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Glucagon-like peptide 1 (GLP-1) is likely best known by
many readers of Diabetes because of the role it plays in
insulin secretion. Indeed, GLP-1 receptor (GLP-1R) ago-
nists have become important tools for glycemic control in
the treatment of type 2 diabetes. In addition to its incretin
effects, GLP-1 signaling plays a role in the control of
feeding (1) and other motivated behaviors such as fluid
intake (2) and drug taking (3,4). Although many of the
effects of GLP-1 are known to be mediated at least in part
by activation of central GLP-1Rs, the source(s) of endog-
enous GLP-1 that activate these receptors remain unclear.
Complicating this issue is the fact that GLP-1 is produced
both peripherally in the ileum, from which it is released
into circulation, and centrally in limited regions of the
brain that include the nucleus of the solitary tract (NTS)
and the olfactory bulb (1,5) (Fig. 1).

To what extent peripherally versus centrally derived
GLP-1 activates GLP-1Rs in the brain remains unclear. To
date, indirect evidence has helped inform the field with
regard to the source of endogenous GLP-1 relevant for the
effect of GLP-1 on motivated behaviors. For instance,
studies comparing GLP-1 and GLP-1 precursor gene ex-
pression after feeding or drinking found that feeding
increased both plasma GLP-1 and preproglucagon (PPG)
mRNA in the hindbrain, whereas drinking had no detect-
able effect on plasma GLP-1 but increased PPG mRNA in
the hindbrain (6). Although this finding suggests that
these actions of GLP-1 involve centrally produced GLP-
1, peripherally derived GLP-1 acting at the brain could also
be important.

In this issue of Diabetes, Holt et al. (7) approach the
question of GLP-1 origin in feeding behavior using a mouse
model that expresses Cre-recombinase under the control of
the glucagon promoter. This allows them to target selec-
tively cells in the hindbrain, specifically within the NTS, that
produce GLP-1. Their studies provide important convergent

evidence that GLP-1 of central origin is physiologically
relevant for particular aspects of feeding. Specifically, the
destruction or chemogenetic inhibition of these cells had no
effect on feeding or bodyweight under ad libitum conditions
but increased intake of a particularly large meal after a fast
(7). Acute chemogenetic inhibition of these PPG cells also
blunted the intake-reducing effect of stress (7).

A critical question is where the GLP-1–producing NTS
neurons are projecting to exert these effects. Prior tracing
studies have demonstrated that NTS PPG neurons project
directly to several nuclei in the brain (8–11). This is
especially interesting given that discrete sites in the brain
can mediate specific subsets of GLP-1 responses. For
example, GLP-1R activation in the arcuate nucleus of
the hypothalamus is important for glycemic control but
not feeding (12), whereas GLP-1R activation in areas
including the ventral tegmental area of the mesolimbic
reward system is important for energy balance control but
does not induce the nausea/malaise that can occur with
GLP-1R activation in other sites (8,13). Holt et al. (7) show
compelling evidence that GLP-1–producing cells in the
NTS provide GLP-1 to areas such as the hypothalamus,
as destruction of the NTS GLP-1 cells caused marked
reductions in hypothalamic as well as brainstem GLP-1
without any effect on blood GLP-1 (7). This suggests the
importance of examining these areas as potential sites
of action for the particular feeding effects of hindbrain
GLP-1 neuron activation shown by Holt et al. (7). These
findings align well with the aforementioned tracing work
showing direct projections of NTS GLP-1 cells to hypo-
thalamic sites such as the paraventricular nucleus (11).
Further, these data complement prior studies indicating
the presence of GLP-1–positive terminals in several areas
of the brain (14,15), as well as findings demonstrating
colocalization of GLP-1 in glutamatergic axon terminals
(16). Collectively, the available data may point to a potential

1Department of Psychology, University at Buffalo, The State University of New York,
Buffalo, NY
2Center for Ingestive Behavior Research, University at Buffalo, The State University
of New York, Buffalo, NY
3Department of Exercise and Nutrition Sciences, University at Buffalo, The State
University of New York, Buffalo, NY

Corresponding author: Derek Daniels, danielsd@buffalo.edu

Received 10 October 2018 and accepted 11 October 2018

© 2018 by the American Diabetes Association. Readers may use this article as
long as the work is properly cited, the use is educational and not for profit, and the
work is not altered. More information is available at http://www.diabetesjournals
.org/content/license.

See accompanying article, p. 21.

Diabetes Volume 68, January 2019 15

C
O
M
M
E
N
T
A
R
Y

https://doi.org/10.2337/dbi18-0045
http://crossmark.crossref.org/dialog/?doi=10.2337/dbi18-0045&domain=pdf&date_stamp=2018-12-11
mailto:danielsd@buffalo.edu
http://www.diabetesjournals.org/content/license
http://www.diabetesjournals.org/content/license


“transmitter-like” action of centrally produced GLP-1, al-
though there is much work remaining to be done to fully
understand the mechanisms of central neuronal GLP-1
release.

It is also important to note that particular GLP-1R
populations in the brain may be activated via other routes
of centrally produced GLP-1, such as volume transmission
of GLP-1 through the ventricular system (17). An addi-
tional possibility is that circulating GLP-1 may be able to
reach the brain either by crossing the blood-brain barrier
(18) or by directly acting at circumventricular structures
(19). In understanding the basic physiology of this system,
and the way such knowledge may translate to our un-
derstanding of how U.S. Food and Drug Administration–
approved GLP-1R agonists act in the body, it is critical to
keep in mind that the long-acting GLP-1R agonists exendin-
4 and liraglutide can penetrate the central nervous system
and access blood-brain barrier–protected sites to influence
GLP-1–mediated responses such as food intake and body
weight (20), thus adding complexity to the puzzle. Al-
though a systematic evaluation of all GLP-1–responsive
sites and their roles in each of the diverse effects of GLP-1
will be a huge undertaking, it is a necessary step toward
a complete understanding of GLP-1 and its actions. The
findings of Holt et al. (7) published in this issue not only
shed light onto the physiological relevance of centrally
produced GLP-1 for energy balance control but also raise
numerous intriguing follow-up questions.
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Figure 1—GLP-1 interactionswith the brain. GLP-1–producing cells (yellow circles) are found in areas including the ileum, olfactory bulb, and
hindbrain. GLP-1–responsive structures in the brain are far more distributed and include structures behind (blue) and outside of (red) the
blood-brain barrier, a subset of which are represented in this schematic. Knowing which source of GLP-1 acts on which of the responsive
structures is important in order to understand the role of endogenous GLP-1 in the control of the diverse effects of GLP-1; question marks
highlight the lack of detail in current knowledge about the sources of GLP-1 to these and other GLP-1–responsive sites. The article by Holt et
al. (7) offers an important step toward this understanding. AP, area postrema; Arc, arcuate hypothalamic nucleus; IO, inferior olive; IP,
interpeduncular nucleus; LH, lateral hypothalamus; LS, lateral septum; OVLT, organum vasculosum of the lamina terminalis; PDTg,
posterodorsal tegmental nucleus; PVN, paraventricular hypothalamic nucleus; SCN, suprachiasmatic nucleus; SFO, subfornical organ;
SON, supraoptic nucleus; VTA, ventral tegmental area.
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