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Breast cancer (BCa) represents a medically heterogeneous group of malignancies,
with differing biological and genetic makeups [1,2]. This malignancy unequally affects
women of different races, ethnicities, and economic backgrounds [3,4]. Because of its
diverse prevalence and subtypes, BCa often poses diagnostic and treatment challenges. In
previous generations, guidance tended to lack specificity and direction in the management
of BCa [5].

The landscape of BCa today has moved well beyond its historic limitations, with the
advent of encouraging innovations not only in precision diagnosis and treatment, but
most importantly in understanding the biology of the disease. Novel developments in
circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) technology (i.e., liquid
biopsies) has led to a less-expensive and non-invasive means for predicting disease severity
and survival potential in BCa patients [6–8]. The refinement of tumor profiling using
artificial intelligence and machine learning tools has likewise enabled the prediction of
drug response with selected miRNA isoforms [9].

Phenotype and genotype, with the aid of tissue microarray data, currently classifies
BCa into distinct subgroups. This reflects the 8th edition of the AJCC cancer staging man-
ual for BCa where, in addition to classic anatomic Tumor, Node and Metastasis (TMN)
categories, prognostic groups now incorporate information on grade (i.e., Nottingham
histological score), receptor expression (i.e., ER, PR, and HER2 status), and results from
a multigene panel assay [10]. With the adoption of these guidelines, BCa staging more
accurately reflects the underlying biology and inherent tumor aggressiveness than previ-
ously possible.

Inroads in pharmaceutical therapies for BCa have been equally impressive, with the
well-tested and currently available inhibitors of CDK4/6 and AKT. Furthermore, recent
regulatory approvals include: (1) TRODELVY (sacituzumab govitecan) for triple negative
BCa (TNBC); (2) ENHERTU (trastuzumab deruxtecan) for unresectable or metastatic HER2-
positive BCa; (3) TUKYSA (tucatinib) for advanced and metastatic HER2-positive BCa,
including patients with brain metastases; and (4) PIQRAY (alpelisib) for HR+/HER2−

advanced or metastatic BCa with PIK3CA mutations who have progressed after initial
aromatase inhibitors [11,12].

Cellular immune function also plays an important but intricate role in BCa. On
the treatment side, both immune checkpoint inhibitors (targeting programmed death
protein-1/programmed death protein-ligand 1) and tumor-infiltrating lymphocytes have
demonstrated clinical benefit in BCa, especially TNBC disease [13,14]. As a potential
predictive marker for BCa, cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4/CD152),
a member of the Immunoglobulin superfamily and negative regulator of T-cell activation, is
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at the forefront of targeted compounds receiving research attention. Specifically, in a meta-
analysis based on 52 case-referent studies and stratified by ethnicity, the single nucleotide
polymorphisms CTLA-4 +49 A/G has been associated with a statistically decreased risk of
BCa [15].

Another exciting area of progress has been in polymeric nanotechnology [16,17]. Multi-
ple drug resistance and the presentation of unwanted side effects, attributable to inadequate
drug concentrations at the tumor site, has limited the effectiveness of various BCa drugs.
Nanoscale-based pharmaceuticals, focusing on the tumor microenvironment and tumor
disseminate cells, have shown promise for overcoming these limitations. For example, the
combined incorporation of quercetin (a naturally occurring flavonoid manifesting antioxi-
dant, anticarcinogenic, anti-inflammatory, antiallergic, and antiviral properties), scorpion
venom peptides (known to induce apoptosis), and the proprietary compound Phospho-
lipon 90H into a nano-based delivery system has displayed antiproliferative efficacy in a
cell line derived from human BCa MCF-7 cells [18]. This optimized formula resulted in
significant cell cycle arrest at the S phase and increased levels of caspase-9, Bax, Bcl-2, and
p53 mRNA expression.

Therapeutic advances extend beyond the above-mentioned drugs involving local
therapy. Intraoperative radiation therapy (IORT), delivering a single dose of radiation
during breast conserving surgery (BCS), has become an accepted alternative to whole
breast irradiation (WBI) among patient with early stage BCa [19,20]. Additionally, hypo-
and ultra-fractionated radiation after surgery has now become standard of care, without
decreasing local control or increasing long term late toxicities [21]. In fact, most modern
trials have shown the risk of local failure remains extremely low with a breast conserving
approach. There are several ongoing trials testing whether the best prognostic group of BCa
patients can avoid adjuvant radiation altogether (NCT03878342) [22], NCT02889874 [23]).

On the surgical frontline, autologous and implant-based breast reconstructions are
innovations currently available for the rebuilding of the breast, typically on the same day as
surgery [24]. Indeed, oncoplastic breast surgery has become a hallmark in the post-surgical
management of BCa patients [25]. Additionally, sentinel lymph node biopsy has replaced
morbid full axillary nodal dissection in most cases of early BCa, thereby reducing long-term
complications, without decreasing local control.

BCa continues to be the most commonly diagnosed malignant tumor among women
worldwide [26]. In spite of advances in the field, the death rate remains high for advanced
and metastatic disease. Many questions persist regarding the diagnosis and treatment of
this cancer, especially given its intricate molecular subtypes and varying pathologies [27].
In the search for solutions, we expect that research will progress forward with the discovery
and implementation of novel targeted compounds and other breakthrough therapies. Early
BCa diagnosis will also benefit from research involving innovative imaging techniques and
efforts to reduce the cost of (and correspondingly, increase the access to) these methods.
The ongoing transition from traditional localized therapy to systemic-based approaches,
based on a patient’s molecular and genetic profile, holds promise for future advances that
ideally will improve patient survival and quality of life [28].
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