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Introduction

Digital data privacy is a rapidly evolving concept in
health care. As electronic records have replaced paper
charts, and with the rise of “Big Data” and artifi-
cial intelligence (AI), this issue has become increas-
ingly important. Big Data has been defined by the
three V’s: volume (large amounts of data), variety (data
heterogeneity), and velocity (speed of access and analy-
sis).1,2 Analyses of these large datasets have allowed
for more powerful assessments of healthcare quality
and efficiency with the goal of improving patient
care.3 AI is a branch of applied computer science that

uses computer algorithms to perform cognitive tasks
that approximate human intelligence, such as clini-
cal decision making.4 More specifically, deep learn-
ing, a subset of machine learning within the field
of AI, has been particularly successful in training
powerful algorithms for the classification of medical
images and other high-dimensional data.5–9 Taken
together, these approaches may offer many benefits for
patients, including automated screening and triage of
disease and treatment optimization. For example, AI-
enabled screening of diseases such as diabetic retinopa-
thy, retinopathy of prematurity, and glaucoma could
improve early detection and treatment.5,10,11 Further-
more, AI has been used for future disease predictions,
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in areas ranging from acute kidney injury to age-related
macular degeneration and diabetic retinopathy; in the
future, such approaches could lead to better preven-
tative strategies.12–15 The combination of Big Data
and AI also offers many potential benefits for health-
care systems, including increased productivity with
decreased costs, as well as reductions in medical error.
New data privacy problems have arisen with the use
of this technology, however, leading to concerns about
the balance between innovation and privacy and the
need for better data protectionmethods that can evolve
along with Big Data and AI.

Ethical Considerations

In the United States, the Belmont Report is the
most widely recognized ethical framework for health
care and the life sciences, and it serves as an essen-
tial reference for institutional review boards.16 The
Belmont Report highlights three fundamental princi-
ples: respect for persons, beneficence, and justice.
Two additional bioethical principles—non-maleficence
(often translated as “first, do no harm”) and respect for
autonomy—are also considered central to biomedical
ethics and AI development.17,18 The Belmont Report is
not directly applicable to secondary use of de-identified
clinical data; in the report, when identifying informa-
tion has been removed, the use of that data is no
longer considered human subjects research. Nonethe-
less, its core principles are instructive. In particu-
lar, with regard to beneficence at a population level,
some believe it is unethical to refrain from using
clinical data to develop tools that have the poten-
tial to benefit others. In contrast, when considering
both non-maleficence and respect for autonomy, others
weigh the balance of both risks and benefits of such
applications for an individual where said individual
does not derive benefit.19 In the United Kingdom,
this is recognized in the constitution of its National
Health Service (NHS) which pledges “to anonymize
the information collected during the course of your
treatment and use it to support research and improve
care for others.”20 However, with the use of increas-
ingly large clinical datasets, maintaining data privacy
and confidentiality—and thus respect for persons—is a
challenge.

Data Protection and Privacy

One of the main limitations of machine learn-
ing and deep learning approaches is their require-
ment for large datasets for development and testing—
datasets that are typically an order of magnitude or

even greater than those collected in most prospec-
tive clinical trials. Compared to other medical special-
ties (e.g., obstetrics), ophthalmology has benefited
from the widespread availability of large, well-curated
imaging datasets and thus is often seen as being at
the forefront of AI-enabled health care.21 Although
the availability of anonymized datasets has been a
boon for technological advancement, it also represents
a significant risk. The principle of beneficence requires
that healthcare professionals “do no harm”; yet,
breaches of patient privacy can cause major harms and
can also have unintended consequences. These could
potentially impact one’s employment or insurance
coverage2 and may even allow computer hackers to
obtain Social Security numbers and personal financial
information.22

Removal of all potentially identifiable information
from large datasets can be a daunting task. In fact,
it is now clear that, even with the most rigorous
efforts, there will always remain at least a theoretical
risk of re-identification.23 This is not an issue unique
to ophthalmology, as it is now conceivable to apply
facial recognition software to three-dimensional recon-
structions of computed tomography of the head. In
addition, features from the periocular region have been
used to identify the age of patients using machine
learning algorithms.24 Gender, age, and cardiovas-
cular risk factors have been identified from fundus
photographs.13 Even for datasets not involving medical
images, and even without the use of advanced or future
technologies, it may be possible to identify individuals
by linkage with other datasets. This is particularly the
case as patient information generally accumulates over
time.25

Data Sharing

Another problem related to privacy and AI is
managing the exchange of data in an ethically accept-
able way. AI typically requires specialized technical
expertise and powerful computer resources. In the
case of a rare disease, for example, consolidation of
data from multiple institutions would be required.
As a result, datasets must be shared outside of the
institution in which they were generated. If executed
poorly, such data sharing may increase the risk of data
breaches.

Data sharing that involves major multinational
corporations in the pharmaceutical and technology
sectors is also of great concern. Monetization of clini-
cal data is a trending topic lately, as evidenced by
the oft-repeated phrase “data is the new oil.”26 These
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increasing relationships between healthcare companies
and academic research data can heighten the risk of
malicious privacy violations. Although detailed discus-
sion of this issue is outside the scope of this article,
the use of exclusive contracts or licenses that prohibit
sharing of routinely collected clinical data is another
cause for concern. Thus, exclusive arrangements that
restrict or preclude the widest possible patient benefit
for clinical data could undermine the Belmont principle
of justice.

Models for Consent

Inmany countries, research ethics authorities do not
require individual consent for retrospective research on
de-identified datasets. This is generally well accepted
in ophthalmology, and the majority of ophthalmic
clinical research including the AAO IRIS (Intelli-
gent Research in Sight) Registry takes place using
this model.27 However, this practice is sometimes
questioned in the context of machine learning, where
the clinical data themselves are used to develop
algorithms. Many patients are supportive of the use of
their data to improve health care and research but feel
that they should be asked to give permission first.28 At
first glance, this would appear to be the most ethically
sound approach—it is certainly an appropriate model
for interventional research studies such as clinical trials.
However, this approach is cumbersome or not feasi-
ble for large, historical datasets of routinely collected
data. There are also challenges in prospectively deploy-
ing such a consent model, particularly when seeking
permissions from patients for unforeseen future uses of
their de-identified data. It would not be true informed
consent if patients are asked to sign up to extensive
terms and conditions before each episode of care or to
agree to future uses of their data about which they have
not yet been “informed.”

The use of opt-in models has also been proposed
as a lighter touch approach; however, this means that
only the most engaged patients, who actively take steps
to get involved, will be included. Of course, the act
of de-identifying itself may require consent from the
covered entity. There is an increasing awareness of the
potential for significant ethical risks in this regard with
the use of AI, particularly concerning racial bias.29 For
these practical and ethical reasons, an opt-out model
is often preferred. As part of a review into the security
and use of NHS data in the United Kingdom in 2016,
the National Data Guardian recommended that a
national opt-out model should be introduced, rather
than one based on an opt-in consent.30 In 2020, clinical
AI researchers from Stanford University proposed the

use of a similar model for the development of AI in
radiology.19

Real-World Case Study

With ophthalmology at the forefront of AI-enabled
health care and potentially acting as an exemplar
for other medical specialties, the specialty has had to
engage with these issues. For example, the collabora-
tion between Moorfields Eye Hospital in the United
Kingdom (led by P.A.K.) and DeepMind, an AI
company, adopted a multipronged approach. First,
it addressed an area with clear patient benefit, the
development of a triage tool for macular diseases
using optical coherence tomography (OCT) images.31
Second, all OCT scans used were de-identified to the
standards described by the UK Information Commis-
sioner’s Office Anonymisation Code of Practice,32 as
well as according to BMJ guidance for the sharing
of clinical data.33 Third, contractual safeguards were
put in place for non-exclusive data sharing that
prohibits linkage with other datasets or attempts at re-
identification. Finally, and most importantly, an active
program of patient and public engagement was under-
taken, with the aim of ensuring public transparency.
This included early communication with the major eye
disease charities and the Royal College of Ophthal-
mologists, as well as with the NHS Health Research
Authority,34 as well as also providing information for
those patients who preferred to opt out of the research,
either at a local or national level.30

Additional Legal Considerations

Many of the privacy concerns associated with Big
Data and AI exist due to gaps in existing laws and
regulations regarding traditional medical data. The
Health Insurance Portability and Accountability Act
(HIPAA) was enacted in 1996, prior to the rise of Big
Data and AI. HIPAA regulates the use of protected
health information (PHI) in the United States and
requires de-identification of data by two mechanisms:
(1) expert determination (expert risk assessment for
a particular use) and (2) safe harbor (the removal
of 18 prespecified identifiers).35 Whereas HIPAA is
meant to ensure data protection on the part of health-
care providers and healthcare systems, these regula-
tions may be inadequate for managing the ever-larger
amounts of data associated with medical care today.
For example, PHI can be shared without consent for
treatment, payment, and operational purposes,36 and
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HIPAA does not cover data generated outside of
health entities, such as patients, providers, and insur-
ers, covered by the act.2 Examples of unregulated
data include data from smart watches, mobile health
applications, internet search engines, social media,
and consumer-initiated health tests, such as genetic
testing, all of which can be triangulated to re-identify
individuals.2 In Europe, patients are protected under
the General Data Protection Regulation (GDPR),
which was implemented by the European Union in
2018 to regulate personal data protection. Under the
GDPR, all health data are considered personal data,
but there are exceptions under which health data
may be used without consent such as for research
purposes if safeguards are instituted.37 The GDPR
introduced aweaker version of de-identification known
as pseudonymization, which is the removal of only
directly identifying data.38

New Approaches

Some of themost promising approaches for protect-
ing data privacy in the era of Big Data and AI are
those that take advantage of the technology itself.
One strategy, differential privacy, involves describing
patterns of groups in the dataset rather than individ-
uals.39 Federated learning (or collaborative learn-
ing) and distributed models are machine learning
techniques that can be used to protect data by training
algorithms across multiple servers using separate data
samples.40–42 In this method, training code and models
are brought into each data silo and trained in situ while
the data remain in place. The combined model param-
eters, trained across many locations, would effectively
have been trained on all available data without risking
data breaches from allowing outsider use.

Similarly, training local generative adversarial
networks (GANs)43 and then sharing GANs instead
of data may mitigate re-identification risks.44,45 Each
deep learning model would be trained to recapitulate
the statistical distribution of the training set and would
generate synthetic image examples that are different
from the original images. This method would require
each hospital to train an AI model to synthetically
generate examples, and the resulting models would be
transferred outside of the protected environments to
generate synthetic images while still capturing disease-
relevant imaging features. However, GANs have not
been fully explored and must be applied with caution.
An important metric for this approach is to ensure that
the generated images are sufficiently different from the
original images to preserve privacy. For example, the
de-identification of a color fundus photograph may
require that the resulting synthetic image cannot be re-

identified by retinal vessel configuration46,47 or that the
membership to the training set cannot be established.
An important tradeoff is performance difference in
the real world when models are trained with the origi-
nal data compared with generated data that preserve
privacy.45 If the generated synthetic datasets are too
different from the original images, then the perfor-
mance of the models trained with synthetic data would
suffer and risk safety and efficacy when deployed.

Even when the data are not shared, there are
other AI-related privacy issues that must be examined.
Although individual patient data and imaging are
safeguarded, traditionally the trained parameters or
weights of AI models are not considered private or
at risk for privacy breaches. However, large-parameter
deep learning models, when trained with relatively few
examples, can overfit and “memorize” these examples.
AI models have been created to perform model inver-
sion, where one AI model will attempt to recon-
struct images with which another AI model was
trained, which could potentially expose private data.48
Recently, even federated learning schemes with differ-
ential privacy have been overcome using GANs.49,50
Clearly, the tools that are developed to protect data
privacy will have to adapt quickly as AI technology
evolves. It is also clear that such tools cannot be
utilized in isolation; careful consideration of ethical
and legal frameworks, with the adoption of appropri-
ate safeguards, will also be necessary. Furthermore, it is
important to also consider potential unintended ethical
consequences; for example, the use of GANs and
federated learning could lock in incumbents who have
the resources to develop such systems, thus inhibiting
wider dissemination of clinical data for patient benefit.

Conclusions

AI and Big Data have introduced privacy concerns
that require solutions and updated regulations. New
regulations governing privacy must be created to
protect against inappropriate use of data, acciden-
tal disclosures, and weaknesses in de-identification
techniques.4 However, we must also acknowledge that
the overprotection of data may be detrimental to the
data-driven innovation that ultimately improves our
overall healthcare system.2 Ophthalmology has been
at the forefront of AI development, but there is also
much to learn from other medical specialties that have
adopted AI and are also confronting these issues. A
successful balance is possible as thoughtful solutions
that can adapt to evolving technology are imple-
mented. Education of our patients and the public,
alongside transparency about usage and sharing, will
become vital as this field rapidly matures.
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