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Abstract: Melanin is synthesized through a series of interactions catalyzed by melanogenic
enzymes such as tyrosinase, dopachrome tautomerase (tyrosinase-related protein-2; TRP-2), and
tyrosinase-related protein-1 (TRP-1). Tyrosinase plays a key role in catalysing the initial and limiting
steps of melanogenesis. The melanin that results from melanogenesis has the protective effect of
absorbing ultraviolet radiation. However, overproduction of melanin, in addition to altering the
appearance of skin, may lead to skin disorders such as melasma, solar lentigo, and postinflammatory
hyperpigmentation. Previous studies have revealed that sesamol is a strong antioxidant and a
free radical scavenger. In this study, we investigated the effects of sesamol on the regulation of
melanogenesis and related mechanisms in B16F10 cells. The results indicated that sesamol inhibited
tyrosinase activity and melanogenesis induced by α-melanocyte-stimulating hormone (α-MSH) in
B16F10 melanoma cells. Sesamol decreased the protein level of melanocortin 1 receptor (MC1R),
microphthalmia-associated transcription factor (MITF), tyrosinase, and TRP-1 by downregulating
cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathways that had been activated
by α-MSH. Sesamol increased glycogen synthase kinase 3 beta (GSK3β), protein kinase B (AKT),
and extracellular signal-related kinase (ERK) phosphorylation, thus inhibiting the transcription of
MITF. Sesamol also inhibited melanin synthesis and tyrosinase expression by modulating ERK,
phosphoinositide 3-kinase (PI3K)/AKT, p38, and c-Jun amino-terminal kinase (JNK) signalling
pathways. These results indicate that sesamol acted as a potent depigmenting agent.

Keywords: sesamol; melanogenesis; tyrosinase; microphthalmia-associated transcription factor
(MITF); melanocortin 1 receptor (MC1R); glycogen synthase kinase 3 beta (GSK3β)

1. Introduction

Skin colour is the manifestation of the progressive transfer of melanin to keratinocytes after
melanogenesis in the melanosomes of melanocytes. Long-term ultraviolet (UV) exposure causes
an abnormal increase in reactive oxygen species (ROS) generation, which induces melanogenesis
to protect skin from the deleterious effects of UV irradiation and environmental pollutants [1–3].
However, excessive accumulation of melanin can influence appearance and cause pigmentation
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disorders such as freckles, age spots, solar lentigo, postinflammatory hyperpigmentation, melasma,
and even melanoma [4,5].

Melanin synthesis comprises a series of complex processes regulated by various factors,
including enzymes, proteins and hormones [6,7]. The limiting enzyme in melanogenesis is tyrosinase.
L-tyrosine is transported from the extracellular space or intracellular generation through hydroxylation
of L-phenylalanine, a precursor of tyrosine. Hydroxylation of tyrosine by tyrosinase produces
L-3,4-dihydroxyphenylalanine (L-DOPA), which subsequently is oxidized to DOPAquinone [8].
DOPAquinone undergoes nonenzymatic intramolecular cyclization reaction to form leucochrome and
then nonenzymatically oxidized to DOPAchrome. Tyrosinase-related protein-2 (TRP-2) will convert
DOPAchrome to 5,6-dihydroxyindole-2-carboxylic acid (DHICA), which is catalysed by TRP-1 to
form eulmelanin [9–11]. TRP-1 and TRP-2 stabilize and increase the activity of tyrosinase. Tyrosine
and L-DOPA serve as substrates and intermediates of melanogenesis. In addition, they also act as
inducers and positive regulators of the melanogenic pathway and of other cellular functions [12].
The cells surrounding melanocytes such as keratinocytes and fibroblasts may influence melanogenesis.
α-Melanocyte-stimulating hormone (α-MSH) is a product of the processing of proopiomelanocortin
(POMC), which, along with adrenocorticotropic hormone (ACTH), is produced in a regulated fashion
by all resident skin cells, including keratinocytes, melanocytes, and fibroblasts, as well as by immune
cells [7,13]. α-MSH binds to the melanocortin 1 receptor (MC1R) on melanocytes. Cyclic adenosine
monophosphate (cAMP) stimulates the translocation of protein kinase A (PKA) into the nucleus,
thus activating cAMP-response element-binding protein (CREB) [8,14]. Activation of cAMP increases
microphthalmia-associated transcription factor (MITF) expression, which upregulates tyrosinase,
TRP-1, and TRP-2 expression, ultimately promoting melanin synthesis in melanocytes [15].

Agents with antioxidant and tyrosinase inhibition activity can be used to prevent
hyperpigmentation [15,16]. Sesame seeds contain strong antioxidants and are common food in Central
and East Asia. Sesamol (3,4-(methylenedioxy)phenol), an active component in sesame seeds, is a
potent antioxidant which scavenges free radicals [17,18]. Liu et al. have demonstrated that sesamol
inhibits proliferation and promotes apoptosis of HepG2 cells [19]. Sesamol was also reported to
prevent cardiovascular disease, coronary heart disease, and stroke [20]. The present study aimed to
investigate the effect of sesamol on melanin synthesis in B16F10 cells. Sesamol’s effect on the regulation
of cAMP/PKA, mitogen-activated protein kinase kinase (MEK)/extracellular signal-related kinase
(ERK), protein kinase B (AKT)/glycogen synthase kinase 3 beta (GSK3β)/CREB, TRP-1, and MITF in
melanin synthesis were also studied.

2. Results

2.1. B16F10 Cell Viability with Sesamol Treatment

After treatment with 10–200 µM sesamol for 48 h, cell viability was found to be higher than the
80% viability found at 10–50 µM. However, cell viability was 66.1% and 55.7% with 100 and 200 µM
of sesamol treatment, respectively (Figure 1). Thus, the doses of sesamol used to study its effect on
melanogenesis were 10–50 µM.
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Figure 1. Cell viability (%) of B16F10 cells after 48 h of treatment with sesamol. The cell viability
was below 80% at sesamol doses over 100 µM. Each value is presented as the mean ± SD. Significant
difference with control group: *** p < 0.001.

2.2. Sesamol Inhibited Melanin Biosynthesis in B16F10 Cells

Figure 2 shows the effects of sesamol on melanin content in B16F10 cells. The intracellular melanin
content increased to 191.9% ± 3.5% after α-MSH treatment. Sesamol at doses higher than 5.0 µM
significantly reduced the melanin content. After 50 µM sesamol treatment, melanin decreased to 90.1%
± 3.3% (Figure 2). The cell pellet was darker after α-MSH treatment, but it became lighter in the
sesamol group. According to the results, sesamol significantly inhibited melanin biosynthesis.

Figure 2. Melanin content (%) of B16F10 cells and cell pellets after 48 h of treatment with sesamol.
Seasamol significantly inhibited melanin synthesis. Each value is presented as the mean ± SD.
Significant difference versus control: ### p < 0.001. Significant difference versus α-MSH-treated group:
*** p < 0.001. Positive control: 1 mM arbutin.

2.3. Sesamol Inhibited Tyrosinase Activity in B16F10 Cells

Tyrosinase is the rate-limiting enzyme in melanin synthesis. Inhibition of tyrosinase activity is an
efficient strategy in developing of antimelanogenic agents. Sesamol significantly inhibited tyrosinase
activity in B16F10 cells (Figure 3A). The levels of tyrosinase activity were 159.6% ± 1.0% after α-MSH
treatment, and became 154.9% ± 3.2%, 146.7% ± 5.7%, 141.3% ± 2.3%, and 133.6% ± 6.4% after
treatment with 5, 10, 25, and 50 µM sesamol, respectively. The results indicated that sesamol inhibited
tyrosinase activity in B16F10 cells.
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Figure 3. (A) Tyrosinase activity (%) of B16F10 cells after 48 h of treatment with sesamol. Sesamol
inhibited tyrosinase activity in B16F10 cells. Each value is presented as the mean ± SD. Significant
difference versus control: ### p < 0.001. Significant difference versus α-MSH-treated group: * p < 0.05,
** p < 0.01, *** p < 0.001. Positive control: 1 mM arbutin. (B) Effect of sesamol on α-MSH-induced protein
expression of tyrosinase and TRP-1 in B16F10 cells. Sesamol suppressed tyrosinase and TRP-1 protein
levels. Each value is presented as the mean ± SD. Significant difference versus control: ### p < 0.001,
## p < 0.01. Significant difference versus α-MSH-treated group:** p < 0.01, *** p < 0.001.

2.4. Sesamol Inhibited Tyrosinase and TRP-1 Protein Expression in B16F10 Cells

In a protein expression assay using Western blotting, tyrosinase expression increased to 1.28-fold in
the α-MSH group, and the protein expression of tyrosinase decreased to 1.18-, 1.06-, 0.97-, and 0.66-fold
of the control value after 5–50 µM sesamol treatment for 48 h. Sesamol suppression of tyrosinase
expression was dose dependent (Figure 3B). The results show that sesamol inhibited melanogenesis in
B16F10 cells by suppressing tyrosinase activity and protein expression.

To understand the mechanism underlying sesamol’s regulatory effect on melanogenesis,
the protein expression of TRP-1 was determined in B16F10 cells after their treatment with α-MSH
and 5–50 µM sesamol for 48 h. The results show that at doses higher than 5 µM, sesamol significantly
reduced the TRP-1 level (Figure 3B).

2.5. Sesamol Downregulated MC1R and MITF Expression

MC1R expresses in melanocytes and is a key receptor in melanogenesis [21]. The expression
of MC1R was found to be 1.10-fold for the control value. MC1R expression was 1.16-, 1.00-, 0.96-,
and 0.69-fold with 5–50 µM sesamol treatments for 2 h (Figure 4). With 50 µM sesamol treatment,
the protein expression of MC1R was significantly less than at the control value. MITF expression
in B16F10 cells increased to 1.88-fold of the control in the α-MSH group (Figure 4). Inhibition of
MITF expression varied with the sesamol treatment dose; at a concentration of 25 µM sesamol, MITF
expression in the B16F10 cells was significantly downregulated (Figure 4).
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Figure 4. Effect of sesamol on α-MSH-induced protein expression of MC1R and MITF in B16F10 cells.
Each value is presented as the mean ± SD. Significant difference versus control: ### p < 0.001; Significant
difference versus α-MSH-treated group: * p < 0.05, ** p < 0.01, *** p < 0.001.

2.6. Sesamol Inhibited Melanogenesis by Upregulating p-AKT and p-GSK3β Expression

Inhibition of the phosphorylation of AKT and GSK3β leads to the MITF activation resulting in
melanin synthesis [22]. The expressions of AKT and GSK3β were determined to clarify the regulation
of sesamol in this pathway. As shown in Figure 5, treatment with α-MSH significantly decreased
p-AKT (0.24-fold of control) and p-GSK3β (0.65-fold of control) expression in B16F10 cells. Treatment
with 10 µM sesamol for 48 h markedly increased p-AKT expression, and 48 h treatment with 5 µM
of sesamol markedly increased p-GSK3β expression. These results indicate that sesamol activated
the phosphorylation of AKT and GSK3β, leading to the downregulation of downstream signalling
transduction, such as MITF expression, and resulting in inhibition of tyrosinase gene activity and
expression, and, therefore, melanin synthesis.

Figure 5. Cont.
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Figure 5. Effect of sesamol on α-MSH-induced protein expression of p-GSK3β and p-AKT in B16F10
cells. Each value is presented, in comparison with the control group, as the mean ± SD., # p < 0.05,
and ### p < 0.001; and, in comparison with the α-MSH treated group, as ** p < 0.01, and ***p < 0.001.

2.7. Sesamol Upregulated p-ERK Expression

Phosphorylation of ERK activates MITF to stimulus melanin synthesis. To understand the role of ERK
in antimelanogenesis of sesamol, the expression of ERK was studied. After treatment with α-MSH, p-ERK
expression in B16F10 cells became 0.82-fold compared with p-ERK expression in the control (Figure 6).
Sesamol dose-dependently inhibited p-ERK expression in B16F10 cells after 48 h of treatment.

Figure 6. Effect of sesamol on α-MSH-induced protein expression of p-ERK in B16F10 cells. Each value
is presented, in comparison with the α-MSH-treated group, as the mean ± SD. Significant difference
versus α-MSH-treated group: *** p < 0.001.

2.8. Effects of Sesamol on the Melanogenesis Signalling Pathway

To understand the mechanism underlying the depigmenting effect, we examined sesamol in
cAMP/PKA, PI3K/AKT, MEK/ERK, p38, and JNK pathways along with H-89 (PKA/mitogen- and
stress-activated protein kinase (MSK) inhibitor), LY 294002 (PI3K inhibitor), PD 98059 (ERK inhibitor),
SB 203580 (p38 inhibitor), and JNK inhibitor II, respectively, for 48 h.

2.8.1. Inhibition of Melanogenesis by Sesamol was Associated with PKA/MSK Regulation

To determine whether inhibition of melanogenesis by sesamol was associated with the PKA/MSK
pathway, B16F10 cells were incubated with 10 µM H-89 and 50 µM sesamol for 48 h. The melanin
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content and expression of tyrosinase was determined. As Figure 7A shows, the melanin content
of B16F10 cells increased to 149.4% ± 4.9% relative to the control upon treatment with α-MSH.
Subsequently, separate treatments with sesamol and H-89 reduced α-MSH-induced melanin content
to 101.4% ± 4.5% and 81.5% ± 6.9% compared with that in the control, respectively (Figure 7A).
In addition, cotreatment with sesamol and H-89 reduced melanin content to 65.7% ± 1.5% compared
with that in the control.

Figure 7. (A) Effect of sesamol and H-89 (PKA/MSK inhibitor) on melanin content (%) in
α-MSH-treated B16F10 cells after 48 h. Each value is presented as the mean ± SD. ### p < 0.001
(Significant difference versus control); *** p < 0.001 (Significant difference versus α-MSH treated
group). (B) Effects of sesamol and H-89 (PKA/MSK inhibitor) on protein expression of tyrosinase
in α-MSH-treated B16F10 cells after 48 h. Each value is presented as the mean ± SD. ### p < 0.001
(Significant difference versus control); *** p < 0.001 (Significant difference versus α-MSH treated group).
(C) Effects of sesamol and LY 294002 (PI3K inhibitor) on melanin content (%) in α-MSH-treated B16F10
cells after 48 h. Each value is presented as the mean ± SD. ### p < 0.001 (Significant difference versus
control); *** p < 0.001 (Significant difference versus α-MSH treated group). (D) Effects of sesamol and
LY 294002 (PI3K inhibitor) on protein expression of tyrosinase in α-MSH-treated B16F10 cells after
48 h. Each value is presented as the mean ± SD. ** p < 0.01, *** p < 0.001 (Significant difference versus
α-MSH treated group).

As shown in Figure 7B, tyrosinase expression was 1.19-fold of the control after α-MSH treatment,
but decreased to 1.05- and 0.94-fold, respectively, after sesamol and H-89 treatments. In addition,
after cotreatment with sesamol and H-89, tyrosinase expression in B16F10 cells decreased to 0.95-fold
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of that in the control. These results indicate that PKA and MSK pathways may be involved in the
antimelanogenic effect of sesamol.

2.8.2. Sesamol Inhibited Melanogenesis by Inhibiting PI3K

To determine whether inhibition of melanogenesis by sesamol was regulated by the PI3K pathway,
B16F10 cells were incubated with 10 µM LY 294002 and 50 µM sesamol for 48 h. The melanin
content and expression of tyrosinase was determined. The melanin content of B16F10 cells increased
to 192.3% ± 2.2% after α-MSH treatment, while separate incubation with sesamol and LY 294002
(PI3K inhibitor) reduced α-MSH-induced melanin content to 117.1% ± 1.9% and 183.9% ± 7.8%,
respectively (Figure 7C). In addition, cotreatment with sesamol and LY 294002 reduced melanin
content to 134.8% ± 3.1% compared with that in the control.

As shown in Figure 7D, tyrosinase expression was 1.03-fold of the control after α-MSH treatment, but
0.73- and 1.48-fold, respectively, after separate sesamol and LY 294002 treatments. In addition, cotreatment
with sesamol and LY 294002 decreased tyrosinase expression to 1.21-fold of that in the control. The results
indicate that the PI3K pathway may be involved in the antimelanogenic effect of sesamol.

2.8.3. Sesamol Inhibited Melanogenesis by Inhibiting ERK

To determine whether inhibition of melanogenesis by sesamol was regulated by ERK, B16F10 cells
were incubated with 10 µM PD 98059 and 50 µM sesamol for 48 h. The melanin content and expression
of tyrosinase was determined. The melanin content of B16F10 cells increased to 199.2% ± 0.6% after
α-MSH treatment. Separate incubation with sesamol and 10 µM PD 98059 (ERK inhibitor) subsequently
altered α-MSH-induced melanin content to 90.6% ± 1.6% and 246.2% ± 7.0%, respectively, compared
with that in the control (Figure 8A). In addition, after cotreatment with sesamol and PD 98059, melanin
content increased to 105.7% ± 1.4% compared with that in the control.

As shown in Figure 8B, the tyrosinase expression was 1.35-fold of that in the control after α-MSH
treatment, but after separate sesamol and PD 98059 treatments, tyrosinase expression was 0.97- and
1.77-fold of the control, respectively. In addition, cotreatment with sesamol and PD 98059 increased
tyrosinase expression to 1.05-fold of the control. The results indicate that the ERK pathway may be
involved in the antimelanogenic effect of sesamol.

Figure 8. (A) Effects of sesamol and PD 98059 (ERK inhibitor) on melanin content (%) in α-MSH-treated
B16F10 cells after 48 h. Each value is presented as the mean ± SD. ### p < 0.001 (Significant difference
versus control); *** p < 0.001 (Significant difference versus α-MSH treated group). (B) Effects of sesamol
and PD 98059 (ERK inhibitor) on protein expression of tyrosinase in α-MSH-treated B16F10 cells after
48 h. Each value is presented as the mean ± SD. ### p < 0.001 (Significant difference versus control);
*** p < 0.001 (Significant difference versus α-MSH treated group).
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2.8.4. Sesamol Inhibited Melanogenesis by Inhibiting p38

To determine whether inhibition of melanogenesis by sesamol was regulated by p38, B16F10 cells
were incubated with 10 µM SB 203580 and 50 µM sesamol for 48 h. The melanin content of B16F10
cells increased to 176.6% ± 11.4% after α-MSH treatment, while separate incubation with sesamol and
10 µM SB 203580 (p38 inhibitor) regulated α-MSH-induced melanin content to 129.2% ± 5.4% and
235.0% ± 4.8%, respectively, compared with that in the control (Figure 9). In addition, after cotreatment
with sesamol and SB 203580, melanin content was 168.2% ± 12.6% compared with that in the control.

Figure 9. Effects of sesamol and SB 203580 (p38 inhibitor) on melanin content (%) in α-MSH-treated
B16F10 cells after 48 h. Each value is presented as the mean ± S.D. ### p < 0.001 (Significant difference
versus control); *** p < 0.001 (Significant difference versus α-MSH treated group).

2.8.5. Sesamol Inhibited Melanogenesis by Inhibiting JNK

To determine whether inhibition of melanogenesis by sesamol was regulated by JNK, B16F10
cells were incubated with 10 µM JNK inhibitor II and 50 µM sesamol for 48 h. The melanin content
and expression of tyrosinase was determined. The melanin content of B16F10 cells increased to
186.6% ± 3.6% after α-MSH treatment, while incubation with sesamol and 10 µM JNK inhibitor II
separately regulated α-MSH-induced melanin content to 95.5% ± 8.0% and 197.1% ± 1.2% compared
with that in the control, respectively (Figure 10A). In addition, after cotreatment with sesamol and JNK
inhibitor II, melanin content was 116.7% ± 2.4% compared with that in the control.

Figure 10B shows that tyrosinase expression was 1.20-fold of the control value after α-MSH
treatment, but the protein expression was 0.47- and 0.74-fold after separate sesamol and JNK inhibitor
II treatment. In addition, cotreatment with sesamol and JNK inhibitor II increased tyrosinase expression
to 0.54-fold of the control. The results indicate that the JNK pathway may be involved in the
antimelanogenic effect of sesamol.
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Figure 10. (A) Effect of sesamol and JNK inhibitor II on melanin content (%) in α-MSH-treated B16F10
cells after 48 h. Each value is presented as the mean ± SD. ### p < 0.001 (Significant difference versus
control); *** p < 0.001 (Significant difference versus α-MSH treated group). (B) Effects of sesamol and
JNK inhibitor II on protein expression of tyrosinase in α-MSH-treated B16F10 cells after 48 h. Each
value is presented as the mean ± SD. ### p < 0.001 (Significant difference versus control); *** p < 0.001
(Significant difference versus α-MSH treated group).

3. Discussion

Melanin synthesis is a series of oxidative reactions, and multiple enzymes are involved
in these processes such as tyrosinase and TRP-1 and TRP-2. Tyrosinase, a copper-containing
metalloenzyme, acts as the rate-limiting enzyme in the melanogenic pathway and plays a crucial
role in initiating melanin synthesis [23,24]. Tyrosine is oxidized by tyrosinase to L-DOPA and
DOPAquinone. DOPAquinone serves as the material to synthesize eumelanin or pheomelanin.
Agents with antioxidative and tyrosinase-inhibiting properties have been previously recognized
as hypopigmentation agents. Sesamol, because of its hydroxyl group, is a strong antioxidant and
can inhibit biphenolase and monophenolase activity, such as that of tyrosinase, thereby inhibiting
melanin synthesis in B16F10 cells [25]. A study reported that sesamol is a noncompetitive inhibitor
of tyrosinase [25]. In our study, sesamol inhibited activity in both TRP-1 and tyrosinase, resulting in
reduced melanin synthesis. TRP-1 is involved in tyrosinase stabilization and is critical to eumelanin
production during the melanin synthesis process. Therefore, inhibition of TRP-1 may reduce the
stability of tyrosinase [26]. In this study, sesamol inhibited α-MSH-induced melanogenesis in a
dose-dependent manner. In addition, sesamol also inhibited tyrosinase activity and protein expression
in B16F10 cells. These results are consistent with those of a previous study that demonstrated that
at 25 and 50 µM, sesamol inhibited tyrosinase, TRP-1, and TRP-2 expression in melan-a cells and in
melanin synthesis in zebrafish [27]. The reduction of tyrosinase, TRP-1, and TRP-2 protein levels may
cause by inhibition of MITF, which is an important regulator of melanogenesis [28]. The results in
this study indicate that sesamol inhibited α-MSH-induced MITF expression, leading to inhibition of
melanin biosynthesis.

To further investigate the mechanism by which sesamol inhibits melanogenesis, we examined
melanin-related protein regulation in PKA/cAMP/MITF/tyrosinase, ERK/tyrosinase, and PI3K/AKT/
GSK3β/tyrosinase pathways. Melanin synthesis results from the following chain of events:
keratinocytes secrete α-MSH which binds to MC1R, thereby activating adenylate cyclase to synthesise
cAMP, which subsequently induces phosphorylation of CREB and activation of the MITF promoter [29].
Baek and Lee investigated that sesamol inhibited cAMP level in melan-a cells at 12.5 µM [27].
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Our results indicate that sesamol inhibited α-MSH-induced CREB and MITF expression, ultimately
attenuating melanin synthesis.

To understand the regulation of signal transduction underlying the depigmenting effect,
the protein inhibitors were used to examine sesamol in PKA, PI3K and MAPK pathways. In our study,
melanogenesis and tyrosinase activity were inhibited in B16F10 cells after the cells were cotreated
with sesamol and H-89. One study reported that inhibited MSK1 activation may disrupt the synthesis
of melanin [30]. MAPK pathway modulates the transcription activity of MITF and plays important
role in melanin synthesis [31,32]. Extracts of Astragalus membranaceus increased the level of ERK
phosphorylation and inhibited the production of melanin in a previous study [31]. Here, reduced
expression of MITF was related to inhibiting phosphorylation of ERK. It was reported that sesamol
induces phosphorylation of p38 and JNK, but not ERK in melan-a cells [27]. However, our study
demonstrated that sesamol inhibited α-MSH-induced phosphorylation of ERK and, after PD 98059
cotreatment, reduced melanin content and tyrosinase activity. In addition, the results of this study
indicate that sesamol’s regulation of p-38 and JNK signal transduction in B16F10 cells resulted in
inhibition of melanin biosynthesis. Besides MAPK pathway, PI3K/AKT and GSK3β expression and
activity cause MITF to bind to the target sequence and induce melanogenesis. Enhancing the activity of
cAMP may inhibit PI3K/AKT and GSK3β expression and activity [33]. In our study, sesamol elevated
the expression of p-AKT and p-GSK3β, possibly reducing MITF transcription to suppress tyrosinase
gene expression and thus inhibiting melanin production and tyrosinase activity. Meanwhile, we found
that through AKT and GSK3β activation and subsequent downregulation of MITF, CREB, tyrosinase,
and TRP-1 production, sesamol inhibited α-MSH-induced hyperpigmentation in B16F10 cells.

4. Material and Methods

4.1. Chemicals and Materials

Sesamol (purity 98%), arbutin, L-DOPA, DL-dithiothreitol, H-89 dihydrochloride hydrate, LY294002,
PD98059, and SB203580 were obtained from Sigma Chemical Co. (St. Louis, MO, USA). α-MSH was
acquired from Merck (Darmstadt, Germany). An antibody recognizing MC1R was obtained from
Millipore Corporation (Billerica, MA, USA). Antibodies recognizing AKT and phospho-AKT were
obtained from GeneTex, Inc. (Irvine, CA, USA). Other primary and secondary antibodies were obtained
from Santa Cruz Biotechnology (Santa Cruz, CA, USA). All other chemicals and reagents used in this
work were high-quality and commercially obtainable.

4.2. Cell Cultures and Cell Viability Assay

B16F10 melanoma cells were cultivated in Dulbecco’s modified Eagle’s medium (GIBCO, Invitrogen
Corporation, Grand Island, NY, USA) supplemented with 10% fetal bovine serum at 37 ◦C in an incubator
with 5% CO2. Cells were harvested through trypsinisation. Cell viability was measured by using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, as previously described [33].

4.3. Melanin Content and Tyrosinase Activity Assay in B16F10 Cells

The melanin content and tyrosinase activity of B16F10 cells were measured according to a method
described in previous studies [34] and using an enzyme-linked immunosorbent assay (ELISA) reader
(Tecan, Grodig, Austria) at 405 nm. Brifely, the B16F10 cells were cultured in six-well culture plates
and incubated. The cells were treated with a medium containing α-MSH and various concentrations
of sesamol for 48 h. NaOH (2N) was added to each well to lyse the cells, and the cells were then
centrifuged. The amounts of melanin in the supernatant were spectrophotometrically measured at
405 nm

In the tyrosinase activity assay, the B16F10 melanoma cells were plated in a 24-well plate and
treated with a medium containing α-MSH and various concentrations of sesamol for 48 h. The medium
was removed and then 1% Triton X-100 mixed in 100 mM phosphate buffered saline was added.
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The mixture was frozen at −80 ◦C and thawed at room temperature, and then centrifuged. A freshly
prepared substrate (15 mM L-DOPA) was then added to the supernatant and incubated. The absorbance
of each well was subsequently read.

4.4. Western Blotting

The expression of melanogenesis-related proteins in B16F10 cells was detected through Western
blotting, as previously described [33,35]. Cells were cultured in a 10-cm dish overnight. Subsequently,
α-MSH and various concentrations of sesamol were added and incubated for 48 h or the indicated
time. The protein content of cell lysates was assessed using the Bradford method. An equal
amount of protein (20 µg) was loaded and separated on sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) gel. Blots on polyvinylidene difluoride (PVDF) membranes were
blocked overnight with 5% (w/v) skimmed milk solution and with the following specific antibodies:
anti-actin, anti-AKT, anti-p-AKT, anti-CREB, anti-p-CREB, anti-GSK3β, anti-p-GSK3β, anti-MITF,
anti-TRP-1, and anti-tyrosinase. The membranes were washed with TBST and then incubated with
G horseradish peroxidase. Bands were visualized using an Enhanced Chemiluminescence Plus Kit
(Fujifilm, LAS-4000, Tokyo, Japan), and the density of the bands was determined using a densitometric
program (MultiGauge v2.2, Fuji Photo Film Co., Tokyo, Japan).

4.5. Statistical Analyses

Values are presented as the mean ± standard deviation. The results presented in this paper are
representative of at least three individual experiments. Differences in the effects of various treatments
were compared using the Student’s t-test or ANOVA and, subsequently, Scheffe’s test. p-values of
<0.05 were defined as significant.

5. Conclusion

This study demonstrated the antimelanogenic activity of sesamol in B16F10 cells. Sesamol exhibited
antimelanogenic activity through the regulation of MEK/ERK, AKT/GSK3β, and CREB/MITF and
resultant inhibition of tyrosinase and TRP-1 expression. Future applications of these findings may
include use of sesamol in skin-whitening products. However, B16F10 is a rodent melanoma cell, and the
results of this study have to be confirmed on human melanocytes in the future.
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Abbreviations

α-MSH α-melanocyte-stimulating hormone
cAMP cyclic adenosine monophosphate
CAPE caffeic acid phenethyl ester
CREB cAMP response element binding protein
p-CREB phospho-cAMP response element binding protein
DHICA 5,6-dihydroxyindole-2-carboxylic acid
L-DOPA L-dihydroxyphenylalanine
DMSO dimethyl sulfoxide
FBS fetal bovine serum
GSK3β glycogen synthase kinase 3 beta
MC1R melanocortin 1 receptor
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MITF microphthalmia-associated transcription factor
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PKA protein kinase A
TRP-1 tyrosinase-related protein-1
TRP-2 tyrosinase-related protein-2
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