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Abstract
Background Despite progress, under-five mortality remains high, especially in Sub-Saharan Africa and South Asia, 
where around 13,400 children die daily. Environmental pollutants, including PM2.5 from outdoor air and household air 
pollution, significantly contribute to these preventable deaths.

Methods This cross-country study combined satellite data with 113 surveys from the IPUMS-DHS dataset (1998–
2019) to examine under-five child mortality in 41 developing countries. The integration of Global Annual Particulate 
Matter with a diameter of 2.5 micrometres or less (PM2.5) Grids from Socioeconomic Data and Applications Center 
(SEDAC) and geospatial data from the DHS Program enabled a focused analysis of the association between indoor 
and outdoor air pollution, particularly PM2.5, and child mortality rates using both logistic and multilevel logistic 
regression models, as well as estimating Population Attributable Fractions (PAF) to quantify the mortality burden 
attributable to these pollutants.

Results Outdoor air pollution, measured by a one standard deviation increase in PM2.5, significantly increased 
the risk of child mortality (Odds Ratio [OR]: 1.14; 95% Confidence Interval [CI]: 1.10–1.18; p < 0.001). Moderate and 
high household air pollution exposure also heightened this risk, with increases of 37% (OR: 1.37; 95% CI: 1.24–1.53; 
p < 0.001) and 40% (OR: 1.40; 95% CI: 1.26–1.56; p < 0.001), respectively, compared to no exposure. Multilevel models 
(Models 5a and 10a) produced similar estimates to standard logistic regression, indicating robust associations. 
Additionally, Population Attributable Fraction analysis revealed that approximately 11.9% of under-five mortality could 
be prevented by reducing ambient PM2.5 exposure and 12.0% by mitigating household air pollution. The interaction 
between indoor and outdoor pollution revealed complex dynamics, with moderate and high household exposure 
associated with a reduction in mortality risk when combined with PM2.5. Geographical disparities were observed, 
with stronger correlations between outdoor air pollution and child mortality in Africa compared to Asia, and more 
pronounced impacts in low-income countries. However, household air pollution had stronger association with child 
mortality in Africa and lower- and middle-income countries.
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Background
While the world has made remarkable strides in reducing 
child mortality over the past three decades, the under-
five mortality rate remains alarmingly high. Despite the 
global reduction in under-five mortality by 60 per cent, 
from 93 deaths per 1,000 live births in 1990 to 37 in 2022, 
progress has slowed significantly in recent years [1, 2]. 
In 2022 alone, approximately 13,400 children under the 
age of five died every day, highlighting the persistent and 
urgent challenge of child survival. The burden of these 
largely preventable deaths is disproportionately felt in 
regions like Sub-Saharan Africa and South Asia, where 
poverty, infectious diseases, and malnutrition continue to 
claim young lives at an intolerable rate [1]. Sub-Saharan 
Africa, in particular, faces a staggering disparity, with a 
child’s risk of dying before their fifth birthday being 15 
times higher than in high-income countries [1, 3].

Under-five child mortality is influenced by various fac-
tors, including infectious diseases, neonatal complica-
tions, and socio-economic disparities. For instance, in 
Northern Ethiopia, major causes of under-five mortality 
include bacterial sepsis, prematurity, intestinal infec-
tion disease, acute lower respiratory infections, and birth 
asphyxia, with significant disparities observed between 
rural and urban residents [4]. Similarly, in South Africa, 
leading causes of death among children under five are 
pneumonia, gastroenteritis, prematurity, and injuries, 
indicating the need for comprehensive health interven-
tions across service delivery platforms [5]. Furthermore, 
the global burden of child mortality is exacerbated by 
factors such as maternal education, access to healthcare, 
and socio-economic status, with significant variations 
observed across regions and countries [6].

Among the major factors contributing to child mortal-
ity, air pollution stands out as a significant and prevent-
able cause. Exposure to fine particulate matter (PM2.5) 
has been consistently linked to an increased risk of child 
mortality, particularly in children under the age of five. 
Studies such as studies [7] and [8] have demonstrated 
that even small increases in PM2.5 concentrations can 
significantly increase the likelihood of mortality in this 
vulnerable age group.

The causal mechanisms through which PM2.5 leads to 
under-5 child mortality operate through both prenatal 
and postnatal pathways. During pregnancy, exposure to 
PM2.5 can impair fetal development, leading to adverse 
outcomes such as low birth weight (LBW) and preterm 
birth (PTB). These conditions are critical risk factors for 

neonatal mortality, as infants born with LBW or prema-
turely are more susceptible to health complications that 
can be fatal [9]. Study [9] illustrate this by showing that 
a 10 μg/m³ increase in PM2.5 is associated with signifi-
cant reductions in birth weight and gestational age, both 
of which are directly linked to higher neonatal and infant 
mortality rates.

Postnatal exposure to PM2.5 further exacerbates the 
risk of mortality through its impact on respiratory health. 
Infants and young children are particularly vulnerable to 
respiratory infections and other complications resulting 
from inhaling fine particulate matter. Study [10] found 
that long-term exposure to PM2.5 is significantly asso-
ciated with postneonatal mortality, particularly from 
respiratory causes. The harmful effects of PM2.5 are not 
uniform; the specific composition of PM2.5 plays a criti-
cal role in determining its impact. Study [11] found that 
carbonaceous PM2.5, primarily from human activities, is 
particularly detrimental, increasing the odds of neonatal 
mortality by over 50%.

Extending the discussion on the association between 
PM2.5 exposure and under-5 child mortality, it is impor-
tant to consider the role of various environmental pol-
lutants that often coexist with PM2.5, such as polycyclic 
aromatic hydrocarbons (PAHs) and other toxic com-
pounds. Study by [12] have demonstrated that PAHs, 
commonly found alongside PM2.5, contribute signifi-
cantly to health risks, including carcinogenic outcomes. 
The environmental persistence and bioaccumulation of 
these compounds can exacerbate the adverse effects of 
PM2.5, particularly in vulnerable populations like chil-
dren. Additionally, the interaction of PM2.5 with other 
environmental contaminants, such as those found in 
water and soil, as explored by study [13] and [14], illus-
trates how pollutants can re-enter the air through sec-
ondary emissions, complicating efforts to mitigate PM2.5 
exposure and its effects. Moreover, the presence of pes-
ticides like malathion, as highlighted by study [15], can 
further interact with PM2.5, leading to compounded 
health risks.

Numerous studies have established a clear link between 
indoor air pollution caused by the use of solid cooking 
fuels and increased child mortality. For instance, study 
[16] found that solid fuel use significantly increases child 
deaths, particularly in the post-neonatal period, with 
more pronounced effects observed among girls. They 
reported that the use of solid fuels for cooking raises the 
risk of under-five mortality by 4.9% in India. Study [17] 

Conclusions Our findings could serve as a guide for policy development aimed at reducing under-five mortality, 
ultimately contributing to the attainment of the Sustainable Development Goal (SDGs).
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also identified a strong association between solid fuel 
use and post-neonatal and child mortality in Nigeria, 
attributing a significant percentage of deaths in these age 
groups to the use of solid fuels. These findings are sup-
ported by study [18], who found that household air pol-
lution from solid fuels is linked to neonatal and infant 
mortality, as well as other adverse health outcomes in 
Bangladesh.

The primary causal mechanism through which indoor 
air pollution increases the risk of child mortality is the 
heightened susceptibility to acute lower respiratory 
infections (ALRIs), such as pneumonia [19]. The com-
bustion of solid fuels releases a high concentration of 
particulate matter and toxic pollutants, which impair the 
respiratory system and increase the likelihood of severe 
respiratory infections. Study [19] demonstrated that the 
risk of ALRIs in children significantly increases with lon-
ger exposure to solid fuel smoke, with odds ratios rising 
as the duration of exposure grows. Additionally, the lack 
of proper ventilation in households using solid fuels exac-
erbates the exposure, leading to higher concentrations 
of indoor pollutants and a corresponding increase in the 
risk of ALRI-related mortality [20]. This direct impact on 
respiratory health is a key pathway through which indoor 
air pollution contributes to the high rates of child mortal-
ity observed in these settings.

Another critical mechanism is the effect of indoor 
air pollution on adverse birth outcomes, which in turn 
increase the risk of neonatal and infant mortality. Expo-
sure to toxic fumes from solid fuels during pregnancy has 
been linked to low birth weight (LBW), preterm birth, 
and other complications that increase the vulnerability 
of newborns to mortality. Study [18] found that cook-
ing with solid fuels inside the house was associated with 
higher risks of LBW and neonatal mortality in Bangla-
desh. The inhalation of harmful pollutants by pregnant 
women can lead to intrauterine growth restrictions, con-
tributing to poor birth outcomes that predispose infants 
to higher mortality risks.

The link between indoor air pollution (IAP) and child 
mortality is further explained by examining the pres-
ence of harmful pollutants in indoor environments where 
solid fuels are commonly used for cooking. The study [21] 
identifies the presence of hazardous BTEX compounds 
(benzene, toluene, ethylbenzene, and xylene) in indoor 
air, which are particularly prevalent in environments 
with poor ventilation and high solid fuel use. These com-
pounds pose significant health risks, including increased 
respiratory illnesses that can elevate the risk of mortal-
ity in children. Moreover, the study [14] underscores the 
importance of addressing environmental contaminants, 
as these pollutants can contribute to the cumulative 
exposure that exacerbates respiratory conditions.

The interaction between indoor and outdoor air pollu-
tion also significantly increases the risk of child mortality, 
particularly in developing regions where both sources of 
pollution are prevalent. Studies have shown that indoor 
air pollution (IAP) from the use of solid fuels for cook-
ing and heating is a major contributor to respiratory 
infections, which are a leading cause of child mortal-
ity. For example, the study [22] highlights that exposure 
to unprocessed solid fuels substantially increases the 
risk of pneumonia in children under five, a critical age 
group for respiratory-related mortality. This risk is com-
pounded when indoor pollutants interact with outdoor 
air pollution, such as particulate matter (PM) from traffic 
emissions or industrial activities. Study [23] report that 
outdoor air pollution, particularly fine particulate mat-
ter (PM2.5), is associated with significant mortality from 
cardiopulmonary diseases, including in children.

The synergistic effect of indoor and outdoor air pollu-
tion is evident in settings where poor ventilation exac-
erbates the infiltration of outdoor pollutants into indoor 
environments. The study [24] demonstrate that a signifi-
cant proportion of mortality associated with outdoor PM 
is attributable to indoor exposure to particles of outdoor 
origin. This indicates that even if outdoor air pollution 
is the primary source, its impact is magnified by poor 
indoor air quality. Furthermore, the combined exposure 
to both indoor and outdoor pollutants has been shown to 
result in higher rates of acute respiratory infections and 
other health complications in children [25].

This study offers a comprehensive analysis of the rela-
tionship between outdoor air pollution, as measured by 
PM2.5 levels, indoor air pollution, and their synergetic 
effects, and child mortality across 41 countries in sub-
Saharan Africa and South Asia. While a similar previous 
work [26] focused solely on India using data from a single 
survey, our research spans 113 surveys conducted over 21 
years, from 1998 to 2019. Additionally, our study inves-
tigates the potential synergistic effects of both indoor 
and outdoor air pollution on child mortality, aiming to 
reveal whether combined exposures have a more pro-
nounced impact than individual ones. By encompassing 
a broad geographic scope and examining both outdoor 
and indoor air pollution, our work seeks to uncover pat-
terns and long-term effects that provide valuable insights 
into the impact of air pollution on child health in these 
regions.

Methodology
The Integrated Public Use Microdata Series-Demo-
graphic and Health Surveys (IPUMS-DHS) dataset 
includes diverse observations collected from 41 countries 
across 113 surveys. Data spanning 21 years, from 1998 to 
2019, were used in this study. The number of surveys rep-
resenting each country varies, ranging from a minimum 
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of one survey (e.g., Togo) to a maximum of seven surveys 
(e.g., Senegal). This rich dataset provides insights into 
demographic and health surveys over two decades across 
diverse countries.

The outcome variable was under-five mortality rate, 
indicating mortality of children before five years of age. 
Children who died before age five were coded as 1, while 
children alive and under five at their mother’s interview 
were coded as 0.

Outdoor air pollution was measured using annual 
mean PM2.5 concentrations obtained from the Socioeco-
nomic Data and Applications Center (SEDAC) database.1 
The SEDAC dataset provides global annual PM2.5 grids 
from 1998 to 2018 at a 0.01-degree resolution, derived 
from satellite remote sensing data. Specifically, the Global 
Annual PM2.5 Grids from MODIS, MISR, and SeaWiFS 
consist of annual concentrations of fine particulate mat-
ter (PM2.5) in micrograms per cubic meter. This dataset 
combines aerosol optical depth (AOD) retrievals from 
multiple satellite algorithms, including MODIS, MISR, 
and SeaWiFS, and uses the GEOS-Chem model to relate 
these measures to near-surface PM2.5 concentrations. 
Adjustments for residual bias are made using geographi-
cally weighted regression (GWR) with global WHO 
ground-based data. The SEDAC GeoTIFF datasets were 
linked to displaced GPS coordinates of IPUMS-DHS sur-
vey clusters, anonymised by 0–2 km (urban) and 0–5 km 
(rural), connecting PM2.5 concentrations to survey clus-
ter locations.

We standardised the PM2.5 variable to improve inter-
pretability and address biases from regional variations in 
pollution exposure, ensuring our analysis reflects relative 
changes rather than absolute pollution levels. The unit 
of analysis is now a one standard deviation increase in 
PM2.5 concentration per cubic meter.

To align PM2.5 exposure data with the year preced-
ing each child death, SEDAC PM2.5 data from one year 
before the mortality date were linked to each IPUMS-
DHS cluster where a child death occurred. For censored 
cases, SEDAC PM2.5 data from the survey year were 
connected to IPUMS-DHS clusters. This chronological 
alignment preserved data integrity while allowing robust 
exploration of the research question.

Household air pollution (HAP) was constructed based 
on cooking fuel type and kitchen location from IPUMS-
DHS data. The variable representing the type of cook-
ing fuel was constructed by categorising the fuel sources 
into two distinct groups: solid cooking fuel and clean 
cooking fuel. Solid cooking fuels include sources like 
wood, charcoal, coal, and agricultural residues, while 
clean cooking fuels comprise electricity, LPG, biogas, 

1  h t t  p s : /  / s e  d a  c . c  i e s i  n . c  o l  u m b  i a . e  d u /  d a  t a /  s e t /  s d e  i -  g l o b a l - a n n u a l - g w r - p m 2 - 5 - 
m o d i s - m i s r - s e a w i f s - a o d - v 4 - g l - 0 3 / d a t a - d o w n l o a d     .  

and other petroleum-based or improved smokeless cook 
stoves. Missing data were excluded. Households using 
clean fuels were classified as ‘No exposure.’ For solid fuel, 
‘Moderate exposure’ indicated a separate kitchen, while 
‘High exposure’ meant no separate kitchen. This classi-
fied potential exposure to household air pollutants from 
cooking. A limitation is that HAP exposure level at the 
interview may not match the preceding 5 years. However, 
living standards often improve over time, suggesting if 
high exposure was reported at interview, past exposure 
was at least as high, if not worse. This presumption is 
supported by previous studies successfully using DHS 
data on household air pollution to assess its association 
with child mortality [27].

Covariates
The analysis incorporated several covariates to capture 
multifaceted influences. In our analysis, we incorporated 
a comprehensive set of covariates, broadly categorized 
into three types: child-related, parent-related, and house-
hold-related factors. Child-related variables included 
parameters such as the child’s size at birth and gender. 
We also considered parent-related factors like paren-
tal education and maternal employment status. On the 
household level, we looked at variables such as the total 
number of children born into the family and the house-
hold’s wealth status.

Following similar literature [28], the covariates 
included ‘Child Birth Size’ (categorized as small, aver-
age, or large), ‘Sex of Child’ (classified as female or male), 
‘ANC Visits’ (bifurcated into no visits, 1–4 visits, or 
5 + visits), ‘Maternal Employment’ (dichotomized as not 
working or working), and ‘Mother’s Current Age’ (divided 
into less than 21, 18–34, or over 34 years). ‘Woman’s Cur-
rent Marital Status’ was differentiated as either married 
or not currently married, while ‘Mother’s Education’ and 
‘Father’s Education’ were both classified into no educa-
tion, primary, secondary, or higher education. ‘Number 
of Children Ever Born’ was grouped into three categories: 
1–2, 3–4, or more than 4. Lastly, the ‘Household Wealth 
Index’ was stratified into five levels: poorest, poorer, mid-
dle, richer, or richest. Each of these covariates, with their 
respective levels, allowed a nuanced exploration of vari-
ous factors potentially affecting child mortality.

Statistical analysis
Our estimation strategy comprises several steps. Initially, 
we identified variables that could potentially confound 
the relationship between air pollution and child mortal-
ity. Given that our outcome variable, child mortality, is 
binary, we utilized a logistic regression model. We incor-
porated spatial and temporal factors into our model for 
added context. Temporal factors were represented via an 
indicator variable spanning across the decades from 1998 

https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03/data-download
https://sedac.ciesin.columbia.edu/data/set/sdei-global-annual-gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03/data-download
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to 2010 and 2011–2019. Likewise, we included a conti-
nent indicator variable to account for heterogeneity at 
the continental level. Decade-based temporal grouping 
smooths out short-term fluctuations and captures long-
term trends, providing a more stable basis for analysis. 
Continent-level aggregation reduces the complexity of 
cross-country heterogeneity, highlighting regional pat-
terns and facilitating comparisons across broader geo-
graphical areas.

To ensure the robustness of our findings, we conducted 
several checks, primarily by analyzing different subsets 
of the data. We broke down our data by continent and 
income groups, focusing specifically on low-income and 
lower-to-upper middle-income countries. It is impor-
tant to note that our sample does not contain any high-
income countries but encompasses countries primarily 
from South Asia and Africa. We further disaggregated 
our data from the beginning of the sample period up to 
2010 and then created another category from 2011 to 
2019. The inclusion of continent-level data was aimed 
at investigating how different continents might influ-
ence the relationship between air pollution and child 
mortality. Similarly, examining different income levels 
might reveal insights into the strategies various countries 
employ to mitigate the effects of air pollution.

As for the temporal variable, it is hypothesized that pol-
lution has increased over time, which could raise the risk 
of child mortality. However, technological advancements 
over the same period could offset the pollution effect, 
possibly reducing the child mortality risk. Thus, to deter-
mine the net effect of air pollution on child mortality, 
we dissected our data into different continents, income 
groups, and decades. The covariates were included inter-
actively into our model, with each set of factors incorpo-
rated into one model iteration at a time. This approach 
aimed to detect any shifts in the relationship between air 
pollution and child mortality and to ascertain the direc-
tion of these changes. By systematically integrating dif-
ferent sets of variables, we sought to thoroughly examine 
the intricate link between air pollution, various demo-
graphic factors, and child mortality.

Standard logistic regression models, while widely 
utilized in cross-country cross-sectional surveys [29], 
assume independence of observations, which may lead 
to biased estimates and underestimated standard errors 
in the presence of clustering and spatial-temporal cor-
relations [30]. To ensure robustness in our analysis of 
under-five mortality across diverse settings, we comple-
mented the initial weighted logistic regression with a 
multilevel logistic regression. This multilevel approach 
incorporates random intercepts at the Primary Sampling 
Unit (PSU) level, effectively accounting for intra-cluster 
correlations and unobserved heterogeneity within PSUs 
[31]. By including comprehensive covariates that capture 

geographical variability, we control for higher-level spa-
tial and temporal variations within the fixed component 
of the model. Consequently, modeling random intercepts 
solely at the PSU level sufficiently addresses residual clus-
tering and spatial-temporal correlations without over-
complicating the model structure [32, 33].

Finally, drawing upon the established literature [34, 
35], a risk assessment was undertaken utilizing Popula-
tion Attributable Fraction (PAF) analysis to quantify the 
proportion of under-five mortality attributable to ambi-
ent and household air pollution across 41 countries. 
PAF estimates the fraction of deaths that could be pre-
vented by eliminating exposure to these pollutants. The 
method [36], we used Stata’ punaf command after esti-
mating logistic regression models to estimate proportion 
of under-five mortality attributable to air pollution. For 
ambient air pollution, the analysis expresses exposure in 
standard deviation units, with a value of 1 representing 
a one standard deviation increase from the mean PM2.5 
levels. For household air pollution, the baseline scenario 
(Scenario 0) represents “no exposure,” and both moderate 
and high exposure levels are interpreted relative to this 
baseline, quantifying their impact on mortality risk.

Results
Figure  1 gives the under-five child mortality rates per 
1000 live births. We observe several intriguing patterns. 
The highest reported child mortality rate was in Mali in 
2001, followed closely by Burkina Faso in 1998. In stark 
contrast, the lowest rate in Jordan in 2007 was recorded 
as 16. Most countries show a trend of decreasing child 
mortality rates over time, with Bangladesh presenting a 
strong downward trend. In contrast, Cameroon’s mortal-
ity rate increased from 79 in 1998 to 95 in 2004 before 
dropping to 57 in 2018.

Figure  2 provides data on PM2.5  μg/m³ (fine particu-
late matter with a diameter of 2.5 micrometres or less per 
cubic meter, which can penetrate deep into the lungs and 
even enter the bloodstream) and reveals several inter-
esting patterns. The highest levels of PM2.5 were found 
in Bangladesh in 2014 and Nigeria in 2018. Conversely, 
Ethiopia in 2000 showed the lowest PM2.5 level. In some 
countries, like Bangladesh, there has been a noticeable 
upward trend, with the value rising from 48.2 in 2000 to 
69.1 in 2014. Though Fig. 2 gives the estimates in μg/m³ 
terms, we standardised the PM2.5 variable for regression 
analysis to improve interpretability and address biases 
from regional variations in pollution exposure, ensuring 
our analysis reflects relative changes rather than absolute 
pollution levels.

Figure  3 shows many countries have dramatically 
reduced the percentage of high household air pollution 
exposure over time, while others maintained or increased 
it. Bangladesh saw a significant reduction from 34.5% in 
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2004 to 8.5% in 2014. A stark contrast can be observed 
in Ethiopia, where the high exposure level skyrocketed 
from 0% in 2000 and 2005 to 83.9% in 2011. Notably, 
some countries consistently maintain 100% no exposure, 
potentially indicating successful interventions.

However, other factors such as geographical location, 
economic development, cultural practices, and urban-
ization can also influence these figures. Therefore, while 
the data provides valuable insights, it is essential to con-
sider these context-specific factors when interpreting the 
results.

The pairwise correlation between L1 (lag of PM2.5 μg/
m3 in a given geographical area) and the three categories 
of household air pollution exposure reveals interesting 
associations. L1 shows a negative correlation of -0.3137 
with no exposure, suggesting that areas with higher 
PM2.5 lags tend to have less likelihood of no exposure 
to household air pollution. Conversely, L1 is positively 
correlated with high exposure at 0.2316, indicating that 
higher PM2.5 lags are associated with increased likeli-
hood of high exposure to household air pollution. The 

correlation with moderate exposure is relatively weak at 
0.0581.

Regression analysis
Across all models (Model 1–5 in Table  1), we consis-
tently found that a one standard deviation increase in 
PM2.5 significantly elevates the risk of child mortality. 
The strength of this association remained relatively stable 
across the models, with some minor variations as addi-
tional covariates were introduced (Odds Ratio [OR]: 1.10; 
95% Confidence Interval [CI]: 1.09–1.12; p-value < 0.001).

Regarding household air pollution (Model 6–10 in 
Table 1), we found that compared to no exposure, mod-
erate exposure significantly heightened the risk of child 
mortality, with an approximately 91% increased risk (OR: 
1.91; 95% CI: 1.82–2.00; p-value < 0.001). High expo-
sure was associated with an even higher risk, increasing 
child mortality risk by around 102% (OR: 2.02; 95% CI: 
1.93–2.10; p-value < 0.001). However, as more covariates 
were added, the association between moderate exposure 
and child mortality attenuated, remaining statistically 

Fig. 1 Under-five child mortality (per 1,000 live births)
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significant though reduced in magnitude (OR: 1.21; 95% 
CI: 1.10–1.32; p-value < 0.001). Similarly, for high expo-
sure, although the association weakened, it remained 
statistically significant (OR: 1.13; 95% CI: 1.03–1.24; 
p-value < 0.01), indicating a 13% increased risk of child 
mortality.

To ensure the robustness of our findings and address 
potential clustering and spatial-temporal correlations 
inherent in the survey data, we complemented our stan-
dard logistic regression models (Models 5 and 10) with 
multilevel logistic regression models (Models 5a and 
10a in Table  1). These multilevel models incorporated 
random intercepts for Primary Sampling Units (PSUs), 
effectively accounting for unobserved heterogeneity and 
intra-cluster correlations within PSUs. The results from 
Models 5a and 10a closely mirrored those of their logistic 
regression counterparts, indicating minimal changes in 
the estimated associations. Specifically, Model 5a yielded 
an odds ratio (OR) of 1.15 (CI: 1.13–1.17; p < 0.001) for 
a one standard deviation increase in PM2.5, compared 
to Model 5’s OR of 1.16 (95% CI: 1.14–1.18; p < 0.001). 

Regarding household air pollution, Model 10a reported 
an OR of 1.18 (95% CI: 1.10–1.27; p < 0.001) for high 
exposure, closely aligning with Model 10’s OR of 1.18 
(95% CI: 1.03–1.24; p < 0.001). These slight variations in 
coefficients between the logistic and multilevel models 
underscore the stability of our estimates.

Synergetic relation of indoor and outdoor air pollution
Our analysis (Table 2) reveals significant impacts of both 
outdoor and indoor air pollution on under-5 child mor-
tality. A one standard deviation increase in PM2.5 con-
sistently and significantly raises the mortality risk across 
all models (OR: 1.14; 95% CI: 1.10–1.18; p-value < 0.001). 
This effect remained robust, showing only minor varia-
tions as additional covariates were introduced.

For household air pollution, children in mod-
erately exposed households experienced a signifi-
cantly higher mortality risk, initially 91% greater than 
those in non-exposed households (OR: 1.91; 95% 
CI: 1.82–2.01; p-value < 0.001). While this associa-
tion attenuated as more covariates were incorporated, 

Fig. 2 Outdoor air pollution proxied by Lag (PM2.5 μg/m3)
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it remained statistically significant in the final model, 
with a 37% increased risk (OR: 1.37; 95% CI: 1.24–1.53; 
p-value < 0.001).

Children in highly exposed households faced an 
even more substantial risk, initially showing a 120% 
increase in mortality risk (OR: 2.20; 95% CI: 2.10–2.32; 
p-value < 0.001). Though this risk decreased somewhat 
after adjusting for covariates, it persisted at 40% higher 
than in non-exposed households in the fully adjusted 
model (OR: 1.40; 95% CI: 1.26–1.56; p-value < 0.001).

The interaction effects between household air pollu-
tion and PM2.5 further highlight the complex dynam-
ics. The interaction between no exposure to household 
air pollution and PM2.5 serves as the baseline (OR: 1.00; 
95% CI: 1.00–1.00). For children in moderately exposed 
households, the interaction between indoor air pollution 
and PM2.5 was associated with a reduction in the odds of 
child mortality, with a 14% lower risk in the fully adjusted 
model (OR: 0.86; 95% CI: 0.78–0.95; p-value < 0.01). Simi-
larly, in households with high exposure, the interaction 

with PM2.5 resulted in a 19% decrease in mortality risk 
(OR: 0.81; 95% CI: 0.73–0.89; p-value < 0.001).

To account for potential clustering and spatial-tempo-
ral correlations inherent in the survey data, we comple-
mented our standard logistic regression models (Models 
1–5) with a multilevel logistic regression model (Model 
6). This multilevel model incorporated random intercepts 
for Primary Sampling Units (PSUs), effectively capturing 
unobserved heterogeneity and intra-cluster correlations 
within PSUs. As shown in Table  2, the estimates from 
Model 6 were largely consistent with those from the stan-
dard logistic regression models, indicating that the multi-
level approach effectively accounts for residual clustering 
and spatial-temporal correlations without substantially 
altering the primary associations.

Disaggregated analysis
Spatial variability
Our analysis reveals significant regional and economic 
disparities in the association between air pollution 
and under-5 child mortality (Table  3). A one standard 

Fig. 3 Levels of exposure to household air pollution
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deviation increase in PM2.5 consistently and signifi-
cantly raises child mortality risk across all models (OR: 
1.005; 95% CI: 1.004–1.006; p-value < 0.001). This effect 
remains significant in both Africa (OR: 1.005; 95% CI: 
1.004–1.006; p-value < 0.001) and Asia (OR: 1.003; 95% 
CI: 1.001–1.006; p-value < 0.05), although the association 
is slightly weaker in Asia.

For household air pollution, moderate exposure 
increases the risk of child mortality by 23% com-
pared to no exposure (OR: 1.230; 95% CI: 1.134–1.334; 
p-value < 0.001). This effect is more pronounced in 
Africa, where moderate exposure is associated with a 
28% increased risk (OR: 1.278; 95% CI: 1.165–1.402; 
p-value < 0.001), while in Asia, moderate exposure 
shows no significant association with child mortality 
(p-value > 0.05).

High household air pollution exposure results in a 
25.3% increased risk of under-5 mortality in the overall 
model (OR: 1.253; 95% CI: 1.154–1.361; p-value < 0.001). 
In Africa, this risk is slightly lower but still signifi-
cant (OR: 1.224; 95% CI: 1.113–1.347; p-value < 0.001), 
whereas in Asia, high exposure shows a marginally 

significant 14% increased risk (OR: 1.140; 95% CI: 0.979–
1.327; p-value < 0.10).

When disaggregating by income groups, the asso-
ciation between PM2.5 and child mortality is strong in 
low-income countries (OR: 1.005; 95% CI: 1.004–1.006; 
p-value < 0.001) and somewhat weaker but still significant 
in lower and upper-middle-income countries (OR: 1.004; 
95% CI: 1.000–1.008; p-value < 0.10).

In terms of household air pollution, the effect of mod-
erate exposure is not significant in low-income coun-
tries but sharply rises to a 40% increased risk in lower 
and upper-middle-income countries (OR: 1.400; 95% CI: 
1.159–1.692; p-value < 0.001). High exposure to house-
hold air pollution is similarly insignificant in low-income 
countries but dramatically increases mortality risk by 
nearly 60% in lower and upper-middle-income nations 
(OR: 1.593; 95% CI: 1.335–1.901; p-value < 0.001).

Temporal variability
We also explored temporal variations in the associa-
tion between air pollution and under-5 child mortal-
ity, splitting the data into two periods: 1989–2010 and 

Table 2 Synergetic relationship between indoor air pollution and outdoor air pollution
Under-5 child mortality (1) (2) (3) (4) (5) (6)

OR OR OR OR OR OR
Z(PM2.5)t−1 1.14*** 1.10*** 1.29*** 1.29*** 1.29*** 1.29***

[1.10,1.18] [1.05,1.15] [1.19,1.39] [1.19,1.39] [1.19,1.40] [1.21,1.37]
HH air pollution (Ref. No exposure)
Moderate exposure 1.91*** 1.66*** 1.39*** 1.38*** 1.37*** 1.38***

[1.82,2.01] [1.55,1.78] [1.26,1.53] [1.25,1.53] [1.24,1.53] [1.27,1.50]
High exposure 2.20*** 1.83*** 1.41*** 1.41*** 1.40*** 1.39***

[2.10,2.32] [1.70,1.96] [1.28,1.56] [1.27,1.56] [1.26,1.56] [1.27,1.52]
HH air pollution x Z(PM2.5)t−1

No exposure x Z(PM2.5)t−1 1.00 1.00 1.00 1.00 1.00 1.00
[1.00,1.00] [1.00,1.00] [1.00,1.00] [1.00,1.00] [1.00,1.00] [1.00,1.00]

Moderate exposure x Z(PM2.5)t−1 1.05* 1.01 0.87** 0.86** 0.86** 0.87***

[1.01,1.10] [0.95,1.07] [0.79,0.95] [0.79,0.94] [0.78,0.95] [0.81,0.93]
High exposure x Z(PM2.5)t−1 0.91*** 0.92** 0.81*** 0.81*** 0.81*** 0.83***

[0.87,0.95] [0.87,0.98] [0.74,0.88] [0.73,0.89] [0.73,0.89] [0.77,0.89]
var(_cons[idhspsu]) 1.34***

[1.25,1.45]
Child-related covariates No Yes Yes Yes Yes Yes
Parents-related covariates No No Yes Yes Yes Yes
Family-related covariates No No No Yes Yes Yes
Decade fixed effects (Ref. 1998–2010) No No No No Yes Yes
Continental fixed effects (Ref. Africa) No No No No Yes Yes
N 490,589 331,355 165,702 165,702 165,702 168,163
F (Wald χ2 in Model 6) 294.93 148.90 69.71 54.58 50.81 1040.08
p 0.00 0.00 0.00 0.00 0.00 0.00
OR: Odds Ratios; 95% confidence intervals in brackets

+p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001

Child-related covariates in the models were childbirth size, sex of child, ANC visits. Parents-related covariates included maternal employment, mother’s current age, 
woman’s current marital status, mother’s education, father’s education. Family-related covariates included number of children ever born and household wealth 
index
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2010–2019 (Table 4). In the comprehensive model, a one 
standard deviation increase in PM2.5 was significantly 
associated with a higher risk of child mortality (OR: 1.16; 
95% CI: 1.15–1.18; p-value < 0.001). However, no signifi-
cant association was found for the pre-2010 period (OR: 
0.99; 95% CI: 0.96–1.03; p-value > 0.05). Post-2010, the 
association became significant again, with a one standard 
deviation increase in PM2.5 associated with a 10% higher 
risk of child mortality (OR: 1.10; 95% CI: 1.06–1.13; 
p-value < 0.001).

For household air pollution, children born into moder-
ately exposed households exhibited a 46% greater likeli-
hood of dying before their fifth birthday compared to 
those from non-exposed households in the full model 
(OR: 1.46; 95% CI: 1.37–1.55; p-value < 0.001). Before 
2010, this association was insignificant (OR: 1.00; 95% 
CI: 0.88–1.12; p-value > 0.05). Post-2010, moderate 
exposure did not show a statistically significant associa-
tion with child mortality (OR: 1.03; 95% CI: 0.91–1.15; 
p-value > 0.05).

Children from households with high exposure to 
indoor air pollution demonstrated a 37% higher risk 
of child mortality in the full model (OR: 1.37; 95% CI: 
1.29–1.46; p-value < 0.001). In the pre-2010 period, the 
association was insignificant (OR: 1.02; 95% CI: 0.90–
1.16; p-value > 0.05). However, post-2010, high exposure 
was associated with an 11% higher risk of child mortality, 

although this association was only marginally significant 
(OR: 1.11; 95% CI: 0.99–1.24; p-value < 0.10).

The analysis presented in the Table  5 explores the 
relationship between ambient air pollution, specifically 
PM2.5, and household air pollution (HH Air Pollution) at 
moderate and high exposure levels, in relation to under-
five mortality. The results are provided in terms of Popu-
lation Unattributable Fractions (PUF) and Population 
Attributable Fractions (PAF), which quantify the burden 
of child mortality that can be attributed to these envi-
ronmental risk factors. The baseline mortality probabil-
ity is 0.034. Increasing ambient PM2.5 raises mortality 
to 0.038, with a PUF of 1.119 and a PAF of − 0.119, indi-
cating that reducing PM2.5 by one standard deviation 
could prevent 11.9% of under-five deaths (CI: − 0.157 to 
− 0.081). Similarly, moderate HH Air Pollution increases 
mortality to 0.038 (PUF = 1.120, PAF = − 0.120), poten-
tially preventing 12.0% of deaths (CI: − 0.178 to − 0.063). 
High HH Air Pollution results in a PUF of 1.121 and a 
PAF of − 0.121, suggesting that eliminating high house-
hold pollution could prevent 12.1% of under-five deaths 
(CI: − 0.178 to − 0.066). All PAF estimates are statistically 
significant.

Discussion
Our research identified significant association between 
air pollution and the under-five child mortality, consis-
tently revealing a positive connection between PM2.5 μg/

Table 4 Association between air pollution and under five child mortality: a temporal disaggregation
PM2.5 HAP
(1) (2) (3) (4) (5) (6)

Under-5 child mortality OR OR OR OR OR OR
Full Pre-2010 Post-2010 Full Pre-2010 Post-2010

Z(PM2.5)t−1 1.16*** 0.99 1.10***

[1.15,1.18] [0.96,1.03] [1.06,1.13]
HH air pollution (Ref. No exposure)
Moderate exposure 1.46*** 1.00 1.03

[1.37,1.55] [0.88,1.12] [0.91,1.15]
High exposure 1.37*** 1.02 1.11+

[1.29,1.46] [0.90,1.16] [0.99,1.24]
Child-related covariates Yes Yes Yes Yes Yes Yes
Parents-related covariates Yes Yes Yes Yes Yes Yes
Family-related covariates Yes Yes Yes Yes Yes Yes
Decade fixed effects (Ref. 1998–2010) No No No No No No
Continental fixed effects (Ref. Africa) Yes Yes Yes Yes Yes Yes
N 717,359 312,389 386,017 378,148 166,871 211,273
F 263.98 74.51 66.33 145.15 38.04 33.47
p 0.00 0.00 0.00 0.00 0.00 0.00
OR: Odds Ratios; 95% confidence intervals in brackets

+p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001

Child-related covariates in the models were childbirth size, sex of child, ANC visits. Parents-related covariates included maternal employment, mother’s current age, 
woman’s current marital status, mother’s education, father’s education. Family-related covariates included number of children ever born and household wealth 
index

Note: Pre-2010 period indicates the surveys done from 1998 to 2010 and Post-2010 Period indicates the surveys done after 2010 till 2019
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m3 exposure and under-five child mortality. Our results 
corroborate previous studies, which show PM2.5 μg/m3 
exposure is a significant risk factor for children under 
five in various regions [37–41]. PM2.5 μg/m3 can cause 
numerous risks to children under five through different 
causal mechanisms, leading to both direct and indirect 
health complications. PM2.5  μg/m3 can increase child 
mortality by worsening respiratory and cardiovascular 
conditions, affecting lung functionality, compromising 
immunity, and negatively affecting prenatal outcomes 
[42–45]. The connection between PM2.5  μg/m3 expo-
sure and respiratory problems in under-five children 
plays a significant role in increasing child mortality. One 
study revealed a significant relationship between annual 
PM2.5  μg/m3 exposure and acute respiratory infection 
(ARI) in children under five years old in developing coun-
tries [44]. The World Health Organization (WHO) issued 
a damning report stating that almost all children world-
wide are exposed to harmful air pollution levels, lead-
ing to many deaths from stroke, lung cancer, and heart 
disease. The situation is particularly alrming in low- and 
middle-income countries, where 98% of all under-five 
children are exposed to PM2.5  μg/m3 levels exceeding 
WHO air quality guidelines [46]. These studies highlight 
the crucial connection between PM2.5  μg/m3 expo-
sure, respiratory problems in under-five children, and 
increased child mortality rates.

PM2.5 μg/m3 exposure is associated with an increased 
risk of cardiovascular diseases, a link that is particularly 
significant for children under five, potentially contribut-
ing to higher child mortality rates. A study by the United 
States Environmental Protection Agency highlights that 
the harmful effects of PM2.5  μg/m3 encompass both 
short-term and long-term health outcomes, including 
changes to heart and vascular function, systemic inflam-
mation, oxidative stress, and impaired vascular function 
that may develop type 2 diabetes [47–51]. These changes 
can lead to severe conditions such as heart attacks, 

strokes, and abnormal heart rhythms. Although these 
effects are primarily documented in adults, it is inferred 
that children, especially those with pre-existing cardio-
vascular conditions, could be similarly impacted. These 
factors, combined with the higher susceptibility of chil-
dren, could link PM2.5  μg/m3 exposure to increased 
child mortality rates, warranting further research on 
this critical public health issue. A study directly links 
indoor air pollution, including PM2.5  μg/m3 to acute 
lower respiratory infections in children, a leading cause 
of under-five mortality. Study is evidence of the health 
impacts of household air pollution, including PM2.5 μg/
m3 in China, a country with a high burden of under-five 
mortality [51, 52]. Evidence reveals a strong correla-
tion between PM2.5  μg/m3 exposure and adverse preg-
nancy outcomes like low birth weight and preterm birth, 
impacting all geographic regions in the U.S. and suggest-
ing a higher risk for pregnant women exposed to high 
PM2.5  μg/m3 levels [43]. These conditions extend their 
effects beyond the neonatal period, significantly rais-
ing the risk of early childhood mortality and potential 
developmental disabilities [53]. As a study demonstrated, 
PM2.5  μg/m3 exposure is directly associated with 
under-five mortality, with a 10-unit increase in ambient 
PM2.5 μg/m3 leading to 2.29 times higher odds of under-
five mortality [54].

Household air pollution, specifically at high exposure 
levels, significantly amplified this risk, a relationship that 
held even when controlling for numerous covariates. Our 
findings are consistent with the previous evidence [7, 55, 
56]. Household air pollution (HAP) from solid fuel use 
(SFU) in cooking, prevalent in low and middle-income 
countries (LMICs), leads to high concentrations of harm-
ful indoor pollutants. These pollutants, including par-
ticulate matter, NOx, CO, SOx, formaldehyde, and toxic 
polycyclic aromatic hydrocarbons, often exceed WHO 
guidelines and pose a significant health risk [27]. Cultural 
practices mean women and children spend significant 

Table 5 Proportion of under-five child mortality attributable to air pollution
Variables Scenario Mean/Ratio Std. Err. t-value P-value 95% CI PAF Estimate
Z(PM2.5) Scenario 0 0.034 0.001 -212.43 0.000 0.033 to 0.035
Z(PM2.5) Scenario 1 0.038 0.001 -135.78 0.000 0.036 to 0.040
Z(PM2.5) PUF 1.119 0.019 6.46 0.000 1.081 to 1.157
Z(PM2.5) PAF -0.157 to -0.081 -0.119
HH Air Pollution (Moderate Exposure) Scenario 0 0.034 0.001 -212.430 0.000 0.033 to 0.035
HH Air Pollution (Moderate Exposure) Scenario 1 0.038 0.001 -107.980 0.000 0.036 to 0.041
HH Air Pollution (Moderate Exposure) PUF 1.120 0.030 4.290 0.000 1.063 to 1.179
HH Air Pollution (Moderate Exposure) PAF -0.178 to -0.063 -0.120
HH Air Pollution (High Exposure) Scenario 0 0.034 0.001 -212.43 0.000 0.033 to 0.035
HH Air Pollution (High Exposure) Scenario 1 0.038 0.001 -110.18 0.000 0.036 to 0.041
HH Air Pollution (High Exposure) PUF 1.121 0.029 4.44 0.000 1.066 to 1.178
HH Air Pollution (High Exposure) PAF -0.178 to -0.066 -0.121
Note: HH: household; PUF: population Unattributable Fractions; PAF: Population Attributable Fractions; Slightly different PUFs for Moderate and High exposure 
within identical scenarios (Scenario 0 and Scenario 1) are due to restricting scenario estimates to three decimal points
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time near the source of these pollutants, exposing them 
to harmful levels in LMICs. A study in Myanmar found 
that infant and under-five mortality risks were higher in 
households using SFU, demonstrating a direct causal link 
between HAP and child mortality [27].

Both outdoor pollution and indoor air pollution dem-
onstrate individually significant positive effects on child 
mortality, but their synergetic effect appears negative. 
This finding can be understood through several theo-
retical frameworks in the literature. Ai, et al. [57] sug-
gest that in nonlinear models such as logistic regression, 
interaction terms often capture complex relationships 
rather than simple additive effects. The negative inter-
action between outdoor and indoor pollution suggests 
diminishing marginal returns. In cases where exposure to 
outdoor pollution is already high, the additional impact 
of indoor pollution on child mortality may be less pro-
nounced, reflecting a plateau in the combined effect of 
these stressors.

Furthermore, study [58] highlight that negative synergy, 
or antagonism, occurs when multiple stressors interact in 
ways that diminish their individual impacts. In this case, 
while both outdoor and indoor pollution independently 
elevate the risk of child mortality, their combined effect 
may be weaker than the sum of their parts. This negative 
synergism could account for the observed negative inter-
action term in the analysis of child mortality. A study [59] 
discuss how systems exposed to multiple stressors may 
adapt or compensate, resulting in a reduced cumulative 
effect. Households exposed to both indoor and outdoor 
pollution may take protective actions, such as improv-
ing ventilation, which could mitigate the overall risk of 
mortality. This adaptive behaviour may contribute to the 
negative interaction effect observed between the two 
pollutants.

Our disaggregated analysis revealed crucial geographi-
cal patterns, showing stronger association between 
air pollution and under-five child mortality in Africa 
as opposed to Asia. Though no specific study explains 
why the child mortality rate associated with PM2.5  μg/
m3 is higher in Africa compared to Asia, some research 
provides possible reasons. A Nature publication found 
a strong link between air quality and infant mortal-
ity in Africa. Here, a 10  μg m − 3 rise in PM2.5  μg/m3 
concentration is associated with a 9% increase in infant 
mortality. This effect has remained consistent over the 
past 15 years and does not reduce with growing house-
hold wealth [26]. Socioeconomic elements, includ-
ing education, employment status, health expenditure, 
improved water and sanitation facilities accessibility, and 
income inequality, significantly influence child mortal-
ity. Research in South Asia and Latin America demon-
strates negative association between education, improved 
water and sanitation facilities, health expenditure, and 

child mortality. Conversely, unemployment and income 
inequality increase the risk of child mortality [60, 61]. 
The State of Global Air report indicates that Asian and 
African counties experience the most deaths related to 
PM2.5 μg/m3. Factors like healthcare accessibility, socio-
economic development, and population changes affect 
these trends. Notably, even with reduced air pollution 
exposure, growing population numbers can increase the 
overall disease burden. This factor might explain higher 
child mortality in Africa [62]. While the studies cited 
above do not offer a direct Africa-Asia comparison, they 
imply that differing socioeconomic conditions, health-
care access, and population dynamics could contribute 
to the observed differences in child mortality in both the 
continents.

Income level stratification echoed these results, with 
similar relationships observed in low-income countries 
and the overall model but with a weaker association in 
lower and upper-middle-income countries. The observed 
associations between outdoor (like PM2.5  μg/m3) and 
indoor air pollution and under-five child mortality, which 
are more robust in low-income countries, could be due 
to several factors. Higher exposure to pollutants can 
contribute to respiratory and other health conditions 
that risk child mortality, particularly in lower-income 
countries where indoor air pollution from cooking fuels 
is prevalent  [26] . Socioeconomic conditions such as less 
access to healthcare and higher risk factors like malnu-
trition and infectious diseases may also heighten this 
association in these countries  [60, 61] . Moreover, in 
higher-income countries, better access to medical treat-
ments can potentially mitigate the health impacts of 
pollution, reducing its contribution to mortality rates 4 
. Additionally, a country’s demographic profile, includ-
ing a rapidly growing population or a higher proportion 
of young children, could influence the overall burden of 
child deaths attributable to pollution  [62] .

The temporal analysis suggested an intensification of 
associations post-2010, potentially reflecting increased 
pollution levels in recent years. This might indicate the 
compounded effect of persistent indoor and escalat-
ing outdoor air pollution. Our analysis validates existing 
studies confirming that in-house and outer environmen-
tal pollution significantly elevate the risk of under-five 
child mortality, a link that does not wane over time or 
with increased household wealth  [26] . The intensification 
of this association post-2010 might stem from increased 
air pollution levels, particularly in populous countries 
like China and India, and regions including South Asia, 
Southeast Asia, East Asia, Oceania, Sub-Saharan Africa, 
North Africa, and the Middle East  [61]. Factors like 
healthcare access, medical treatments, socioeconomic 
development, and demographic shifts can influence the 
disease burden from PM2.5 μg/m3 [61] . Socioeconomic 
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elements, like education, access to safe drinking water 
and hygiene, unemployment, and income inequality, also 
profoundly impact child mortality, with more marked 
differentials in Latin America than in developed coun-
tries [60, 62] . While data on indoor air pollution’s specific 
impacts was unavailable during our discussion, the well-
known health risks associated with solid fuel use suggest 
its notable contribution. Consequently, mitigating under-
five child mortality necessitates addressing both types of 
air pollution and persistent socioeconomic disparities. 
To mitigate this issue, policy interventions should aim to 
enhance indoor ventilation, promote efficient household 
fuel use, and manage outdoor air pollution. These mea-
sures are particularly vital for impoverished regions and 
households.

Conclusion
Our study underscores the significant impact of both 
household (indoor) and environmental (outdoor) air pol-
lution on under-five child mortality, with PM2.5 as a key 
indicator of outdoor pollution. Utilizing both standard 
logistic regression and multilevel logistic regression with 
random intercepts for Primary Sampling Units (PSUs), 
we found that a one standard deviation increase in PM2.5 
consistently elevated the risk of child mortality. Simi-
larly, higher levels of household air pollution significantly 
increased mortality risk. Population Attributable Frac-
tion (PAF) analysis further revealed that approximately 
12% of under-five deaths could be prevented by reducing 
ambient PM2.5 and household air pollution. While the 
combined effects of indoor and outdoor pollution con-
tribute to increased mortality risk, interactions between 
these pollutants exhibit complex dynamics. The diverse 
geographical, climatic, and socioeconomic conditions 
across the 41 developing countries studied may influence 
these associations. Although PM2.5 is a crucial marker 
for outdoor pollution, it may not capture all pollutants 
affecting child mortality.

These findings suggest that policies should prioritize 
improving indoor air quality through better ventilation 
and efficient household fuels, alongside stricter regula-
tion of outdoor pollutants. Continued monitoring of 
pollution levels, especially post-2010, is essential for miti-
gating ongoing threats to child health.
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