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Abstract

Inflammatory bowel disease results from alterations in the immune system and intestinal

microbiota. The role of intestinal epithelial cells (IECs) in maintaining gut homeostasis is well

known and its perturbation often causes gastrointestinal disorders including IBD. The epi-

thelial specific adaptor protein (AP)-1B is involved in the establishment of the polarity of

IECs. Deficiency of the AP-1B μ subunit (Ap1m2-/-) leads to the development of chronic coli-

tis in mice. However, how this deficiency affects the gut microbes and its potential functions

remains elusive. To gain insights into the gut microbiome of Ap1m2-/- mice having the colitis

phenotype, we undertook shotgun metagenomic sequencing analysis of knockout mice. We

found important links to the microbial features involved in altering various physiological path-

ways, including carbohydrate metabolism, nutrient transportation, oxidative stress, and bac-

terial pathogenesis (cell motility). In addition, an increased abundance of sulfur-reducing

and lactate-producing bacteria has been observed which may aggravate the colitis

condition.

Introduction

Inflammatory bowel disease (IBD) results from abnormal cross-talk between the host and

intestinal microbiota in an immunocompromised or genetically susceptible individual. IBD is

considered as an autoimmune disease in which the body’s own immune system attacks the ele-

ments of the digestive system. IBD is characterized by chronic intestinal inflammation that can
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occur in both the small and large intestines. This inflammatory condition includes two main

forms, ulcerative colitis (UC) and Crohn’s disease (CD). In patients with IBD, high-through-

put studies of intestinal microbiota using shotgun metagenomics or 16S rRNA sequencing

have shown a state of dysbiosis, which is characterized by altered microbial diversity, viz.,

reduced phylum Firmicutes and enhanced Proteobacteria [1]. In addition, reports based on

amplicon metagenomic sequencing have often exhibited imputed functional alterations and

found altered metabolic pathways associated with increased nutrient transport systems, oxida-

tive stress, and decreased amino acid metabolism [2]. However, heterogeneity in both IBD

aetiology and pathology creates a complication in the generalization of microbial associations

across the disease spectrum.

In order to investigate the microbial associations involved in intestinal inflammation,

mouse models of IBD are the most preferred potential systems as environmental influences

and host genetics can be easily controlled. Different mouse models, however, reproduce differ-

ent features of human diseases and thus result in differential host-microbial interactions.

Therefore, it is imperative to perform comprehensive analyses of the intestinal microbial diver-

sity across different IBD models which will highlight various aspects of the immunological

modulation of the gut microbiota and vice-versa. Towards this, community profiling studies

have been carried out in several IBD models and diversity in taxonomy has been observed in

the different models under investigation [3]. For example, the colitis model generated through

the dextran sodium sulphate (DSS) feed leads to a chemical disruption of the mucosal epithe-

lium, resulting in inflammation induction driven by microbiota [4]. In this model, multiple

bacterial taxa have been found to increase, including Enterobacteriaceae [5, 6], and flagellin

transcripts have been found to decrease at the functional level [6, 7]. In contrast, mouse models

generated by knocking out T-bet (T-bet− /−), a transcription factor, along with the deficiency

of an acquired immune system (T-bet− /− Rag2− /− UC (TRUC)), has led to the development of

spontaneous colitis, which is a consequence of increased TNF-α (dendritic cell-derived) and

dysbiosis in commensal microbiota [8, 9]. The authors reported a high abundance of colito-

genic microbiota in this model, including high abundance of the family Enterobacteriaceae,

which has been linked to tetrathionate metabolism [10]. This was suggested as the conse-

quence of the abnormal innate immune control of the commensal microorganisms [10]. In

contrast to the DSS model, the TRUC model was found to be linked to an increase in flagellar

components [10], suggesting heterogeneous pathogenic working mechanisms in these IBD

models.

In addition to these microbiome-associated colitis studies, there are cases where the micro-

biome association with colitis remains unexplored at the genetic level. One such example is of

the development of chronic colitis in adaptor protein (AP)-1B deficient mice. The role of intes-

tinal epithelial cells (IECs) in maintaining intestinal homeostasis is well known. IECs lining the

mucosal surface are a physical barrier between the internal environment of the host and the

external environment. The highly polarized nature of the epithelial cells make them distinct,

and a critical factor for maintaining this polarity is AP-1B, the epithelium-specific basolateral

targeting factor [11, 12]. The function of AP-1B–mediated protein targeting in maintaining

homeostasis of the gastrointestinal immune system has been previously elucidated [13]. This

was done by using mice in which the gene Ap1m2, which is responsible for expression of the

epithelial specific medium subunit (μ1B) of AP-1B protein had been knocked out. The absence

of this protein spontaneously led to the development of T-helper (Th) 17-dominant colitis due

to impaired functioning of the two vital epithelial effector functions: luminal transport of secre-

tory IgA and expression of antimicrobial proteins [13]. These defects have been shown to

increase bacterial translocation into the colonic mucosa [13]. The polymeric Ig receptor (pIgR)

and a substantial number of basolateral cytokine receptors mistargeted to the apical plasma
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membrane resulted in compromised immune function of the epithelial cells in the Ap1m2-/-

mice. The authors also found reduced expression of the AP1M2 gene in the colonic epithelium

of CD patients [13]. Additionally, mislocalization of the basolateral cytokine receptors was

reported in one of the patient samples. All of the above phenotypes confirm that the absence of

AP-1B lead to overall perturbation of gastrointestinal immune homeostasis.

In our previous study the molecular mechanisms of AP-1B in immune homeostasis were

explored. However, alternations in the microbial population due to the deficiency of this pro-

tein complex has not been addressed. In addition, the effect of the absence of the Ap1m2 gene

on the gut microbes and their potential functions in the development or progression of sponta-

neous chronic colitis remains unknown. Towards this, we have performed a whole genome

shotgun (WGS) based metagenomic analysis of mice lacking the Ap1m2 gene, which is respon-

sible for expression of the AP-1B medium subunit (μ1B) [14].

Material and methods

Animal experiments and sample collection

All animal experiments were approved by the Institutional Animal Care and Use Committee

(IACUC) of the RIKEN Yokohama Branch. Mice were maintained under specific pathogen-

free (SPF) conditions in the animal facility at the RIKEN Yokohama Branch. A total of

eight fresh fecal samples were collected from four control (Ap1m2 +/-) and four knockout

(Ap1m2 -/-) 10-week-old male (C57BL/6) mice. The fecal samples were stored at -80˚C before

DNA extraction.

DNA extraction

Fecal DNA extraction was performed as described previously [15]. Briefly, 10 mg of freeze-

dried fecal samples were disrupted with 3 mm and 0.1 mm zirconia/silica beads by vigorous

shaking (1,500 r.p.m. for 5min) using a Shake Master (Biomedical Science) suspended in DNA

extraction buffer containing 200 μL of 10% (w/v) SDS/TE (10 mM Tris-HCl, 1 mM EDTA,

pH8.0) solution, 400 μL of phenol/chloroform/isoamyl alcohol (25:24:1), and 200 μL of 3 M

sodium acetate. After centrifugation, bacterial genomic DNA was purified by the standard

phenol/chloroform/isoamyl alcohol protocol. RNAs were removed from the sample by RNase

A treatment.

Shotgun metagenomic sequencing

The sequence libraries of WGS were constructed using the Illumina TruSeq DNA Sample

Preparation kit having catalog number PE-940-2001. Sequencing was performed using the

Illumina HiSeq2000 platform to generate 125 bp paired-end reads. In a step of End repair, the

fragments were purified using AMPureXP beads with gel-free method. Each sample was run

in a single lane. This approach generated around 1 Tb of sequence data for all eight samples.

The quality of raw reads was analyzed using FastQC (version- 0.11.5) [16]. Adapter removal

and Q-score (Q = 30) based filtering was done using FaQCs (version- 1.34) [17]. Duplicated

sequences were removed by PRINSEQ (PRINSEQ-lite 0.20.4) [18] and host DNA was

removed using Bowtie2 (version 2.2.5) [19].

Metagenomic data analysis

Data analysis of metagenomic quality filtered reads was performed using the MEGAN Com-

munity Edition (version 6.8.18) [20]. Alignment (BLASTX) of the quality filtered reads was

performed using DIAMOND (version 0.9.9.110) [21] at default parameters using nr-db
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(downloaded on 19 July 2017) as the reference database. The taxonomy and functional classifi-

cation profiles were generated by MEGAN using a minimum score of 50 and a cutoff of the

top 10%. The taxonomical and functional profiles were generated using the mapping files (pro-

t_acc2tax-May2017.abin and acc2eggnog-Oct2016X.abin, respectively) provided on the

MEGAN website. The backtracing of statistically significant functions with statistically signifi-

cant taxa was done using EggNOG 4.5.1 [22]. The statistically significant differences between

the control and knockout metagenomic samples were identified using STAMP (version 2.1.3)

[23]. The differences between these two groups, or datasets, were analyzed using Welch’s t-

test. The confidence interval and p-value threshold for the analysis was set to 95% and 0.05,

respectively.

Additionally, the artifacts introduced during library preparation may introduce a bias in

the resulting sequences. Apart from this, the abundance of taxa neccessary to exert a physiolog-

ical effect also needs to be considered. With this in mind, we set abundance percent thresholds

on all taxonomy levels, which have been found to be differing significantly between the control

(CO) and knockout (KO) mice, to identify those taxa with an abundance equal to or greater

than 0.005% in atleast one of the samples among all eight samples. In addition to this, a thresh-

old was set at the functional level such that only those significant functions were considered

for the downstream analysis that have a mean abundance difference between CO & KO

groups > 5.

Results

We sequenced four control (CO) and four knockout (KO) fecal samples using Illumina

paired-end sequencing technology. This resulted in 2,687,761,416 raw sequences with an aver-

age number of 335,970,177 reads per sample and an average read-length of 125 bps (S1 Table).

After performing a quality filtering analysis, including adaptor trimming and removal of low

quality reads, duplicated reads and reads matching to the mouse reference genome,

1,282,643,136 high quality reads (Q>30) with an average number of 160,330,392 reads and an

average read length of 109 bps per sample were obtained.

Identification of microbial taxa in the control and knockout groups

Taxonomic composition analysis indicated that Firmicutes and Bacteroidetes were the predom-

inant phyla followed by Verrucomicrobia, Actinobacteria, and Proteobacteria in all the samples

of the control (CO) and knockout (KO) groups (S1 File). However, the proportion of these

taxa was found to be different in the two groups. The KO group compared to the CO group

exhibited increased levels of the phyla Firmicutes (CO: 66.62% and KO: 79.17%), Proteobac-
teria (CO: 0.31% and KO: 0.68%), and Verrucomicrobia (CO: 0.023% and KO: 0.22%). The lev-

els of the phyla Bacteroidetes (CO: 31.88% and KO: 18.91%) and Actinobacteria (CO: 0.58%

and KO: 0.33%) were found to be decreased in the KO as compared to the CO group. This

observation indicated that while the proportion of each bacterial group was different in the

two groups, the community composition remained unchanged.

Statistical analysis on the relative abundance of the bacterial taxa identified in the two

groups revealed significant differences between the gut microbiomes of the CO and KO

groups. At the phylum level, all the significantly different taxa between the CO and KO groups

were found to be Candidatus (Fig A in S2 File). Interestingly, the relative abundance of the

phylum Firmicutes was found to be higher in the KO (S1 File) as compared to the CO group,

however no statistical significance was observed. At the order level, a total of 11 taxa were

found to be significantly altered between the CO and KO groups (Fig C in S2 File). Interest-

ingly, at this level no taxa related to the phylum Firmicutes was found to be significantly altered
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between the two groups. A total of 14 taxa were found to be significantly altered between the

CO and KO groups at the family level (Fig D in S2 File). Out of these 14 taxa, two families,

including Peptostreptococcaceae (p = 0.012) and Sporanaerobacter (p = 0.046), belonging to the

phylum Firmicutes, were found to be significantly increased in the KO as compared to the CO

group. The increased abundance of Peptostreptococcaceae has been previously reported in IBD

patients [24]. At the genus level a total of 77 genera were found to be significantly altered

between the two groups (Fig E in S2 File). Out of these 77 genera, 11 taxa belonging to the phy-

lum Firmicutes, including Romboutsia (p = 0.016), Tepidimicrobium (p = 0.004), Ezakiella
(p = 0.009), Terrisporobacter (p = 0.022), Tuberibacillus (p = 0.023), Hydrogenibacillus
(p = 0.03), unclassified Peptostreptococcaceae (p = 0.038), Facklamia (p = 0.039), Nosocomiicoc-
cus (p = 0.039), Geomicrobium (p = 0.042), and Vulcanibacillus (p = 0.044), were found to be

increased in the KO as compared to the CO group. At the species level, a total of 551 taxa,

including 164 species of the phylum Firmicutes, were found to be significantly altered between

the CO and KO groups (S2 Table). A large majority of the species belonging to the phylum Fir-
micutes (138, 25.04%) were found to be increased in the KO as compared to the CO group (26,

4.71%) (S2 Table). The members belonging to the Lactobacillus species were found to be signif-

icantly increased in the KO group (KO: 25 and CO: 2 out of 164). Similarly, the number of spe-

cies related to the order Clostridiales was significantly increased in the KO group (KO: 38 and

CO: 3 out of 164). This observation corroborates with the previous study where an increased

abundance of Clostridiales has been reported in case of colitis [25].

An alteration in the relative abundance of the taxa belonging to the phylum Actinobacteria,

Proteobacteria and Verrucomicrobia were also observed in our analysis (Fig C-E in S2 File). In

the phylum Actinobacteria, 54 species of this phylum were found to be altered between the two

groups (S2 Table). In a previous study, the phylum Actinobacteria was shown to be increased

in the remission phase of colitis patients [10]. In the phylum Proteobacteria, at the species

level, a total of 179 species were found to be altered between the two groups (S2 Table). It is

interesting to note that the species related to the class Deltaproteobacteria were significantly

increased in the KO group, while the species belonging to the class Gammaproteobacteria were

decreased in the KO group as compared to the CO group. The class Deltaproteobacteria con-

tains bacteria that reduce sulfate. The higher abundance of these bacteria is also known in IBD

patients. Sulfate-reducing bacteria have been suggested to aggravate gastrointestinal diseases

by making hydrogen sulfide (H2S) and other harmful by-products as well as by reducing bene-

ficial metabolites, such as butyrate [26]. Apart from this, species belonging to the classes

Alpha-, Beta-, and Epsilon- proteobacteria were found to be significantly changed between the

two groups. The species Helicobacter saguini belonging to the class Epsilonproteobacteria was

isolated from the intestines and feces of the new world monkey “cotton-top tamarins (CTTs)”

with chronic colitis [27].

The phylum Bacteroidetes was not found to be significantly different at any of the taxo-

nomic levels between the CO and KO groups, except for at the species level (S2 Table). In total

551 species were found to significantly differ between the CO and KO mice. Out of these 551,

the relative abundances of 218 species were found to be increased in the CO group, whereas

that of 333 species were found to be increased in the KO group (S3 File and S2 Table). Upon

investigating the taxonomic hierarchy of the significantly altered species, we observed that the

numbers of species belonging to the phylum Firmicutes and Bacteroidetes were similar in the

CO group. However, in the KO group the species belonging to the phylum Firmicutes were

found to have profoundly increased, whereas the species belonging to the phylum Bacteroi-
detes were found to have decreased as compared to the CO mice. This observation corrobo-

rates with a previous study in which a decreased abundance of the species belonging to the

phylum Bacteroidetes is reported in the case of chemically induced colitis [25].
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Sequencing related artifacts are known to greatly impact the abundance of taxa in metage-

nomic sequencing [28]. To avoid this bias in our results, we discarded the less abundant reads

(relative abundance < 0.005%) and re-assessed the significantly altered taxa between the CO

and KO groups at all taxonomic levels (Table 1). We further explored the roles of these micro-

bial species with respect to the formation of microbial fermentation products (butyrate, propi-

onate, acetate, lactate and H2 pathways) using a comprehensive literature survey and gene

content analysis. We explored these SCFAs mainly because of their potential involvement in

gut homeostasis. The complete set of genes associated with butyrate and propionate produc-

tion were not found in any of the mentioned species (S3 Table). The genes associated with lac-

tate and acetate production were found in some species (~71%, 25%, respectively) while absent

in others (~29%, 75%, respectively) (S3 Table). Additionally, we also correlated the involve-

ment of these micro-organisms in previous colitis studies (Table 1).

Identification of microbial functions in the control and knockout groups

The gut microbiota plays important roles in the physiological functions associated with nutri-

tion, the immune system, and defense mechanisms of the host. However, dysbiosis in the

microbial population caused by gene knockout in the host might lead to altered functions of

the gut microbiota. To investigate the differences, if any, in the functional compositions

between the CO and KO groups, we performed a comprehensive functional analysis of the

WGS metagenomic reads. The functional annotations were obtained at three hierarchical lev-

els. At level 1, the functions were grouped into three major categories including metabolism,

cellular processes and signaling, and information storage and processing. A majority of the

reads were mapped to the genes belonging to the metabolism category (Fig A in S4 File), how-

ever, no significant difference was observed between the CO and KO groups.

At levels 2 and 3 significant differences were observed between the CO and KO groups.

Level 2 encompasses all the pathways corresponding to level 1 categories. At level 2, one func-

tional category, viz., “carbohydrate transport & metabolism”, was found to be decreased in the

KO group as compared to the CO group (Fig B and C in S4 File). Level 3 encompasses all

COGs/NOGs that come under the pathways in level 2. To explore the differences in the CO

and KO groups based on their functional compositions, a Principal Component Analysis

(PCA) was performed. At levels 1 and 2 not much clear separation was obtained in the PCA

analysis (Fig 1), however, at level 3 the CO and KO groups were found to be separated between

PC1 and PC3 axes (which explains 76.3% of the variation in the data). These observations sug-

gests that the resident gut microbiota of the two groups might perform their functions differ-

entially. In total 245 functions at level 3 were found to be significantly altered (S4 Table). Out

of these functions, 44 functions were found to have very low read counts (mean abundance dif-

ference between CO & KO groups < 5) and were not considered for further analysis. The

details of the results obtained for the remaining 201 significantly altered functions are given in

S5 Table. Out of these 201 COGs/NOGs, 128 were found to be increased while 73 were found

to be decreased in the KO as compared to the CO group. A comprehensive literature survey

was performed on these 201 functions to see the effect of these functional alterations in IBD.

Table 2 lists a few selected microbial functions which were found to be significantly altered in

the CO and KO groups. For example, the genes involved in carbohydrate metabolism, includ-

ing alpha-galactosidase (COG3345), were found to be significantly reduced in the KO group.

This gene participates in galactose metabolism, glycosphingolipid biosynthesis-globo series,

sphingolipid metabolism and glycerolipid metabolism. Similarly, another gene, aldolase

(COG0191), which is known to be involved in several metabolic processes including fructose

and mannose metabolism, pentose phosphate pathway, and biosynthesis of amino acids, was
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Table 1. List of significantly altered taxa with a relative abundance of at least 0.005% between the CO and KO

groups at all taxonomic levels. Statistical significance was tested using Welch’s t-test with the confidence interval

threshold of 95% and p<0.05.

Taxa p-value

Firmicutes> Clostridia > Clostridiales a [25]

Family Peptostreptococcaceaec 0.012

Genus Romboutsia c 0.016

Terrisporobacter c 0.022

Unclassified peptostreptococcaceae c 0.038

Species Romboustsia ilealis c 0.021

Romboutsia timonensis c 0.039

Terrisporobacter glycolicus c 0.008

[Clostridium] dakarense c 0.032

[Clostridium] hiranonis c 0.008

Eubacterium sp. 3_1_31 c 0.022

Eubacterium sp. CAG:841 c 0.012

Clostridium sp. CAG:221 c 0.017

Firmicutes> Bacilli> Lactobacillales > Lactobacillaceae> Lactobacillus
Species Lactobacillus intestinalis c 0.021

Lactobacillus sp. ASF360c 0.02

Lactobacillus iners c 0.038

Lactobacillus amylovorus c 0.042

Lactobacillus acidophilus c 0.034

Proteobacteria> Deltaproteobacteria> Desulfovibrionales > Desulfovibrionaceae a [29]

Genus Mailhella c 0.050

Species Desulfovibrio sp. 3_1_syn3 c 0.021

Desulfovibrio fairfieldensis c 0.043

Firmicutes; Erysipelotrichia; Erysipelotrichales; Erysipelotrichaceae; unclassified Erysipelotrichaceae; unclassified
Erysipelotrichaceae (miscellaneous) b [30]

Species Erysipelotrichaceae bacterium 5_2_54FAA c 0.007

Bacteroidetes; Bacteroidia; Bacteroidales; Odoribacteraceae; Odoribacter
Species Odoribacter splanchnicus CAG:14 c 0.037

Environmental Samples

Species Firmicutes bacterium CAG:102 c 0.041

Firmicutes bacterium CAG:145 d 0.036

Firmicutes bacterium CAG:41 c 0.026

Firmicutes; Bacilli; Lactobacillales; Streptococcaceae; Streptococcus
Species Streptococcus suis d 0.043

Streptococcus equinus d 0.020

Bacteroidetes; Flavobacteriia; Flavobacteriales; Flavobacteriaceae; Capnocytophaga
Species Capnocytophaga sp. oral taxon 332 d 0.034

Bacteroidetes; Bacteroidia; Bacteroidales; Prevotellaceae; Prevotella
Species Prevotella stercorea d 0.046

a The taxonomic rank has been shown to be involved in colitis in previous studies
b The taxonomic rank has been shown to be involved in colitis in previous studies, however, their role remains

unclear
c Indicates the abundance of a particular taxa is increasing in KO as compared to CO.
d Indicates the abundance of a particular taxa is decreasing in KO as compared to CO.

https://doi.org/10.1371/journal.pone.0228358.t001
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found to be decreased in the KO group. Yet another set of genes, which are involved in the

process of initiation and elongation of fatty acid biosynthesis (COG0332, COG0615) were

found to be decreased in the KO group. Additionally, genes related with amino acid biosynthe-

sis viz, proline (COG0014) and histidine (COG0040, COG1387) were often found to be

decreased in the KO as compared to the CO group.

Certain functions were found to be increased in the KO as compared to the CO groups. For

example, the gene belonging to the ycfa family (COG1724), which is involved in cell motility,

was found to be increased in the KO group. The enzyme endo-beta-n-acetylglucosaminidase

Fig 1. Principal component analysis (PCA) plot of the functional profiles of CO and KO groups at (A) level 1, (B) level

2, and (C) level 3 of EggNOG. Each dot represents a sample and the distinct color represents the type of the sample.

The percent variability explained by each principal component is shown in parentheses in the axes legends.

https://doi.org/10.1371/journal.pone.0228358.g001

Table 2. List of selected significantly altered functions in the CO and KO groups which might be involved directly

and indirectly in the progression of colitis. The confidence interval threshold was 95% and p<0.05. Dark grey color

indicates the abundance of a particular function is increasing and light grey color indicates the abundance of a particu-

lar function is decreasing.

Genes involved in functions CO KO

Carbohydrate metabolism [31] f

Lipid metabolism f

Cellwall/membrane/envelope biogenesis f

Cell motility [10, 31] e

Mucin degradation [32] e

Replication, recombination and repair e

Nucleotide transport and metabolism e

Transposase e

Amino acid transportation [2] e

Carbohydrate transportation e

Iron transportation [33] e

Oxidative stress [34, 35] e

β-lactamase [36] e

Proline Biosynthesis [37]

Histidine Biosynthesis [37]

Arginine degradation [37]

https://doi.org/10.1371/journal.pone.0228358.t002

PLOS ONE Dysbiosis of gut-microbiota in AP-1B knockout mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0228358 March 24, 2020 8 / 16

https://doi.org/10.1371/journal.pone.0228358.g001
https://doi.org/10.1371/journal.pone.0228358.t002
https://doi.org/10.1371/journal.pone.0228358


(COG4724, COG4193) which is known for its enzymatic activity in mucin degradation, was

also found to be increased in the KO group. Apart from these, some other genes, for example,

the enzymes involved in DNA primase activity (COG0358), precursors necessary for DNA

synthesis (COG1372), enzymes involved in DNA repair mechanism (COG4294, COG0322),

etc. were found to be increased in the KO group. Furthermore, ABC transporters (COG0411,

ENOG4111GBW), major facilitators (ENOG41105XQ, ENOG410XNZG, ENOG410XSHZ,

ENOG410ZWA1), tonB dependent receptors (ENOG410ZNX6, ENOG410ZPJF,

ENOG410ZJX3, ENOG410YNPF, ENOG410YAIR, ENOG410YB7D), tonB dependent recep-

tor plugs (ENOG410XQAZ, ENOG410YB3G, ENOG4110QZN), etc. were found to be

increased in the KO group. The genes involved in oxidative stress control, glutathione metabo-

lism (COG0260), transcriptional regulator, crp fnr family (ENOG410ZDRF), and osmC family

(ENOG4111UEA) were also found to be increased in the KO group. Additionally, genes

involved in degradation of arginine (COG0010, COG2235) and histidine (COG1228) were

also found to be increased in the KO group as compared to the CO group.

Backtracing from the microbial functions to the microbial taxa

Alterations in the functional composition are expected to be a result of the alterations in the

underlying microbial populations. Thus, we wanted to explore which significant functional

changes might be exerted by which significantly differing bacterial taxa in the CO and KO

groups. Towards this, we backtraced the significantly differing COGs/NOGs functional classes

to their corresponding bacterial taxa. Out of the 201 significantly differing COGs/NOGs func-

tions, 89 mapped to five bacterial species, which were also found to be significantly different

between the CO and KO groups. These species included, Clostridium sp. BNL1100, Paenibacil-
lus sp. Y412MC10, Erysipelotrichaceae bacterium 5_2_54FAA, Desulfovibrio sp. 3_1_syn3, and

Nitrobacter sp. Nb-311A (S6 Table). Out of these five species, two species, Erysipelotrichaceae
bacterium 5_2_54FAA and Desulfovibrio sp. 3_1_syn3, were found to have a relative abun-

dance higher than 0.005%.

It has been reported previously [29] that an excessive hydrogen sulfide (H2S) production is

found in the feces of ulcerative colitis patients. In this way, we explored the genes associated

with H2S production pathways (using BioCyc and Microscope) in the above-mentioned bacte-

ria which may eventually lead to colitis progression. The investigated pathways were sulfate

reduction I (assimilatory), sulfate reduction IV (dissimilatory), sulfate reduction V (dissimila-

tory) and sulfur reduction II (via polysulfide) (S7 and S8 Tables). The two pathways for H2S

production, viz., sulfur reduction II (via polysulfide) and sulfate reduction I (assimilatory) has

been observed to be completely present in Desulfovibrio sp. 3_1_syn3 and Nitrobacter sp. Nb-
311A, respectively (Table 3). Moreover, a 75% complete sulfate reduction I (assimilatory) path-

way was found in Clostridium sp. BNL1100, Desulfovibrio sp. 3_1_syn3, and Paenibacillus sp.

Y412MC10 (S7 and S8 Tables). Apart from this, a 60% complete sulfate reduction IV (dissimi-

latory) pathway was found in Erysipelotrichaceae bacterium 5_2_54FAA (S7 Table).

Discussion

In this study, we demonstrated that the Ap1m2 -/- (KO) mice have a different gut-microbiome

pattern as compared to the control (CO) mice. We applied the WGS metagenomic method to

discover the gut microbiome alterations in the two groups of mice (CO and KO) and identified

the potential gut microbiome biomarkers, including composition and function of the micro-

biome, in the KO mice group. Our previous study indicated that the KO mice developed spon-

taneous chronic colitis, which was characterized by the acquisition of IL-17A and TNF-α

PLOS ONE Dysbiosis of gut-microbiota in AP-1B knockout mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0228358 March 24, 2020 9 / 16

https://doi.org/10.1371/journal.pone.0228358


production in these animals [13]. All together, these outcomes stipulate that the gut-micro-

biome structure might contribute in disease development in mice lacking the Ap1m2 gene.

We found that the lactate-producing bacteria (LPB) and the sulfate-reducing bacteria (SRB)

were enriched in the KO group. The pro-inflammatory nature of the SRB bacteria has been

reported in a number of immune or inflammatory diseases, including metabolic syndrome

[38], type 2 diabetes (T2D) [39], and IBD [40]. The SRB bacterial species impede butyrate β-

oxidation and deteriorate butyrate [40, 41]. Butyrate is a critical metabolite among the SCFAs

as it protects the intestinal epithelial barrier integrity and preserves the immune homeostasis

of the host by inducing regulatory T cell differentiation [42, 43]. A decreased level of butyrate

causes dysfunction in the intestinal epithelium barrier and leads to the expression of several

inflammatory components such as the pathogen-associated molecular pattern (PAMP) or the

microbe-associated molecular pattern (MAMP) [44]. Both PAMP and MAMP can affect the

IECs [44]. In addition, H2S, a cytotoxic byproduct of SRB that exerts pro-inflammatory effects

at high concentrations [45, 46], can exacerbate intestinal epithelial barrier damage and its

excessive production is reported in colitis condition [26]. High H2S levels and low butyrate lev-

els were detected when butyrate producing bacteria (BPB) and SRB were co-cultured with lac-

tate-producing bacteria [47]. Based on these observations, we hypothesize that because SRB

can utilize hydrogen and lactate as the substrates for H2S production, SRB may compete for

these substrates with the hydrogen consuming bacteria and lactate-utilizing bacteria such as

methanogens and BPB. A similar hypothesis has been proposed in the case of Behcet’s disease,

which is a multisystemic inflammatory disease that causes inflammation in blood vessels

(throughout the body) including the digestive system [48].

In a previous study it was observed that in Ap1m2-/- mice there is a decrease in the numbers

of goblet cells which resulted in reduced mucus secretion [13]. In this study, we aimed to

explore the effect of this reduced mucus secretion in terms of microbial shift in the gut. One of

the most important structural components of mucus is the mucin glycoprotein. These mucins

play a multifaceted and integral role in the communication between epithelial surfaces and

microbes [49]. The mucin glycoproteins provide protection to the colonic epithelium and are

either secreted from the goblet cells into the intestinal lumen (e.g., MUC2 and MUC5B) or are

membrane-attached (e.g., MUC1 and MUC4). The secreted mucins are also involved in the

formation of a two layer protective boundary in the colon. Among the two layers, one is a

tightly-adherent mucus layer where bacterial exposure is strictly restricted, whereas the other

is only a loosely-adherent mucus layer where intestinal bacteria find a niche. Indeed, several

gut resident bacteria possess mucin-degrading abilities [50]. Towards this, we have observed

an increased abundance of the mucin degrading enzyme endo-beta-n-acetylglucosaminidase,

in the KO group. It has been previously observed that polysaccharide-utilization loci (PULs)

involving genes encoding for the putative glycoside hydrolases (GHs) such as endo-β-N-

Table 3. Details of genes associated with sulfur reduction II (via polysulfide) and sulfate reduction I (assimilatory) pathways found in Desulfovibrio sp. 3_1_syn3
and Nitrobacter sp. Nb-311A, respectively.

Bacteria EC Number Genes

Desulfovibrio sp. 3_1_syn3 1.97.1.3 (sulfur reductase) ADDR02_v2_10173-sudA

ADDR02_v2_10172-sudB

Nitrobacter sp. Nb-311A 1.8.4.8 (phosphoadenylyl-sulfate reductase) NIT1Av1_30234-cysH

2.7.1.25 (adenylyl-sulfate kinase) NIT1Av1_30237

2.7.7.4 (sulfate adenylyltransferase) NIT1Av1_30236-cysD

1.8.1.2 (sulfite reductase [NADPH]) NIT1Av1_10139-cysJ

NIT1Av1_10138-cysI

https://doi.org/10.1371/journal.pone.0228358.t003
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acetylglucosaminidase, α-L-fucosidase, α-mannosidase, and endo-β-galactosidase, have been

up-regulated in B. thetaiotaomicron when it was grown in monoxenic mice or on mucin O-gly-

cans as compared to the in vitro glucose control [32]. Notably, in our case, the abundance of B.

thetaiotaomicron was reduced in the KO group thus suggesting the involvement of other

microbial members in this activity. Upon backtracing the taxa responsible for contributing the

mucin degrading function, we found Paenibacillus sp. Y412MC10 and Erysipelotrichaceae bac-
terium 5_2_54FAA to be associated with endo-β-N-acetylglucosaminidase. These species were

found to be increased in the KO group and thus might act in a similar manner to B. thetaiotao-
micron and result in further reduction of the mucin glycoproteins which might eventually

aggravate colitis.

The alterations in the abundance of certain genes in the KO group suggest the role of

microbiota to retain homeostasis during inflammation. For example, the abundance of oxida-

tive stress related genes is found to increase, whereas that of carbohydrate metabolism related

genes is found to decrease in the KO group mice. Previous studies have also shown an increase

in the amino acid transporter genes [2] and a decrease in carbohydrate metabolism [31] genes

in IBD. This suggests that the bacteria under an inflammatory state usually have a weak capac-

ity to make nutrients on their own. To overcome the problem of nutrient deficiency, the bacte-

ria instead transport them from the available environment through means such as tissue

destruction or from the sites of inflammation. Our results are consistent with this hypothesis

as the genes related to amino acid transport and carbohydrate transport are found to be

increased in the KO group.

For the growth and maintenance of barrier function and mucosal integrity, amino acids are

essentially required. Amino acid metabolism in microbial community of gut, plays significant

role in physiology and nutrition of the host. We found genes related with proline and histidine

biosynthesis decreased and arginine degradation genes increased in the KO as compared to

the CO groups. In previous studies the supplementation of histidine, proline, and arginine has

reported to improve IBD [37]. Dietary proline supplementation improved the production of

mucin, restored healthy microbiota, protected gut epithelium, and encouraged mucosal

rebuilding in DSS-treated rat [37]. Similarly, histidine supplementation improved colitis con-

dition in an IL-10-deficient Crohn’s disease model. This improvement was done by regulation

of NF-κB activation, followed by inhibition of the proinflammatory cytokine secretion by mac-

rophages [37]. Additionally, changes in the metabolism of arginine have been reported in ani-

mal colitis models as well as IBD patients, and experimental colitis has been improved with

arginine supplementation [37].

In addition, the genes for glutathione metabolism were also increased in the KO group.

Glutathione, which is found to be mainly synthesized by Proteobacteria, permits bacteria to

maintain homeostasis in oxidative stress environments [35]. Towards this, we also observed an

increased abundance of the genus Mailhella belonging to phylum Proteobacteria in the KO

group. Moreover, upon backtracing we found that the glutathione metabolism related genes

were being contributed by the microbial species including Desulfovibrio sp. 3_1_syn3, Paeniba-
cillus sp. Y412MC10, Nitrobacter sp. Nb-311A, and Erysipelotrichaceae bacterium 5_2_54FAA.

This indicates that these species may be capable of maintaining homeostasis in the inflamed

gut. A few transcriptional regulators, which are known to be involved in controlling oxidative

damage [34], including crp fnr family and osmC family, have also been found to be increased

in the KO group. Taken together these observations suggest a significant role of the gut micro-

biome in maintaining overall homeostasis of the inflamed sites.

In previous IBD studies on T-bet−/− Rag2−/−, resulting in colitis and TNBS-induced colitis

mouse models, an increased capacity for bacterial pathogenesis has been observed. These

mouse models have been found to exhibit a high abundance of genes related to cell motility
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and secretion, flagellar assembly, and bacterial motility proteins [10, 31]. In our case, we also

observed an increased abundance of the genes related to cell motility in the KO group. These

observations suggest increased pathogenic bacterial colonization in Ap1m2-/-, resulting in the

colitis condition. It has been previously reported that anemia is one of the most frequent com-

plications or extraintestinal manifestation of IBD. Iron deficiency is the most important cause

of anemia in ulcerative colitis patients [33]. Our results are consistent with this observation as

the iron sequestration genes are found to be significantly increased in the KO group. Thus, we

hypothesize that enhanced iron sequestration by the resident gut bacteria leads to an anemic

condition in the KO group having chronic colitis as a result of the Ap1m2-/- gene knockout. A

similar hypothesis has been proposed earlier where the levels of heme transporter genes were

observed to be elevated in DNR mice as IBD develops [51].

Our results have also demonstrated significant changes in various other pathways and gene

abundances between the CO and KO groups. For example, the genes associated with “lipid

metabolism” and “cell wall/membrane/envelope biogenesis” were found to be decreased while

those related to “replication, recombination and repair” and “nucleotide transport and metab-

olism” were found to be increased in the KO as compared to the CO group. This indicates that

due to reduced lipid metabolism the lipids were not available for cell wall/membrane/envelope

biogenesis which brought bacterial endangered survival. Thus, bacteria might choose alterna-

tive means for handling this situation by increasing the replication rate to increase their num-

bers. In addition, due to an increased number of movable elements, i.e. transposase, the

bacteria might allow mutational changes in their genome to adapt to an inflamed intestinal

environment. Although the genes associated with “cell wall/membrane/envelope biogenesis”

were found to be decreased in the KO group but the genes associated with beta-lactamase were

found to be increased, this could provide a defense to the resident gut bacteria of the KO mice.

The beta-lactamase produced by bacteria is known for its multi-resistance to β-lactam antibi-

otics. Recently it has been shown that increased β-lactamase production by gut bacteria might

aggravate ulcerative colitis in patients [36]. Thus beta-lactamase may enhance colitis in

Ap1m2-/- mice as well, but the mechanism remains unknown.

As is evident from the above discussion that a large number of the functional alterations

between the CO and KO groups correlated well with the observed processes known to play a

role in IBD. It is important to note that a few functional alternations still remained inconclu-

sive. The analysis presented in the paper provides future directions for the design of more tar-

geted experiments for the validation of the functional alterations due to the knockout of Ap1

gene leading to spontaneous colitis in mice. This is the first prospective study using next-gen-

eration sequencing method to examine the fecal microbiota composition in Ap1m2+/- and

Ap1m2-/- mice and highlights the role of the gut microbiome in the colitis phenotype induced

due to the gene knockout. Our analyses has elucidated the important features of microbiome

dysbiosis and dysfunction in terms of taxa and gene functions in Ap1m2-/- mediated colitis. It

is evident from this study that for a physiological condition, it is not a single species or taxa

which is responsible but a group of species or taxa are usually responsible for a diseased condi-

tion. However, it remains to be concluded whether the microbiota is the cause or an effect of

this disease.
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