
REVIEW
published: 09 September 2016
doi: 10.3389/fphys.2016.00382

Frontiers in Physiology | www.frontiersin.org 1 September 2016 | Volume 7 | Article 382

Edited by:

Olga Vagin,

University of California, Los Angeles,

USA

Reviewed by:

Jack H. Kaplan,

University of Illinois at Chicago, USA

Will Fuller,

University of Dundee, UK

*Correspondence:

Lijun Liu

lijun.liu@utoledo.edu

Specialty section:

This article was submitted to

Membrane Physiology and Membrane

Biophysics,

a section of the journal

Frontiers in Physiology

Received: 31 May 2016

Accepted: 22 August 2016

Published: 09 September 2016

Citation:

Liu L, Wu J and Kennedy DJ (2016)

Regulation of Cardiac Remodeling by

Cardiac Na+/K+-ATPase Isoforms.

Front. Physiol. 7:382.

doi: 10.3389/fphys.2016.00382

Regulation of Cardiac Remodeling by
Cardiac Na+/K+-ATPase Isoforms
Lijun Liu 1*, Jian Wu 2 and David J. Kennedy 1

1Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA, 2Center for

Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA

Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury

during the development of heart failure and is a determinant of heart failure. Preventing

or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte

Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the

Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms

are unclear. There are limited data from human cardiomyocytes. Abundant evidences

from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling,

hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous

isoform and possesses both pumping and signaling functions. The α2 isoform of the

Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological

hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac

hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective

approach for prevention of cardiac remodeling. In this article, we will overview: (1) the

distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes.

(2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility,

cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac

Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.
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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of death in the United States, contributing to
more than a third of deaths annually. Heart failure is a complex clinical syndrome resulting from
structural or functional alterations in the heart which render it unable to meet the body’s need
for blood. In the United States, the risk of developing heart failure is 20% for the population aged
40 and over (Writing Committee et al., 2013). One in 9 deaths in 2009 included heart failure as
contributing cause. Although the clinical management for heart failure has improved, mortality
rates remain at∼50% within 5 years of diagnosis.

Cardiac remodeling occurs after cardiac pressure or volume overload or ischemic injury during
the development of heart failure, and is a crucial factor in the prognosis of heart failure (Rizzello
et al., 2009). Preventing or reversing remodeling is a goal of heart failure treatment (Konstam
et al., 2011). Currently, beta-blockers and angiotensin converting enzyme (ACE) inhibitors or
angiotensin receptor blockers (ARBs) are the first line of treatment in heart failure patients.
Although several risk factors (hypertension, diabetes and coronary artery disease, etc.) have been
identified, there are no effective strategies to prevent cardiac remodeling and heart failure.
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Digoxin is the only FDA-approved cardiac glycoside. It can
be beneficial in mild or moderate heart failure patients with
reduced ejection fraction. Several clinical trials have shown that
digoxin treatment improves symptoms and modestly reduces the
combined risk of death and hospitalization (Writing Committee
et al., 2013). Besides the known inotropy, effects of cardiac
glycosides on cardiac remodeling have a long history. In 1933,
Christian (1933) advocated the prophylactic use of digitalis to
retard cardiac enlargement in heart disease patients without heart
failure. In 1965, Williams and Braunwald (1965) presented the
first experimental evidence that supports this proposal. Rats,
subjected to suprarenal aortic constriction and treated with
daily non-toxic doses of digitoxin prior to and following aortic
constriction, exhibited less myocardial hypertrophy and a lower
incidence rate of fatal heart failure than those subjected to aortic
constriction but not treated with digitoxin. On the other hand,
digoxin is reported to increase the mortality in chronic renal
failure patients on dialysis (Chan et al., 2010). Infusion of cardiac
glycosides causes reactive oxygen species stress (Charlemagne
et al., 1994) and stimulates renal and cardiac fibrosis in animals
with experimental renal injury (Kennedy et al., 2006; Elkareh
et al., 2007; Fedorova et al., 2009).

The Na+/K+-ATPase is the only known receptor for cardiac
glycosides (Shattock et al., 2015). It is unclear whether cardiac
glycosides regulate cardiac remodeling and whether they can
prevent or promote cardiac remodeling. The inconsistencies of
the effect of cardiac remodeling may be due to the complexity
of multiple isoforms of the α subunit and different binding
properties of cardiac glycosides.

The Na+/K+-ATPase is an integrated membrane protein,
which hydrolyzes ATP for the energy of the coupled active
transport of Na+ and K+. It belongs to the P-type family of
ATPase and consists of two non-covalently linked α and β

subunits that are essential for ion pumping (Sweadner, 1989;
Blanco and Mercer, 1998; Kaplan, 2002). The FXYD1 protein,
i.e., phospholemman (PLM), is the third subunit in the heart that
regulates the function of the enzyme (Geering, 2005). There are 3
isoforms of the α subunit (α1, α2, and α3) and 2 isoforms of the
β subunits in the heart. The human heart expresses all 3 isoforms
of the α subunit (Sweadner et al., 1994). Monkey and dog heart
have roughly equal amount of α1 and either α2 or α3. Sheep
and chicken heart only have the α1 isoform (Sweadner et al.,
1994). The α1 isoform is ubiquitously present in the heart of all
species. In the recent literature, a large amount of results came
from rats and mice. In rodents, adult cardiomyocytes express
mainly two isoforms of Na+/K+-ATPase α subunit, α1 (∼75%)
and α2 (≤25%), which have low and high affinities for ouabain,
respectively (Sweadner et al., 1994; Bers et al., 2003; Verdonck
et al., 2003).

In addition, different cardiac glycosides, e.g., ouabain and
digoxin, have the same binding sites on the Na+/K+-ATPase
although slightly different contacts may be made owing to the
different sugar backbones (Laursen et al., 2015). Katz A. et al. have
reported that glycosylation of cardiac glycosides contributes to
human Na+/K+-ATPase isoform selectivity (Katz et al., 2010). At
least in the case of digoxin, there is up to four-fold preference for
α2 or α3 over the α1 isoform (Laursen et al., 2015). Those reports

suggest that targeting different isoforms through modification of
chemical structure of cardiac glycosides is a possible approach.

In this article, we will review the structural and
enzymatic differences of α isoforms of the Na+/K+-ATPase
in cardiomyocytes and the role of α isoforms of the
Na+/K+-ATPase in cardiac hypertrophy and fibrosis.

ENZYMATIC ACTIVITY, DISTRIBUTION,
AND FUNCTION OF Na+/K+-ATPase
ISOFORMS IN CARDIOMYOCYTES

The Na+/K+-ATPase (or sodium pump) was discovered in 1957
(Skou, 1957). It is a key enzyme in human cardiac myocytes
(density up to 107 molecules per cell) (Lelievr et al., 2001).
This enzyme plays an important role in maintaining the cellular
Na+ and K+ ion gradient, regulates cell volume, and enables
the Na+-coupled transport of a multitude of nutrients and
other ions across the cell membrane. Under normal conditions,
the electrochemical potential gradient for Na+ ions, which the
enzyme maintains, is one of the driving forces of Na+/Ca2+

exchanger to extrude intracellular Ca2+. In the classical ion
pumping view of the Na+/K+-ATPase, when cardiac glycosides
bind to the enzyme, they inhibit the active Na+ efflux and
increase intracellular Ca2+ through Na+/Ca2+ exchanger. As a
result, cardiac glycosides increase cardiac contractility.

The α subunit of the Na+/K+-ATPase is considered as
the catalytic subunit and has ATP, cardiac glycosides, and
other ligand binding sites. The β subunit is essential for the
assembly of a functional enzyme (McDonough et al., 1990).
There are multiple isoforms of each subunit with tissue and
species specificities, and variations among the sensitivities of
the isoforms to cardiac glycosides. In human cardiomyocytes,
α1β1, α2β1, α3β1 are expressed in all regions (LA, RA, LV, RV,
and S), while there is very low β2 expression in certain regions
only (Wang et al., 1996; Schwinger et al., 2003). As judged by
the sensitivities of Na+/K+-ATPase activity to ouabain (IC 50),
the KD values (measured by 3H ouabain binding), and by a
biphasic ouabain dissociation process, at least two functionally
active Na+/K+-ATPase isoforms coexist in normal human hearts
(Lelievr et al., 2001): The IC 50 values are 7.0± 2.5 nM and 81±
11 nM; the KD values in the presence of 10mM [K+] are 17.6 ±
6 nM and 125± 25 nM; the dissociation rate constants are 360×
10−4 min−1 and 42×10−4 min−1 (Lelievr et al., 2001).

There are observed kinetic differences (e.g., Km values for
Na+, K+) among these isoforms, but their subtlety makes them
an unlikely basis for physiological significance. Instead, recent
work suggests that the major functional distinction among the
isoforms is their interaction with regulatory proteins (Pressley
et al., 2005). Isoform specific region among the isoforms are the
NH2 terminus, the extracellular ouabain binding site, and the
cytoplasmaic region between amino acids 403 and 503 (Blanco
and Mercer, 1998). Moreover, the isoform-specific effects of
modulatory proteins such as protein kinase C seem to originate
within two regions of structural divergence: the amino terminus
and the 11 residues near the center of the alpha subunit of
the isoform-specific region (Blanco and Mercer, 1998; Pressley
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et al., 2005). The comparative protein model using human α

sequencing based on pig α1 shows that there are very few isoform
differences in the transmembrane and in the regions interacting
with β and γ subunits; conversely, large clusters of isoform
differences map at surface-exposed regions of the A- and N-
domains (Morth et al., 2009). The structure difference may lead
to isoform-specific cell signaling. Another example is that, in
trafficking, α1 is recruited to the membrane by adaptor protein
1 via Tyr 255, a residue not conserved in other isoforms (Cinelli
et al., 2008).

Besides its ion pumping function, the Na+/K+-ATPase also
serves as a scaffold protein interacting with neighboring proteins
and facilitates multiple cell signaling events. As shown in
Figure 1, Na+/K+-ATPase signaling mainly has two parallel
pathways, one is the EGFR/Src/ERK pathway and another is the
phosphoinositide 3-kinase (PI3K) α/Akt/β-GSK/mTORpathway.
To be sure there is some debate regarding the nature of the
interaction between the Na+/K+-ATPase and Src (Weigand
et al., 2012; Clifford and Kaplan, 2013; Yosef et al., 2016).
Ouabain indeed does activate Src in myocytes (Haas et al., 2000;
Mohammadi et al., 2001, 2003; Xie and Askari, 2002; Liu et al.,
2003, 2004) and several lines of evidence support the finding that
the Na+/K+-ATPase and Src do interact and induced by ouabain
or high salt by immunoprecipitation assay in cardiomyocytes,
breast cancer cells, and primary pig proximal tubular cells and
LLC-PK1 cells (Mohammadi et al., 2003; Kometiani et al., 2005;
Liu et al., 2011; Yan et al., 2013). However, the mechanisms of

the interaction between the Na+/K+-ATPase and Src are unclear.
The mechanistic analysis on living cells are required to clarify
the complicated network in cells. Thus, some of the conflicting
results regarding the interaction between the Na+/K+-ATPase
and Src may be related not only to cell specificity and specific
in vitro conditions with detergent-treated membrane purified
sodium pump.

The α1 and α2 isoforms play different roles in cardiomyocyte
function. There is ample evidence of α1 isoform signaling (Xie
and Askari, 2002; Bossuyt et al., 2009; Han et al., 2009; Shattock
et al., 2015; Stanley et al., 2015) while no direct evidence is
shown on the α2 isoform signaling in cardiomyocytes. Based
on different affinities of α1 and α2 for ouabain in mice, and
the cardiomyocytes detubulation, Berry et al. (2007) found
that α1 is the predominant current conductor, contributing
88% of total recordable current Itotal− pump. Although Iα1
density predominates over Iα2 in both the surface sarcolemmal
membrane (SSL) and T-tubules, the difference of current density
between α2 and α1 is markedly decreased in the T-tubule.
It was reported that α1 is uniformly distributed between
SSL and T-tubules, while α2 is ∼5 times more concentrated
in T-tubules; strongly suggesting a different role of two
isoforms in cardiomyocytes. A similar distribution pattern of
two isoforms was recapitulated in rat cardiomyocytes (Despa
and Bers, 2007; Swift et al., 2007). NCX and L-type Ca2+

channels are also enriched in T-tubules. Both α1 and α2
were shown to be functionally and physically coupled with

FIGURE 1 | Schematic diagram of Na+/K+-ATPase pumping and signaling functions in cardiomyocytes (Liu et al., 2006, 2007; Wu et al., 2015). Inhibited

pump alters local [Na+]i and induces myocytes contractility; Major effect of ouabain signaling is Src/Ras/ROS/ERK cascade in α1/ α3 neonatal cardiomyocytes; Major

effect of ouabain signaling is PI3Kα /Akt pathway in α1/ α2 adult cardiomyocytes.

Frontiers in Physiology | www.frontiersin.org 3 September 2016 | Volume 7 | Article 382

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Liu et al. Na/K-ATPase Isoforms Regulate Cardiac Remodeling

NCX in cardiomyocytes; however, they differ in their effects
on intracellular Ca2+ through regulating [Na]i (Yamamoto
et al., 2005). The α1 isoform regulates global [Na]i, while α2
controls local [Na]i. α2 isoform is reported to regulate calcium
(James et al., 1999), preferentially modulate Ca2+ transients and
sarcoplasmic reticulum Ca2+ (Despa et al., 2012). Recent reports
have shown that the α2 isoform of theNa+/K+-ATPase is inactive
during the resting potential in adult rat cardiomyocytes and
primarily affects calcium handling during systole (Stanley et al.,
2015). This suggests that the α2 isoform of Na+/K+-ATPase is a
specific voltage-dependent isoform (Stanley et al., 2015).

Adrenergic signaling may affect Na+/K+-ATPase
activity. This effect is stimulated by PKA and/or PKC and
phosphorylation of FXYD1 (phospholemman, PLM) in
hearts (Bers and Despa, 2009). Cardiac ischemia induces
PKA-dependent phosphorylation of PLM and activates α1
Na+/K+-ATPase activity but not α2 in rats (Fuller et al.,
2004). Interestingly, α-adrenergic agonist increases α2 specific
Na+/K+-ATPase activity in guinea-pig cardiomyocytes (Gao
et al., 1999). Bers and colleagues clearly showed that β-adrenergic
signaling stimulates α1 Na+/K+-ATPase activity, but not
α2 activity on mouse cardiomyocytes (Bossuyt et al., 2009).
Similarly, forskolin (activating cAMP/PKA, the downstream of
β-adrenergic signaling) also specifically activates α1 Na+/K+-
ATPase activity in guinea-pig cardiomyocytes (Gao et al., 1999;
Silverman et al., 2005). Furthermore, the combination of β- and
α -adrenergic signaling in the heart somehow leads to dramatic
reduction of α2 but not α1 (Sjogren et al., 2016). While these
effects of β-adrenergic stimulation have been documented in
rodent cardiac myocytes, it is less clear how this may translate
to human cardiac myocytes especially in the setting of heart
failure where reductions in α1 and α2 Na+/K+-ATPase have
been noted.

ALTERATIONS OF Na+/K+-ATPase
ISOFORMS IN CARDIAC HYPERTROPHY

Isoforms of the cardiac Na+/K+-ATPase play different roles in
cardiac hypertrophy (Huang et al., 1997a; Kometiani et al., 1998;
Xie and Askari, 2002; Bai et al., 2013). Most data shown in the
literature are in rodent. While there are α1 and α2 isoforms
in adult cardiomyocytes, α1 and α3 isoforms are expressed in
neonatal cardiomyocytes.

In cultured neonatal cardiomyocytes, hypertrophic stimuli
that mimic pressure overload induces reduced Na+/K+-ATPase
activity and the regression of α3 mRNA and protein without the
alteration of α1 mRNA and protein (Huang et al., 1997b).

Ouabain activates phosphoinositide 3-kinase (PI3K) α /Akt/β-
GSK/mTOR and lead to physiological hypertrophy in cultured
adult cardiomyocytes (Liu et al., 2007; Bai et al., 2013; Wu et al.,
2015). It is featured different from pathological hypertrophy as
no increase the influx of Ca2+ (Bai et al., 2013) and hypertrophic
markers (ANP and BNP) in hypertrophic myocytes (Bai et al.,
2013; Wu et al., 2015).

Regression of the ouabain-sensitive isoform α2 is the marker
associated with cardiac hypertrophy in vivo (Book et al., 1994;
Charlemagne et al., 1994; Wu et al., 2015), although several

reports have demonstrated that the ouabain-resistant isoform
α1 is also downregulated in cardiac remodeling (Norgaard
et al., 1988; Semb et al., 1998; Borlak and Thum, 2003; Zwadlo
and Borlak, 2005; Kennedy et al., 2006). The α2 isoform
mRNA and protein are decreased during hypertrophy of the
left ventricle, e.g., in pressure-overload (Book et al., 1994;
Ruiz-Opazo et al., 1997; Rindler et al., 2013), isoprenaline-
induced cardiac hypertrophy (Baek andWeiss, 2005), myocardial
infarction (Book et al., 1994), and uremic cardiomyopathy
(Kennedy et al., 2006). Alteration of the α2 isoform of the
Na+/K+-ATPase may be a mechanism for pressure overload-
induced transcriptional response (Ruiz-Opazo et al., 1997). This
downregulation of the α2 isoform attenuates the control of
Na+/Ca2+ exchanger (NCX) activity and reduces the capability
to extrude Ca2+ from cardiomyocytes (Swift et al., 2008). In
failing hearts, the α2 isoform are correlated to increases Ca2+

cycling (Liu and O’Rourke, 2008) and disorganized T-tubule
network in cardiomyocytes (Swift et al., 2008). However, the
cause-and-consequence of down-regulation of α2 in cardiac
remodeling is unclear.

It is interested to know if the compensation between the
isoforms and interaction among the isoforms and other proteins
would be true in human heart. In α1+/− heterozygote mice,
cardiac α2 was increased 50%. In α2+/− heterozygous mice,
α1 was not changed but NCX was dramatically increased
(Yamamoto et al., 2005). Another example is Ankyrin-B.
Ankyrin-B is a universal cell membrane adaptor protein. It may
be the scaffold protein for the interaction between Na+/K+-
ATPase and NCX. Reduced T-tubular α1 and α2 were shown in
the mice with heterozygous knockdown of Ankyrin-B (Mohler
et al., 2003).

Overexpression of cardiac-specific α2 but not α1 (Correll et al.,
2014) protects the heart from pressure overload induced cardiac
hypertrophy, fibrosis, and cardiac dysfunction, suggesting
that α2 regulates cardiac pathological hypertrophy. Na+/K+-
ATPase α2 overexpression does not block TAC-induced pro-
hypertrophic signaling pathways, such as previously established
Ca2+/calmodulin-dependent protein kinase II (CaMKII) and
nuclear factor of activated T cells (NFAT) (Correll et al., 2014),
but its impact on NCX1 is sufficient to improve cardiac function
during the cardiac remodeling. The possible mechanisms may
be because overexpression of α2 decreases PLM levels and
phosphorylation. PLM is an inhibitor of Na+/K+-ATPase
activity. Although both α1 and α2 isoforms directly couple to
NCX1, α2 isoform is much more enriched in T-tubules and
partial inhibition of α2 but not α1 can increase Ca2+ transients
suggesting α2 isoform is responsible for regulating NCX1 to
control intracellular Ca2+. [Na+] curve of Na+/K+-ATPase
activity in overexpressed α2 myocytes shifted to left compared
to control and α1 overexpression suggesting α2 has a higher
affinity and it may be due to less regulated by PLM. Intracellular
Na+ plays a crucial role in contractility and cardiac remodeling
in failing hearts because lower intracellular Na+ results in less
damage to mitochondria and reduction in ATP production
(Pieske et al., 2002; Pogwizd et al., 2003).

Cardiac-specific α2 isoform knockout mice are able to survive
and have no change in baseline cardiac function (Correll et al.,
2014). Reversing the sensitivities of the α1 and α2 isoform
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to ouabain causes more severe hypertrophy and fibrosis by
pressure-overload (Wansapura et al., 2011). These findings
indicate that α1 and α2 isoforms play distinct roles in regulating
cardiac remodeling.

To be sure the relative insensitivity of rodent Na+/K+-
ATPase compared to human is well known and is an important
methodological limitation in studies that examine Na+/K+-
ATPase interactions with cardiac glycosides, such as those
referenced above. Thus, these studies need to be interpreted in
light of this important limitation and care needs to be given
to extrapolating their relevance to humans, especially as these
differences may be exacerbated in the heart.

OUABAIN INFUSION IN CARDIAC
REMODELING

Infusion of ouabain (15 µg/kg/day × 18 weeks) doubles plasma
“ouabain-like” immune-reactive material from 0.3 to 0.7 nM and
induces hypertension as well as cardiac and renal hypertrophy
in rats (Ferrandi et al., 2004). Other studies (Manunta et al.,
1994, 2000; Huang and Leenen, 1999; Rossoni et al., 2002) also
showed that infusion of ouabain (25–30µg/kg/day) for 5 weeks
induces hypertension in rats. Rats are much more sensitive to
hypertension compared to mice via ouabain. However, other
researchers stated that cardiac hypertrophy in rats by ouabain is
independent of hypertension (Jiang et al., 2007).

Conversely, ouabain does not induce cardiac hypertrophy
in mice; moreover, ouabain is protective against pathological
hypertrophy. Infusion of ouabain (300µg/kg/day) induces
hypertension in mice and results in 3.3 nM of “ouabain-like”
immune-reactive material (Dostanic et al., 2005). Infusion of
ouabain (50µg/kg/day × 4 weeks) does not induce mouse
hypertension and cardiac hypertrophy in vivo (Wu et al., 2015).
Others (Dostanic et al., 2005) also reported that the repeated
daily administration of 100 µg/kg of ouabain to mice resulted
in no significant change (the range of 0.75–0.87 nM) in serum
of “ouabain-like” immune-reactive material and no effect on
systolic blood pressure. The minimal dose of ouabain causing
positive inotropic effect is noted to be 40 nM in isolated perfused
heart (Dostanic et al., 2003). Infusion of ouabain (50µg/kg/day)
with an implantable osmotic pump in mice for the first 4
weeks starting 1 day after transverse aortic constriction (TAC)
prevents pressure-overload-induced cardiac hypertrophy (Wu
et al., 2015). The prophylactic effect of sub-inotropic and sub-
nanomolar dose of ouabain is associated with activation of
PI3Kα (Wu et al., 2015). Ouabain also attenuates TAC-induced
reduction of the α2 Na+/K+-ATPase. These results demonstrate
the regression of α2 Na+/K+-ATPase in cardiac hypertrophy and
suggest that preservation of the α2 Na+/K+-ATPase improves
cardiac function and prevents cardiac hypertrophy. These data
provide experimental evidence that ouabain can be beneficial to
stage A [at high risk for heart failure (HF) but without structural
heart disease or symptoms of HF] and B (structural heart disease
but without signs or symptoms of HF) patients but not the stage
C (structural heart disease with prior or current symptoms of
HF) and D (refractory HF requiring specialized interventions)

patients [according to the American Heart Association (AHA)
and American College Cardiology Foundation (ACCF) guideline
(Writing Committee et al., 2013)].

Intriguingly, recent findings by Neubig and colleagues
(Sjogren et al., 2012, 2016) have shown that by screening several
thousand compounds, digitalis drugs (including ouabain and
digoxin) are able to stabilize RGS2 protein, a molecular brake for
overdriven Gq signaling in the diseased heart. More interestingly,
they further proved the stabilization of RGS2 protein by very
low concentration of digoxin (2µg/kg/day, 7 days) protects heart
from injury in mice (Sjogren et al., 2016). However, it is unclear
that the impact of digitalis drugs on RGS is direct or indirect via
Na+/K+-ATPase.

OXIDATIVE STRESS, ENDOGENOUS
CARDIOTONIC STEROIDS, AND CARDIAC
FIBROSIS

Ouabain activates membrane receptor tyrosine kinase and
Src/Ras and results in increase of mitochondrial reactive
oxidase species (ROS) in cardiomyocytes (Liu et al., 2000,
2006). Ouabain-induced ROS is independent of the changes of
intracellular calcium and sodium (Xie et al., 1999; Liu et al., 2000,
2006). ROS are not contributed to the positive inotropic effect of
ouabain, but a ROS-dependent pathway is involved in ouabain-
induced hypertrophy (Xie et al., 1999), and contributes to gene
transcriptional regulation of hypertrophy (Liu et al., 2000; Liu
and Xie, 2010).

Since “endogenous ouabain” in human was first reported in
1991 (Hamlyn et al., 1991), many research groups have isolated
Na+/K+-ATPase ligands and identified them as “ouabain-,”
“digoxin-,” “marinobufagenin (MBG)-,” and “telocinobufagin”-
like steroids (Hamlyn, 2014) and collectively referred to as
“cardiotonic steroids” (Bagrov et al., 2009). Several clinical and
experimental studies have reported that endogenous Na+/K+-
ATPase ligands act as natriuretic hormones and are elevated
in cardiovascular and renal diseases (Kolmakova et al., 2011;
Kennedy et al., 2015). “Endogenous ouabain” in the immediate
postoperative period was strongly indicative of a more severe
cardiac disease and predicts mortality in heart failure patients
undergoing elective cardiac surgery (Simonini et al., 2015). There
are debates and inconsistencies within this field. For example,
conversely, other research groups were not able to detect plasma
endogenous ouabain in any conditions (Baecher et al., 2014;
Lewis et al., 2014). Technical problems on the measurement
of these “endogenous” steroids need to be resolved in the near
future.

The hypothesis proposed by Blaustein (2014) is that
endogenous ouabain (EO) has similar short term effect but
different long term effect than that of digoxin. Long-term
effects of EO cause hypertension and heart failure (Blaustein,
2014). Fedorova and coworkers demonstrated that in response
to salt loading, transient increases in brain EO, stimulates
adrenocortical MBG via an angiotensin I receptor pathway
resulting in renal sodium pump inhibition and elevation in
blood pressure (Fedorova et al., 2005). Nevertheless, Endogenous
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MBG affects different signaling pathways and functions from
ouabain in the heart. Plasma MBG is elevated in uremic
cardiomyopathy in rats (Haller et al., 2012), as well as in the
left anterior descending (LAD) ligation model of heart failure
in mice (Fedorova et al., 2015a; Kennedy et al., 2015). Elevated
plasma MBG is correlated with higher blood pressure, especially
in salt sensitive men (Fedorova et al., 2015b). Moreover, MBG
stimulates collagen synthesis and cardiac fibrosis (Elkareh et al.,
2007; Kennedy et al., 2015; Drummond et al., 2016). Infusion
of MBG to mice increases nitrative stress and cardiac fibrosis
(Fedorova et al., 2015a; Kennedy et al., 2015), while monoclonal
antibodies against MBG are able to reverse cardiac fibrosis in
uremic cardiomyopathy (Haller et al., 2012). MBG (100 nM)
also resulted in a two-fold rise in collagen-1 in cultured rat
aortic smooth muscle cells and a marked reduction in the
vasorelaxation following endothelin-1 stimulated constriction in
the aortic rings (Fedorova et al., 2015a). Elevated MBG levels
are associated with worsened right ventricular function even
after controlling for age, sex, diabetes mellitus, and ischemic
pathogenesis in humans (Drummond et al., 2016). Clearly, MBG
exhibits at least some of its effects via the α1 isoform as infusion
ofMBG causes cardiomyocyte death and dilated cardiomyopathy
in α1 knockdown mice (Liu et al., 2012).

SUMMARY

The Na+/K+-ATPase α isoforms play an important role in
the regulation of cardiac remodeling. A schematic diagram

that visually summarizes the reviewed results and conclusion
is presented to assist readers in efficiently seeing the proposed
interaction effects in Figure 1. The α1 isoform regulates cell

growth and survival pathways, ROS generation, hypertrophy,
and cardiac fibrosis. While the α2 isoform has known functions
in the regulation of calcium, contractility and hypertrophy on
cardiomyocytes, further work will be necessary to delineate
any signal transduction role beyond these known functions.
While human cardiomyocytes contain three α isoforms, much
work remains to determine their function in the healthy
and diseased heart and their potential contribution to cardiac
remodeling. The Na+/K+-ATPase α isoforms are positioned
as promising therapeutic targets that can be exploited in both
the prevention and treatment of heart failure. As such, future
mechanistic work investigating the contribution of specific
isoforms of the Na+/K+-ATPase will not only advance our
understanding of cardiac remodeling but may also provide
insight into novel treatment strategies for patients with heart
failure.
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