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New factors in mammalian DNA repair—the chromatin
connection
G Raschellà1, G Melino2,3 and M Malewicz3

In response to DNA damage mammalian cells activate a complex network of stress response pathways collectively termed DNA
damage response (DDR). DDR involves a temporary arrest of the cell cycle to allow for the repair of the damage. DDR also
attenuates gene expression by silencing global transcription and translation. Main function of DDR is, however, to prevent the
fixation of debilitating changes to DNA by activation of various DNA repair pathways. Proper execution of DDR requires careful
coordination between these interdependent cellular responses. Deregulation of some aspects of DDR orchestration is potentially
pathological and could lead to various undesired outcomes such as DNA translocations, cellular transformation or acute cell death.
It is thus critical to understand the regulation of DDR in cells especially in the light of a strong linkage between the DDR impairment
and the occurrence of common human diseases such as cancer. In this review we focus on recent advances in understanding of
mammalian DNA repair regulation and a on the function of PAXX/c9orf142 and ZNF281 proteins that recently had been discovered
to play a role in that process. We focus on regulation of double-strand DNA break (DSB) repair via the non-homologous end joining
pathway, as unrepaired DSBs are the primary cause of pathological cellular states after DNA damage. Interestingly these new factors
operate at the level of chromatin, which reinforces a notion of a central role of chromatin structure in the regulation of cellular DDR
regulation.
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INTRODUCTION
Cellular DNA is undergoing a constant damage due to the action
of endogenous free radicals, replication errors and exogenous
sources of radiation.1 Cells have evolved a sophisticated set of
DNA damage sensors that serve to detect DNA damage and
launch activation of several stress response pathways collectively
referred to as the DNA damage response (DDR).2 To prevent
deleterious consequences of replication through damaged DNA,
cells typically temporarily arrest cell cycle (checkpoint
activation),3–5 inhibit transcription and translation and initiate
DNA repair. At the face of very extensive DNA damage cells can
also active a program of self-destruction termed apoptosis.6,7

Persistent DNA damage on the other hand can lead to cellular
senescence.7 The ultimate cell fate following DNA damage will be
determined by the extent, type and severity of DNA damage
experienced by the cell. The efficiency of DNA repair plays a
paramount importance in cellular response to DNA damage
induced by drugs that are frequently used in cancer
chemotherapy.7–13 The repair of DNA requires lesion recognition
by specialized sensor molecules but also importantly adjustment
of chromatin structure in the lesion vicinity.14 This DNA damage-
induced chromatin changes serve several purposes. Marking of
chromatin at the lesion creates a recognition signal for the cellular
machinery to assemble at the site to initiate the repair process.
Secondly chromatin changes at the DNA facilitate the repair
process by allowing access of various repair and signaling
complexes. Thus chromatin-level responses lie at the heart of
cellular coordination of the DDR.15 Chromatin changes in response

to DNA damage occur at several distinct levels such as:
nucleosome remodeling, variant histone exchange, non-histone
chromatin protein mobility alteration and histone tail post-
translational modification.16 In this review we will summarize
several recent findings of new protein factors and mechanisms
governing the regulation of cellular DNA repair with emphasis on
double-strand DNA break (DSB) repair and highlighting the central
role of chromatin-level regulation (Figure 1).

NEW FINDINGS IN DOUBLE-STRAND DNA BREAK REPAIR
REGULATION—FOCUS ON NON-HOMOLOGOUS END JOINING
Although DNA can be damaged in several distinct ways the
formation of DSBs is considered the most dangerous to the cell.17

This is due to complexity of the DSB repair process and a
potentially dramatic inhibition of replication and transcription the
DBSs impose. There are two general strategies mammalian cells
utilize to deal with double-strand breaks in DNA: non-homologous
end joining (NHEJ) and homology-directed repair.18,19 Here we
focus on the recent progress in understanding NHEJ mechanism
and direct those interested in learning the latest on homology-
directed repair regulation to excellent recent reviews published
elsewhere.20 NHEJ repair process is aimed at restoration of the
linear DNA structure across the break with the accuracy of the
repair playing a less critical role.21,22 A specialized DSB sensor
Ku70/Ku80 heterodimer, which has a high affinity for double-
stranded DNA, is recruited to DSBs within seconds to initiate the
classical NHEJ repair process.3 Binding to DNA induces an
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allosteric change within the Ku complex, which results in
recruitment of the DNA-PKcs protein. DNA-PKcs has a protein
kinase activity and is activated by the presence of free DNA ends.
Collectively Ku/DNA-PKcs complex is called the DNA-PK kinase
and its activity is triggered by DSBs. DNA-PK bound to DSBs
orchestrates the DNA repair process by allowing DNA end
modifying enzymes to access to DSBs to generate ligatable DNA
ends (Figure 2). Additional core components of NHEJ are XLF/
Cernunnos and XRCC4/Ligase IV complex, which are recruited to
DNA in Ku-dependent fashion. Independently of Ku interaction,
XLF and XRCC4 also are able to form long filamentous assemblies
at DSBs, which contribute to proper DSB alignment, whereas
Ligase IV is responsible for the final ligation reaction.23,24

XLF/Cerunnos was identified in the year 200625,26 and was
considered to be the final core component of NHEJ to be
discovered. It was thus remarkable that in 2015 three independent
papers reported a discovery of a new NHEJ factor—c9orf142—
subsequently named PAXX (paralogue of XRCC4 and XLF)27,28 or
XRCC4-like small protein.29 It remains unclear as to why PAXX
factor had not been found earlier, however, a possibility exist that
it plays a minor role in rodent cell lines, which were the
foundation for the early NHEJ characterization efforts.30 Clearly
humans evolved a more prominent role for some NHEJ proteins
highlighted by essential functions for Ku and DNA-PKcs in human
cells.31 The discovery of PAXX uncovered an unforeseen complex-
ity in NHEJ activity regulation. Although PAXX tertiary (but not
primary) structure resembles that of both XLF and XRCC4 and thus
it is considered their paralog (Figure 3), PAXX actually associates

with DNA–PK complex (through specific contacts with Ku subunit;
Figure 2). Furthermore evolutionary presence of PAXX is limited
and, unlike XLF and XRCC4, it is not found in fungi, worms and the
fruit flies. The fact that PAXX primary structure is most conserved
in vertebrates (some simpler organism bear a more diverged
homolog of PAXX27–29) suggested an important role for this
protein in somatic DNA recombination. Two recent papers
confirmed this prediction by showing that in pro-B cells PAXX is
essential for variable, diversity, joining recombination, although
surprisingly its function is normally masked by the dominant
activity of XLF.32,33 Accordingly unlike the single knockouts PAXX/
XLF double knockout B cells have a dramatic defect in variable,
diversity, joining recombination. Furthermore generation of PAXX/
XLF double knockout mice have been recently reported.34

Similarly to both XRCC4 and Ligase IV, single-knockout mice
PAXX/XLF-combined mutant animals were not viable demonstrat-
ing important yet overlapping roles for PAXX and XLF in
mammalian NHEJ. These findings explain a long-standing puzzle
of a relatively weak phenotype associated with XLF loss.35 Thus it
appears that PAXX and XLF have partially overlapping and
redundant function in mammalian DSB repair. Based on in vitro
studies and human cellular models PAXX functions by stimulating
the activity of Ligase IV in promoting blunt-end DNA ligation and
in conjunction with XLF stimulates the non-compatible (gapped)
DNA end ligation.28 Both activities are strictly dependent on direct
contacts between the conserved PAXX C-terminus and the Ku
DNA sensor. PAXX interacts with DNA-bound Ku, however, the
presence of DNA also triggers interaction of Ku with all other NHEJ

Figure 1. A simplified scheme of chromatin changes in response to double-strand break (DSB) occurrence highlighting a central role of the
ATM kinase. DSBs are recognized by the MRN complex (MRE11; RAD50; NBS1), which leads to activation of the ATM kinase.111 In parallel DNA
damage-induced chromatin changes lead to c-Abl tyrosine kinase activation. C-Abl phosphorylates TIP60 (also known as KAT5)
acetyltrasferase, which acetylates ATM to elicit full activation of this kinase.112 Interaction between ATM and TIP60 is facilitated by FOXO3A
transcription factor.60 Binding of TIP60 to methylated histones (predominantly H3K9me3) is required for its action on ATM and other histone
substrates (e.g., H4). TIP60 acetylates histones leading to the formation of open relaxed chromatin structure.18 This step is facilitated by p400
histone chaperone-mediated variant histone exchange at DSBs (H2A.X is replaced by HA2.Z) occurring in close proximity to DSBs (up to ca
3,5 kb away from a DSB).39 The main substrate of ATM kinase is histone H2A.X and phospho-H2A.X (termed γH2A.X) spreads away from the
DSBs into megabase sized domains.113 Phospho-H2A.X is recognized by MDC1 adapter protein, which is also the substrate of ATM.114,115

Phospho-MDC1 in turn recruits RNF8 ubiquitin ligase.116 Linker histone H1 is the main substrate of RNF8 and ubiquitinated H1 is recognized
by RNF168 ubiquitin ligase.117 RNF168 ubiquitinates histone H2A on K13/15, which facilitates recruitment of the key adapter protein 53BP1.118

Stable binding of 53BP1 also requires its association with methylated histone H4 (K20me2).119,120 Of note histone methylation is a constitutive
chromatin mark, whereas both histone acetylation and ubiquitination are dynamic DNA damage-induced modifications.121 53BP1 serves as
critical regulation of DSB repair pathway choice and promotes NHEJ repair by inhibiting DNA resection (a critical step in homologous
recombination (HR) repair).122 ATM is also implicated in the repair of heterochromatin DSBs by phosphorylating KAP1 protein, which in turn
promotes opening of heterochromatin to allow for the access of the DNA repair machinery.123
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Figure 2. A simplified model for DSB repair mechanism via non-homologous end joining (c-NHEJ) in chromatin with emphasis on the role of
poly-ADP-ribosylation (PAR). Double-strand DNA break (DSB) is initially bound by Ku dimer. DNA-bound Ku undergoes an allosteric change to
recruit other effectors of the c-NHEJ DSB repair pathway: DNA-PKcs, PAXX, XLF and XRCC4/Ligase IV. Ku can potentially spread away from the
DSB. The interaction between Ku and DNA-PKcs is further stabilized by various factors such as LRF and LIMP (ncRNA). This figure includes
some of the known chromatin-remodeling steps that occur at DSBs such as generation of limited nucleosome-free region and PAR-dependent
variant histone exchange (see Figure 1 for a more extensive description of DSB-related chromatin changes). PAR-dependent H3.3 variant
histone exchange is promoted by PARP-1 in conjunction with the CHD2 chromatin remodeller and is required for stable association of Ku with
DSBs. Additional accessory c-NHEJ factor is the APLF protein that binds to PARsylated chromatin (in this case PARsylation is catalysed by
PARP3) and interacts with Ku to enhance the stability of repair complexes on chromatin. NR4A nuclear orphan receptors bind DNA-PKcs and
are able to promote DSB repair.

Figure 3. Newly discovered c-NHEJ factor c9orf142/PAXX structurally resembles XRCC4. Figure shows computer models of XLF, XRCC4 and
c9orf142/PAXX (adapted from Craxton et al., 2015). These proteins typically form dimers, however, here for simplicity and to highlight their
structural similarity monomers are depicted. For XLF C-terminal portion of the coiled-coil has been shortened. The overall structure of a typical
XRCC4 paralog includes a globular head domain, a centrally located coiled-coil and the C-terminal region (CTR, not shown). The CTRs are
intrinsically disordered and not visible on available crystal structures. The head domain of XLF and XRCC4 is responsible for the formation of
XLF/XRCC4 filaments, whereas the head domain of PAXX has an unknown function. The coiled-coils include regions necessary for
dimerization. CTRs of XLF and PAXX mediate the interaction with Ku (not shown).
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components.29 It was therefore not possible up to this point to
characterize the domain of Ku with which PAXX makes a direct
contact. Another mystery of PAXX protein is the function of its
head domain. Thus, a lot more work is needed to fully understand
the extent of PAXX contribution to NHEJ. Molecular modeling
predicted PAXX to potentially form filaments analogous to XLF/
XRCC4 structures and furthermore PAXX is essential for maintain-
ing appropriate levels of all other NHEJ factors on chromatin after
DNA damage.27 It remains to be determined of whether these
PAXX functions are related. Nevertheless the action of PAXX at the
level of chromatin is an interesting observation that highlights the
growing importance of chromatin-level regulation for NHEJ.

THE IMPORTANCE OF CHROMATIN FOR NHEJ REGULATION
Early biochemical data obtained in vitro with pure proteins and
naked DNA suggested a simple 1:1 Ku/DNA end binding
stoichiometry.36 This model had recently been validated in vivo
by a discovery of small Ku foci assembling on DSBs in irradiated
cells.37 However, other reports employing chromatin immunopre-
cipitation observed a spread of Ku (and of DNA-PKcs38) up to 5 kb
away from the break on chromatin flanking DSBs.39 The
discrepancy likely lies in the methodology, as the visualization of
small Ku foci is only possible once the majority of chromatin-
bound Ku is pre-extracted prior to fixation, which leaves a
possibility that some RNAse-sensitive fraction of Ku is able to
spread away from the DSB. DNA-damage-induced Ku chromatin
loading can also be observed with cellular fractionation
techniques27 and via laser based microirradiation.40 However,
neither of these assays provides DSB distance information in
relation to Ku chromatin binding nor are such assays informative
of the protein stoichiometry involved. It thus currently unclear of
whether Ku can spread on chromatin at DSBs. However, in
contrast to simple Ku/DSB interaction model derived from in vitro
studies the loading and maintenance of Ku on chromatin in living
cells appears to be regulated. What are the mechanisms
determining the extent of Ku loading on chromatin? While at
present not entirely clear several observations point to a possible
role of poly-ADP-ribosylation in this process. Accordingly, cellular
DNA breaks are also detected by several poly-ADP-ribosylases41,42

(PARPs; most notably PARP1, 2 and 3)43 and binding of these
enzymes to DNA strand breaks triggers their activation with
subsequent catalysis of long poly-ADP-ribose (PAR) chains at the
lesion. PAR is a NAD-derived branched polymer composed of ADP-
ribose units and therefore PAR has a certain chemical resemblance
to both RNA and DNA. PAR can be covalently attached to various
proteins at DNA lesions with histones being the most prominent
target,44 however, the exact amino acid positions of this
modification on histone proteins had not been precisely mapped.
PAR polymer is specifically recognized by specialized protein
domains present in various DNA repair factors such as the APLF
protein,45,46 which performs an accessory/non-essential role in
mammalian NHEJ reactions. In the context of DSB repair APLF had
been shown to contribute the NHEJ execution at the chromatin
level.42 APLF utilizes a PAR-binding zinc-finger (ZF) domain to bind
PAR and a centrally located MID domain to bind Ku.47 By coupling
these abilities APLF acts as a scaffolding molecule able to enhance
the stability of NHEJ repair complexes in the context of PARsylated
chromatin. A strong support for a major PAR contribution to NHEJ
comes from studies in the slime mold Dictyostelium discoideum.48

This model organism apparently lacks an APLF homolog, however,
its Ku70 homolog bears a PAR-binding ZF domain, which is
essential for Ku functionality in Dd NHEJ. Of note, in Dictyostelium
the APLF function may be partly taken over by other proteins that
possess additional domains of significant homology to human
APLF, namely XRCC149 and APL.50 Despite these findings in
mammalian DSB repair models the contribution of PARP1 to
classical NHEJ had been a subject to an intense debate.43 The

main argument against the role of PARP1 in NHEJ was a relatively
minor phenotype of PARP1 mutant mice in terms of radiation
sensitivity and DSB repair impairment and inconsistent pheno-
types associated with PARP-1 deficiency observed in cellular
settings.51 Furthermore, a strong case emerged for a participation
of PARP1 in an alternative form of NHEJ,43 which operates under
circumstances of defective or suppressed classical NHEJ. Notably
the latest findings suggest a possible mechanism of PARP1
contribution to classical NHEJ.52 Accordingly this model proposes
a PARP1/CHD2/H3.3-dependent chromatin-remodeling step being
necessary for proper Ku and XRCC4 loading on chromatin at DSBs.
Such a model is consistent with data obtained using DSB inducing
enzymes, where a certain level of nucleosome disruption at DSBs
had been found necessary for XRCC4 loading.53 The definition of
PARP-1 function in c-NHEJ explains several independent observa-
tions linking PAR, PARP1 and Ku in classical NHEJ regulation in
human cells (Figure 2). There is evidence for other PAR-dependent
mechanisms operating in mammalian DSB repair,54,55 however, at
present the exact relationship of these factors to known DNA
repair pathways awaits further clarification. Finally Ku/chromatin
interaction is subject to regulation via chromatin acetylation and
specific nucleosome remodeling at DSBs.39,40,56 In summary
although the exact Ku stoichiometry at DSBs and the neighboring
chromatin is still uncertain the binding of Ku to DNA lesions in
chromatin can be regulated by a variety of factors.
Similarly to Ku chromatin recruitment Ku/DNA-PKcs complex

formation at DSBs also appears regulated at various levels. For
example an lncRNA molecule (LINP1) had recently been described
that binds to Ku80 and facilitates its interaction with DNA-PKcs.57

Of note as mentioned above the method for detection of Ku foci
involves a RNAse treatment step,37 which raises a question of
whether the bulk of chromatin-bound Ku is retained at this
structure via specific RNA-Ku interactions. Other examples of
regulation of this step of the repair complex assembly include a
case of sequence-specific transcription factor (TF) LRF.58 It has
been demonstrated that LRF directly binds DNA-PKcs protein and
somehow increases its association with Ku contributing to
maintenance of proper levels and stoichiometry of DNA-PK
holoenzyme on chromatin. Strikingly in the genetic absence of
LRF, the overall kinase activity of DNA-PK is diminished, which is a
dramatic finding given a large excess of Ku and DNA-PKcs levels in
cells. A potential explanation for this is that the rodent cell culture
system (mouse embryonic fibroblasts) used in that study is
characterized by lower steady-state DNA-PK levels than an
average human cell.59 Under these specific circumstances efficient
DNA-PK activation in vivo might require additional accessory
factors, which could be a subject to additional signal- or tissue-
specific control. Interestingly, a similar regulatory model of DNA-
damage kinase activation with participation of bridging factors in
a form of sequence-specific transcriptional regulators have
recently also been described for ataxia telangiectasia-mutated
(ATM) kinase.60 ATM is a very prominent DDR-activated kinase that
functions primarily in signal transduction and DSB repair.61 ATM
activity is vital for several aspects of DDR regulation.61 Most
notable is its ability to promote various DSB repair pathways such
as homologous recombination (through phosphorylation of a key
resection factor CtIP62), the repair of DSBs in heterochromatin (by
phosphorylation of KAP1 protein17) and c-NHEJ (in that process
ATM is redundant with XLF63). ATM is also very prominent in
regulating DSB-related signaling (including checkpoint induction),
chromatin remodeling and histone tail post-translational mod-
ifications (Figure 1). Recently FOXO3A TF had been found to
promote association of ATM with TIP60 acetyltransferase
(Figure 1), which is one of the many avenues for optimal ATM
activation after DNA damage.60 Interestingly NR4A nuclear orphan
receptors can also bind and collaborate with DNA-PKcs in DSB
repair thus expanding the list examples of TFs involved directly in
DNA repair.64 Collectively these observations suggest that a larger
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collection of regulatory factors exist in living cells to control the
activity and assembly of protein complexes containing DNA
damage-activated protein kinases. Interestingly the above men-
tioned mechanisms seem most relevant in vivo in the native
chromatin context (summarized in Figures 1 and 2), which
highlights the need for more extensive efforts to study the DNA
repair regulation under physiological conditions in chromatin
whenever possible.

CONTRIBUTION OF TRANSCRIPTION FACTORS TO DDR
REGULATION.
Importantly, however, several prominent DDR factors have a
capacity to regulate transcription and contribute to genomic
stability and other processes65 indirectly via that mechanism.
Examples are numerous and include such key DDR proteins such
as 53BP1,66 BRCA1,67 CtIP,68 KAP1,69 PTIP,70,71 DNA-PKcs,72 ATM,73

ATMIN,74 CHD475 and many others. Reciprocally several TFs that
evolved to control gene expression have been increasingly
associated with direct regulation of DDR related processes at DNA
lesions76 (see above for LRF58). With regard to the DDR regulation
a given protein factor can operate both at the lesion and through
indirect means by affecting transcription of direct effectors.76,77

Interestingly for many of such multifunctional factors their direct
function in DDR and in transcription can be separated genetically
and involve distinct domains and interaction partners (53BP1
being an excellent example66). Interestingly a recent study of TF
recruitment to DNA damage sites further blurred the division
between a transcriptional regulation and a direct action at DNA
lesions by showing that some TFs use their DNA-binding domain
for interaction with DNA exposed at the damaged break.78

TFs play a central role in controlling virtually all biological
processes occurring in the cells including cell cycle progression,79

maintenance of intracellular metabolic and physiological balance,
cellular differentiation, developmental time courses80–82 and DNA
repair.76 Surprisingly, the exact number of human TFs remains still
undefined. This lack of knowledge depends at least in part, on the
definition of TF that varies in different studies attempting to
catalog this class of genes.83,84 For instance, transcription co-
factors (that is, proteins which modulate the activity of other
transcription controllers but are unable to act independently), are
not always registered in the list of 'real' TFs. Vaquerizas et al.
utilized the definition of TFs as a class of proteins that binds DNA
in a sequencespecific manner, but are not enzymatic or do not
form part of the core initiation complex.85 According to this
classification, the Authors listed a high confidence dataset of
approximately 1400 genomic loci that encode TFs. This number is
expected to increase to an upper bound of 1700–1900 TF-coding
genes in the human genome.
A distinctive part in the architecture of TFs is the DNA-binding

domain that has been utilized for their classification. The most
represented DNA-binding domain among human TFs is the two-
cysteine two-histidine ZF followed by homeodomain and helix-
loop-helix.86 Some types of DNA-binding domains are frequently
used in the cell for the execution of specific functions. For
example, the homeobox domains are essential for morphogenesis,
organogenesis and establishment of body plan in vertebrates.87,88

Notwithstanding the evolutionary conserved nature of most TF
families in vertebrates, the two-cysteine two-histidine ZF family
stands out as a prominent exception. In fact, many ZF factors
derive from duplication throughout the evolution.89 Conse-
quently, this evolutionary dynamics contributes to their difficult
classification in functionally distinct subfamilies. Typically, ZF
factors possess an array of two-cysteine two-histidine motifs that
defines a polydactyl structure in which each finger binds three
adjacent nucleotides at the DNA recognition sites. The polydactyl
structure further complicates the ZF factors binding specificity
since adjacent motifs influence each other’s DNA binding.89

Recently, it has been demonstrated that the ZF factor Zfp335
possesses two major DNA-binding domains comprising distinct ZF
clusters.90 Intriguingly, each domain encodes a different sequence
specificity implying that binding to multiple sequence motifs
could be relevant for specific gene regulation. Usage of multiple
motifs may result in a more efficient targeting of TFs to their
binding sites and could be important for context-dependent
function. Thus, ZF factors are expected to have a broad number of
targets whose functional significance is strictly dependent on their
binding topography, which in turn can vary depending on the
physiological state of the cell. Indeed, ZF factors that were initially
defined as specific for regulation of one pathway, to a deeper
analysis, revealed a more pleiotropic function. This is the case of
CTCF, an 11 ZF protein initially described as a negative regulator of
Myc expression.91 Further analysis highlighted a much broader
ability of CTCF in recognizing different targets through the
combinatorial use of its 11 ZFs. In vivo mapping revealed that
CTCF reads sequence diversity through ZF clustering. In fact, ZFs
4–7 anchor CTCF to most of the targets containing the core motif
while ZFs 1–2 and ZFs 8–11 clusters recognize non-conserved
flanking sequences.92 As a consequence of this combinatorial
modality of recognition, the targets of a single-ZF factor often
refer to a variety of cellular pathways, which are not obviously
interrelated.
The plasticity of TFs in recognizing their targets highlighted

another somehow unexpected ability of this broad family of
genes. As mentioned earlier, a recent study that utilized epitope-
tagged proteins for localization to sites of DNA damaged by UV
laser microirradiation, found 4120 proteins that localize to
damaged chromatin. Intriguingly, ~ 70% of the TFs included in
this study, were able to migrate to damaged DNA.78 Of interest, in
a set of 35 TFs evaluated for their presence at the DNA-damaged
sites, 13 were ZF factors. The integrity of the DNA-binding domain
seems to be a necessary condition for recognition of damaged
DNA by TFs. Relocation of the TFs at the DNA-damaged sites relies
on chromatin decompaction, which in turn is dependent on
PARP1 activity. The mechanism(s) through which PARP1 decom-
pacts chromatin until recently were completely unclear. One
example recently emerged in the context of NHEJ regulation (see
above52). Another possible mechanism could be that PARP1
somehow recruits other chromatin remodelers, however, silencing
of remodelers such ALC1, CHD4, INO80, TIP60, KAT2A, SMARCC1,
SMARCC2, BAZ1B, EZH2, SUZ12 and p300 did not affect
recruitment of TFs on damaged DNA. This result does not rule
out the existence of a redundant mechanism, which implies the
synergistic action of a combination of factors. Alternatively,
PARP1-dependent chromatin remodeling could be dependent
on a yet unidentified factor. Since some TFs are endowed with the
ability of recruiting chromatin remodelers,93 a direct contribution
of TFs to this task can also be hypothesized at the DNA-
damaged sites.

ZNF281 A MULTI-TASK ZINC FINGER PROTEIN
The molecular structure of ZNF281 (aliases: ZBP-99, ZNP-99) is
characterized by 4 two-cysteine two-histidine ZFs located near the
N-terminal of the protein which has a mass of 99 kD94 (Figure 4).
The prominent functional feature of ZNF281 resides in its ability to
bind to GC-rich sequences located in the regulatory regions of
many genes where its binding often results in transcriptional
promotion or repression of the targets.95,96 After approximately a
decade during which its function(s) in the cell remained
undetermined, zfp281 (the mouse homolog of ZNF281) was
recognized as a component of a protein interaction network for
pluripotency of embryonic stem cells.97 Further analysis of its role
demonstrated that zfp281 is a transcriptional repressor of Nanog,
an essential gene for cellular stemness.98 Indeed, genetically
ablated Zfp281 null ESCs unambiguously argue for a repressor
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function of Zfp281 in regulation of major stem cell factors among
which Sox2 and Oct4.98 Of interest, zfp281 exerts its inhibitory
activity by recruiting the NuRD repressor complex on Nanog
promoter.93 The latter mechanism was also demonstrated in the
transcriptional repression of the TET2 gene.99 In this context,
zfp281 recruits HDAC2 (a component of the NuRD complex)
causing histone H3 deacetylation and chromatin compaction. In
addition, zfp281 also promotes the transcription of miR302/267,
which in turn post-transcriptionally represses TET2 expression. The
overall result of TET2 repression is the maintenance of a state of
primed pluripotency further demonstrating the importance of
zfp281 in regulating cellular stemness. In mouse embryonic stem
cells, zfp281 recruits AFF3 to the Meg3 enhancer within the
imprinted Dlk1-Dio3 locus, to regulate the allele-specific expres-
sion of the Meg3 polycistron.100 In human colon carcinoma cells,
ZNF281 controls epithelial–mesenchymal transition (EMT).95

Indeed, Snail, an EMT-associated protein, promotes the expression
of ZNF281 and represses miR-34a/b/c, a target of ZNF281. The
latter, in turn, activates the transcription of Snail thus establishing
a feed-forward regulatory loop. Indeed, ZNF281 itself is able to
induce EMT by controlling the expression of several EMT-
associated genes and by down-regulating epithelial markers such
as Occludin, Claudin and E-Cadherin. Intriguingly, the same study
demonstrated that c-Myc-induced EMT is dependent on ZNF281
expression. In line with its involvement in stemness control,
ZNF281 also induces the stemness markers LGR5 and CD133, and
increases sphere formation.95 These results highlight a dual role of
ZNF281 in controlling cellular stemness and in induction of EMT in
tumors (and possibly also in normal cells) thereby suggesting the
plasticity of this TF, whose function can differ depending on the
physiological (or pathological) state of the cell (Figure 4b).
Transcriptional regulation of ZNF281 remains largely unknown.

Beside the already mentioned Snail,95 SOX4, which is expressed in

many human malignancies, promotes the transcription of
ZNF281.101 Chromatin immunoprecipitation followed by sequen-
cing analysis demonstrated that SOX4 binds to DNA sequences in
the proximity of ZNF281 gene, suggesting a binding-dependent
regulation. The expression of ZNF281 is post-transcriptionally
repressed by miR34a through a p53-dependent mechanism95 and
by miR203.102 Regulation of ZNF281 could occur also through
epigenetic mechanisms since differential methylation of ZNF281
gene has been recently described (Petrus et al. 2016).103 Of
interest, the ZNF281 protein is phosphorylated by ATM and ATM-
and ataxia telangiectasia Rad3-related (ATR) kinases after DNA
damage104 (Figure 4a). In humans, the closest ZNF281 homolog is
ZBP-89, which is frequently over-expressed in human cancer cells,
where it can efficiently induce apoptosis through p53-dependent
and -independent mechanisms.105 A human ZBP-89 splice isoform
ZBP-89-DN, which lacks amino terminal residues 1–127 of the full
length protein, has also been identified, which predisposes the
colon to colitis.106

ZNF281 IN THE DNA DAMAGE RESPONSE
We recently reported an increase of ZNF281 expression after
genotoxic stress by DNA damage inducing drugs.107 We observed
this phenomenon in p53-proficient and -deficient tumor cells, as
well as in normal primary keratinocytes and in mouse skin in vivo.
The increase of ZNF281 following DNA damage occurs through
dominant, p53-independent mechanism, which does not rely on
transcriptional regulation. A significant delay in DNA repair in cells
silenced for ZNF281 expression suggests that the expression of
ZNF281 could have functional implications in DNA repair. Among
several DDR-associated genes whose expression is affected by
ZNF281, XRCC4 and XRCC2 two components of the NHEJ and
homologous recombination DNA repair pathways respectively,108

Figure 4. Summary of the structure and functions of the ZNF281 protein. (a) Schematic presentation of the human ZNF281 protein. Boxes
represent distinct functional domains of ZNF281. ZNF281 is a substrate of ATM/ATR DNA damage-activated kinases (yellow P circles) as well as
CDKs (Cyclin-dependent kinases; orange P circle), however, the impact of ATM/ATR phosphorylation or CDK phosphorylation on ZNF281
function is unknown. (b) expression of ZNF281 is regulated by a variety of protein factors and miRNAs (shown in the upper part of panel b).
ZNF281 (zfp281) can regulate positively or negatively a number of target genes (blue arrows in the lower part of panel b). ZNF281 and its
murine homolog zfp281 are involved in the induction of epithelial–mesechymal transition (EMT) of colon cancer cells, in control of cellular
stemness, in the imprinted expression of the Meg3 polycistron and in regulation of genes involved in the DNA-damage response (DDR).
Transcription repression of Nanog and Tet2 is achieved through recruitment of the histone deacetylase HDAC2. Arrow-headed and bar-
headed lines indicate activation and inhibition respectively.

New players in mammalian DNA repair
G Raschellà et al

4678

Oncogene (2017) 4673 – 4681



are promoted by ZNF281 through a mechanism dependent on its
binding to their promoters. Of interest, Nucleolin, a protein that
mediates nucleosome disruption critical for DNA double-strand
break repair109 and which is a known target of c-Myc,110 is not
transcriptionally activated by ZNF281, which acts instead as a co-
factor of c-Myc in Nucleolin activation. Together these results
demonstrate for the first time, that ZNF281 is involved in the DDR
by its classical function of TF that controls the expression of other
genes (Figure 4b). Nevertheless, ZNF281 could give its contribu-
tion to DNA repair through a less obvious mechanism. As
mentioned before, among the TFs that were demonstrated to
move to the sites of damaged DNA there is ZNF281.78 What could
be the function of ZNF281 on the sites of damaged DNA? ZNF281
could recruit chromatin remodelers to the sites of broken DNA by
a mechanism similar to that utilized on the promoters of Nanog93

and TET299 (Figure 4b). We can also speculate that ZNF281
interacts with core components of the DNA repair machinery and
contribute to the role of the recently characterized XLF and PAXX
in maintaining appropriate levels of all other repair factors on
chromatin. Although our knowledge on the involvement of
ZNF281 in NHEJ as well as other repair pathways is still limited,
future work could disclose other relevant and unexpected roles for
this factor in DNA repair.

CONCLUSIONS AND FUTURE DIRECTIONS
We conclude that a number of recently discovered factors in
mammalian DNA repair operate at the level of chromatin. The
recent addition of proteins such PAXX and possibly ZNF281 to the
overall framework of the repair mechanisms, underscores our still
incomplete knowledge of the molecular details underlying the
chromatin modifications which occur during the DDR. As many
clinically relevant cancer treatments rely on DNA damage
induction in tumor tissue a better understanding of contribution
of chromatin changes to DDRs will be instrumental in further
development of such therapies.
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