated
from LTx recipients with BOS are immunogenic in vivo since
immunization of mice with isolated sEVs resulted in humoral
and cellular immune responses to lung TaAgs (6).

In a recent study, we demonstrated that sEVs from LTx
recipients with BOS also contained NK cell markers (CD56,
NKG2D) and cytotoxic molecules (perforin, FasL) (126) and,
therefore, can play an important role in antiviral and antitumor
immune surveillance (127). In the chronic murine LTx rejection
model discussed above, we demonstrated that circulating sEVs
are also derived from NK cells since isolated sEVs contain NK
cell–associated molecules (NKp46, CD56, NKG2D) and
cytotoxic molecules (perforin, FasL) (125). Further, NK cell
depletion significantly reduced fibrosis in transplanted lung
tissue, suggesting a role for NK cells in the pathogenesis of
chronic rejection in this murine model of LTx rejection (125).

Recent studies demonstrated that the two phenotypes of
CLAD (BOS and restrictive allograft syndrome) can be
differentiated by levels of specific proteins in circulating sEVs
(128). SEVs from patients with the restrictive allograft syndrome
phenotype carry higher amounts of costimulatory marker
CIITA, transcription factor NFkB, lung TaAg Ka1T, and class
II HLA-DQ and DR molecules and 20S proteasome.

A recent study demonstrated that EVs derived from vascular
injury, ApoExo, as novel inducers of tertiary lymphoid structure
(TLS) formation by attracting IL‐17‐producing gamma delta T
cells to the allograft and ApoEXo proteasome activity was the
important mediator of TLS formation (129). The formation of
TLS in kidney allografts has been associated with severe and/or
chronic forms of rejection. Earlier studies have demonstrated a
stepwise breakdown of B-cell tolerance and formation auto
antibodies during chronic rejection (130). The mechanism that
occurs within the kidney graft during chronic rejection is due to
April 2022 | Volume 13 | Article 861583
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changes in intragraft microenvironment which can be mediated
by ApoExo released by local tissue injury (129, 131). A recent
study demonstrating donor EVs were transported across the sub
capsular sinus macrophages, and donor MHC molecules on the
EVs were recognized by alloreactive B cells (132). This triggered
B cell activation and DSA production, suggesting the EVs can
activate immune response by semi direct pathway and does not
always require donor leukocytes to directly interact for B
cell allosensitization.
TUMOR SUPPRESSOR GENE LIVER
KINASE B1 (LKB1) AND LUNG
ALLOGRAFT REJECTION

LKB1, also known as serine/threonine protein kinase 11, is a
tumor suppressor gene (133, 134). By direct phosphorylation,
LKB1 activates a family of 14 kinases related to the AMP-
activated protein kinase (AMPK) (135–137). Most functions of
LKB1 are attributed to its ability to activate AMPK, a central
conserved regulator of metabolism and cell growth (138). AMPK
regulates factors involved in cell metabolism, proliferation,
survival, migration, and invasion (139–142). It has been
demonstrated that loss of LKB1 is a biomarker for more
aggressive biology in KRAS-mutant lung adenocarcinoma (6,
143). Studies have also demonstrated that expression of LKB1
inhibits epithelial-mesenchymal transition, tissue fibrosis, and
malignant transformation (144, 145).

Recently, we demonstrated significantly reduced abundance
of LKB1 in both mRNA/protein level in circulating sEVs isolated
from LTx recipients diagnosed with BOS compared to sEVs
isolated from stable LTx recipients (146). Our study also
demonstrated novel findings indicating that sEV-mediated
downregulation of a tumor suppressor gene, LKB1, in primary
epithelial cells may also play an important role in chronic
rejection after LTx by inducing epithelial-mesenchymal
transition by upregulating VIM and a-SMA, leading to the
pathogenesis of BOS (146).
SEVS WITH TISSUE-ASSOCIATED AGS AS
A BIOMARKER FOR CLAD

A recent report by our group demonstrated that circulating sEVs
isolated from plasma and bronchoalveolar lavage fluid from LTx
recipients with BOS have donor HLA and significantly increased
levels of lung TaAgs (Ka1T, Col-V) (6, 61). Based on this
finding, we analyzed plasma samples collected from LTx
recipients 6 and 12 months before the clinical diagnosis of
BOS from two different LTx centers. Increased levels of lung
TaAgs were detected in sEVs isolated from these samples 12
months before the clinical diagnosis of BOS, indicating that
circulating sEVs with lung TaAgs can be a viable noninvasive
biomarker for identifying patients at risk for developing CLAD
(116). The determination of Col-V or Ka1T in circulating sEVs
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by western blot followed by semi-quantitation provides a higher
positive predictive value with excellent sensitivity and specificity.
During this study, the validation cohorts demonstrated that
levels of sEVs containing Col-V had a sensitivity of 70% and a
specificity of 80% at 6 months and a sensitivity of 60% and a
specificity of 75% at 12 months before clinical diagnosis of BOS.
For the lung TaAg, Ka1T, sensitivity was 60% and specificity was
80% at 6 months and sensitivity was 65% and specificity was 80%
at 12 months. Early detection of patients at risk for developing
chronic rejection provides an opportunity to develop strategies to
prevent or intervene before the onset of irreversible damage to
the transplanted organ.

We also found LKB1 expression was downregulated in
circulating sEVs isolated from LTx recipients with BOS 6
months before the clinical diagnosis. Recently, it has been
reported that aldehyde/sulfate latex beads can bind to sEVs
and bead-sEVs can be detected by flow cytometry (147). Using
this method, we demonstrated that LKB1 levels were significantly
lower in sEVs isolated from LTx recipients 6 months before
clinical diagnosis of BOS than in sEVs isolated from stable LTx
recipients (146).
VIRAL ANTIGENS IN CIRCULATING SEVS

LTx recipients are prone to respiratory viral infections (respiratory
syncytial virus, rhino, cytomegalovirus, and corona). Respiratory
viral infections have been shown to increase the risk of CLAD, but
the mechanisms remain largely unknown. One of the reports
demonstrated that respiratory viral infections after LTx induce
circulating sEVs that contain lung-associated Ags and viral
antigens (117), and the viral antigens are on the surface of the
isolated sEVs. These sEVs also induced immune responses to
TaAgs when mice were immunized with isolated sEVs (123).

sEVs isolated from LTx recipients with respiratory viral
infections also contained nucleic acid sequences of DNA and
RNA viruses. These sequences in sEVs can induce innate
immune signaling, cellular stress, and epithelial-mesenchymal
transition both in vitro and in vivo through cGAS/STING and
RIG1 pathways (148).

Recently, we demonstrated the physiological role of sEVs in
eliciting immune responses during SARS-CoV-2 infection (149).
SEVs carrying the SARS-CoV-2 spike protein were detectable in
the circulation earlier than Abs to the SARS-CoV-2 spike protein
in healthy individuals vaccinated with the mRNA BNT162b2
(Pfizer–BioNTech) vaccine (149). Mice immunized with the
sEVs carrying the spike protein also developed Abs to the
SARS-CoV-2 spike protein, indicating the immunogenicity of
sEVs in vivo (Figure 3).
MICRORNA’S IN EVS AND THEIR ROLE IN
IMMUNE RESPONSE

Several studies have demonstrated that microRNAs (miRNAs)
play a major role in the regulation of allograft cells function in
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response to injury following solid organ transplantation (150–
152). A recent integrative omics analysis of kidney allograft
biopsies demonstrated several miRNA associated with
microvascular inflammation-related pathways, in particular
miRNA such as miR-142-3p/150-5p/155-5p/222-3p/223-3p
(150). Earlier studies from our lab, and others, in organ
transplantation have shown miRNA such as miR142-3p/5p
(AMR) (153), miR155 (T cell activation and fibrosis) (154),
miR223 (inflammation and aggravation of renal dysfunction)
(151), miR10a (acute rejection) (155), let-7c (inflammation, cell
migration, and proliferation) (156) can predict allograft
status (157).

EVs are enriched in noncoding RNAs, of which miRNAs play
an important role and the mechanisms regulating selective
miRNA packaging into EVs are being explored (158). Earlier
studies demonstrated in response to endotoxin stimulation,
macrophages secrete EVPs containing miR-155, which in turn
promotes inflammatory responses to LPS in vivo (159, 160).
These studies provide evidence that miRNA transfer between
immune cells facilitate the regulation of inflammatory responses
(161). Dendritic cell derived EVs have been demonstrated to
regulate innate immunity by EV-mediated transfer of miRNAs
Frontiers in Immunology | www.frontiersin.org 8
among DCs contributes to enhance their mutual activation
during inflammation (162, 163). DC derived EVs with CD86, a
costimulatory molecule, activates T cells through direct or semi-
direct pathway (3, 164). A recent study in murine models of renal
allografts demonstrated highly immature DC–derived EVs
containing miR-682, suppressed CD4+ T cells and promoted
regulatory T cell development, whereas mature DC–derived EVs
induced T cell immunity (165). Treg-derived EVs have also been
demonstrated to induce a tolerogenic phenotype of DC by
transfer of miRNAs (miR-150-5p and miR-142-3p) (166). T
cells also release sEVs and other EVs after T cell receptor
activation having a dual role (immune suppression or
activation) depending on the miRNA content and release
(167, 168).
EVS IN ATTENUATING IMMUNE
RESPONSES

Recent studies have demonstrated that sEVs also play a role in
the induction of tolerance after transplantation (169, 170).
Donor-derived sEVs possess immunoregulatory molecules and
FIGURE 3 | sEVs from SARS-CoV-2 infected and vaccinated patients. Presence of SARS-CoV-2 spike protein on sEVs and immunization of mice with the sEVs
leads to development of SARS-CoV-2 antibodies in mice.
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also carry cell-derived antigens and donor HLA molecules. After
infusion of donor monocyte-derived regulatory cells 7 days
before transplantation, living liver transplant donors
demonstrated transiently elevated levels of donor HLA, and
immunoregulatory PD-L1, CD39 and CD73 molecules were
detected in circulating small EVs, which can promote an
immunosuppressed environment (171). Extracellular adenosine
is a well-studied neurotransmitter, but it also exerts profound
immune regulatory effects on the tolerogenic functions of DCs s
by activity of CD73 and CD39 (172). PD-L1 and CD73 also can
induce T cell anergy leading to tolerance (164, 173, 174). In an
earlier study, circulating sEVs carrying PDL-1 and CD73
inhibited antitumor activities in patients with acute myeloid
leukemia by delivering their suppressive cargos to immune
recipient cells (175). Further, several reports have shown that
allogeneic sEVs and T regulatory cell–derived sEVs can be used
to promote tolerance to allografts (164, 176–178). A recent
report demonstrated that T regulatory cell–derived IL-35-
coated EVs can promote infectious tolerance (179).
CONCLUSIONS AND FUTURE
PERSPECTIVES

Several clinical and pre-clinical studies have demonstrated that
immune responses to mismatched donor HLA and tissue-
associated non-HLA TaAgs play an important role in the
rejection of solid organ transplants; however, many questions
remain unanswered. Pre- and post-transplant HLA-DSAs are
now routinely monitored not only to select histocompatible
donors but also to identify transplant recipients at risk for
rejection so that appropriate treatment strategies can be
instituted. Identification of sensitization to non-HLA tissue-
associated Ags both before and after transplantation is likely to
improve the outcome of the transplanted organ. This may also
impact long-term survival of allografts by preventing or delaying
onset of chronic rejection, which remains a major problem
following organ transplantation. Currently, only a limited
number of non-HLA tissue-associated Ags have been
identified, and their role in rejection has been proposed.
Certainly, other molecules and receptors that play a role in
allograft rejection are yet to be discovered. For example,
muscarinic receptor is a G protein-coupled receptor-like
AT1R, distributed in the lungs, that has a distinct functional
role in lung physiology. An earlier study demonstrated that high
levels of Abs to muscarinic receptors in sera altered immune
Frontiers in Immunology | www.frontiersin.org 9
regulation in patients with chronic fatigue syndrome (180). It is
clear from the recent literature that sEVs released from
donor organs play an important role in inducing rejection, in
particular chronic rejection. Donor-derived sEVs possess
immunoregulatory molecules and also carry cell-derived
antigens and donor HLA molecules. Apart from intercellular
communication, the mechanisms by which sEVs regulate
immune responses after transplant is yet to be explored.
However, it is evident that circulating sEVs with tissue-
associated antigens synergistically mediate alloimmune and
autoimmune responses. Therefore, it is important to define the
role of circulating sEVs and identify strategies to selectively
control the role of donor organ–derived sEVs since recipient
sEVs are critical to normal physiology. Studies are also required
to confirm the potential use of sEVs as a biomarker of allograft
rejection, especially to identify transplant recipients at risk for
developing chronic rejection so that strategies can be developed
for preventing and treating this form of rejection, which remains
a major impediment to long-term function of the transplanted
organ, especially lung allografts. Finally, with further
investigation, sEVs carrying viral antigens can likely play an
important role in the early identification of various viral and
bacterial infections affecting organ transplant recipients since
circulating sEVs contain viral and bacterial antigens.
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