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Abstract

There has been increasing interest in jointly studying structural connectivity (SC) and

functional connectivity (FC) derived from diffusion and functional MRI. Previous

connectome integration studies almost exclusively required predefined atlases. How-

ever, there are many potential atlases to choose from and this choice heavily affects

all subsequent analyses. To avoid such an arbitrary choice, we propose a novel atlas-

free approach, named Surface-Based Connectivity Integration (SBCI), to more accu-

rately study the relationships between SC and FC throughout the intra-cortical gray

matter. SBCI represents both SC and FC in a continuous manner on the white sur-

face, avoiding the need for prespecified atlases. The continuous SC is represented as

a probability density function and is smoothed for better facilitation of its integration

with FC. To infer the relationship between SC and FC, three novel sets of SC-FC cou-

pling (SFC) measures are derived. Using data from the Human Connectome Project,

we introduce the high-quality SFC measures produced by SBCI and demonstrate the

use of these measures to study sex differences in a cohort of young adults. Com-

pared with atlas-based methods, this atlas-free framework produces more reproduc-

ible SFC features and shows greater predictive power in distinguishing biological sex.

This opens promising new directions for all connectomics studies.
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1 | INTRODUCTION

Brain connectivity is an intriguing and quickly expanding research field

(Eyewire & Blake, 1997; Glasser, Smith, et al., 2016; Park &

Friston, 2013; Shi & Toga, 2017; Smith et al., 2015). With recent

advances in magnetic resonance imaging (MRI) techniques, we are

able to noninvasively probe the human brain at higher resolutions

than ever before (Glasser, Coalson, et al., 2016) and construct differ-

ent types of connectomes. Among them, two imaging modalities, dif-

fusion MRI (dMRI) and functional MRI (fMRI), and their correspondingMartin Cole and Kyle Murray should be considered joint first author.
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brain connectivities are particularly prominent. While dMRI measures

the restriction of isotropic diffusive water movement (Basser,

Mattiello, & LeBihan, 1994) and can be used to infer structural con-

nectivity (SC) (Sporns, 2013a), fMRI measures the blood oxygen level

dependent (BOLD) signal, deemed as a proxy for neurovascular cou-

pling due to large-scale neural activation (Ogawa, Lee, Kay, &

Tank, 1990) and can be used to infer functional connectivity

(FC) (Sporns, 2013b).

Both SC and FC play important roles in understanding the human

brain (Sporns, 2013b; Zimmermann, Griffiths, & McIntosh, 2018). As a

result of the anatomy of white matter (WM), dMRI can be used to

estimate the restricted diffusive patterns of water throughout the

brain by applying magnetic gradients of multiple strengths in many

directions (Li, Shi, & Toga, 2016). Diffusion signals are then

reconstructed per voxel and represented as fiber orientation distribu-

tion functions (fODFs), which can then be fitted to tractography algo-

rithms to estimate the locations of WM connections (Basser

et al., 1994; Bastiani et al., 2012; Descoteaux et al., 2009; Girard,

Whittingstall, Deriche, & Descoteaux, 2014; Tournier, Calamante, &

Connelly, 2012). SC aims to measure the extent to which brain regions

are connected by WM fiber bundles, where traditionally regions are

obtained based on a parcellated atlas (Zhengwu Zhang, Allen, Zhu, &

Dunson, 2019; Zhengwu Zhang et al., 2018). In the context of image

analysis, we are limited to inferring SC from the streamlines con-

necting any pair of brain regions constructed by tractography algo-

rithms (Girard et al., 2014; Maier-Hein et al., 2017; Thomas

et al., 2014) due to MRI acquisition limitations, such as low spatial res-

olution and signal-to-noise ratio. On the other hand, FC is obtained

from calculating the correlation of BOLD signals between different

brain regions. Differences in magnetic susceptibilities between oxy-

genated and deoxygenated blood give rise to the BOLD signal after

neural stimulation has occurred in a region (Ogawa et al., 1990).

BOLD imaging produces a time series of these susceptibility changes

and is thought to represent the overall blood oxygenation exchange in

each voxel as a function of time.

Although most existing connectivity studies explore SC or FC

independently, there is increasing interest in exploring SC and

FC together, referred to as SC and FC integration in this paper. Much

of this previous integration workfalls roughly into three broad classes:

prediction, modeling, and fusion. As one of the earliest papers studying

the relationships between SC and FC, Honey et al. (2009) demon-

strated that brain regions that are directly structurally connected have

higher FC than those regions that are not directly connected, leading

to a series of studies that attempted to predict an individual's FC

directly from SC (Chamberland et al., 2017; Deligianni et al., 2013;

Goñi et al., 2014; Higgins, Kundu, & Guo, 2018; Honey, Thivierge, &

Sporns, 2010; Li, Shafipour, Shafipour, & Zhang, 2019; Messé,

Rudrauf, Giron, & Marrelec, 2015). Modeling FC with neural spiking

models by incorporating known SC as prior information has also

drawn some attention recently. By assuming that SC and FC are highly

correlated, it may be possible to derive FC patterns directly from neu-

ral spiking equations and SC to simulate hemodynamic response func-

tions (HRFs) without collecting any functional data (Bassett, Zurn, &

Gold, 2018; Iyer et al., 2013; Nakagawa, Jirsa, Spiegler, McIntosh, &

Deco, 2013; P. Wang et al., 2019). Finally, connectivity fusion uses

measurements from both dMRI and fMRI to derive new information

about the brain (Bassett et al., 2018; Zhu et al., 2014). For example,

Fan et al. (2016) built a novel brain atlas, called the Brainnetome atlas,

using information from SC and FC, incorporating both structural and

functional information across the brain.

These previous studies of SC and FC integration used different

image resolutions, tractography algorithms, and brain parcellations to

reconstruct the connectomes. Some found that the strength of FC is

related to the anatomical pathways (SC) (F. D. Bowman, Zhang,

Derado, & Chen, 2012; Goñi et al., 2014; Hermundstad et al., 2013;

Van Den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009), while others

concluded that the correlation between SC and FC is poor (Buckner,

Krienen, & Yeo, 2013; Chamberland et al., 2017; Ghumman, Fortin,

Noel-Lamy, Cunnane, & Whittingstall, 2016). These heterogeneous

findings lead to several fundamental questions we must consider

when studying SC and FC jointly:

1. Which structure in the brain (e.g., gray matter, white matter, the

white or pial surface) is the best place for exploring the relation-

ships between SC and FC?

2. Which parcellation is most suitable for SC and FC integration?

3. How should intra-cortical coupling between SC and FC be defined

and how does such coupling vary across different populations?

Most existing studies use gray matter (GM) regions of interest

(ROIs) as network nodes in deriving SC and FC. However, due to the

limitations in dMRI acquisition (Reveley et al., 2015) and streamline

reconstruction (Girard et al., 2014; Maier-Hein et al., 2017; Thomas

et al., 2014), using GM ROIs to build SC can result in biased SC esti-

mation. For example, streamlines can stop prematurely in the WM or

near the GM-WM interface, superficial WM tracts can impede the

construction of longer streamlines (Reveley et al., 2015), and the pre-

cision of streamline reconstruction is reduced due to partial volume

effects (PVEs) in lower spatial resolution acquisitions (Tournier,

Mori, & Leemans, 2011). Similarly, using GM ROIs as nodes in FC

often requires volumetric smoothing and PVE correction, which

reduces the spatial localization of BOLD signals and thus provides

inaccurate FC estimation (Coalson, Van Essen, & Glasser, 2018).

Traditional construction of SC and FC often requires predefined

parcellations/atlases for two primary reasons: (a) dimensionality

reduction and (b) more straightforward interpretations of localized

physical processes (Glasser, Coalson, et al., 2016). However, choosing

an optimal brain parcellation for SC and FC integration is challenging

due to the complicated nature of the brain. Parcellations derived from

one modality (Gordon et al., 2014; Thomas Yeo et al., 2011) may not

be suitable for studying others. As such, we currently do not know the

most suitable parcellation to study SC and FC jointly.

Finally, the correlation or coupling strength between SC and FC

has the potential to unlock some key insights on how brain structure

collaborates with function. For example, it is natural to expect that

such a correlation can be spatially different across brain regions and
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populations (Nakagawa et al., 2013). However, few studies have eval-

uated the relationship between SC and FC at high resolution, nor how

this relationship may differ between different groups of subjects

(e.g. males vs. females).

With a comprehensive re-thinking of these problems, we propose

a novel atlas-free approach, named Surface-Based Connectivity Inte-

gration (SBCI), to facilitate the integrative analysis of SC and FC. In

SBCI, we propose to use the white surface (the interface of white

matter and gray matter) to build both SC and FC and represent them

in a continuous fashion without the need of any pre-specified brain

parcellation. SBCI also gives three novel SC-FC coupling strength

measures to study the relationship between SC and FC across the

brain's cortical surface. Figure 1 shows a systematic overview of

the SBCI framework. Compared with existing work, SBCI has the fol-

lowing unique features:

• SBCI maps both SC and FC to the white surface. The white surface

is the interface between cortical GM and WM. Since diffusion

signals are mostly in the WM regions and functional signals are

more present in the GM regions, we posit that the white surface

is the best place to study the integration of SC and FC. While

many FC studies are based on the cortical surface (Coalson

et al., 2018; Glasser, Coalson, et al., 2016), studies of the SC on

this surface are still limited. Extending tractography reliably to

the white surface comes with many challenges (Reveley

et al., 2015). A novel algorithm called Surface-Enhanced

Tractography (SET) (St-Onge, Daducci, Girard, &

Descoteaux, 2018) overcomes many of these challenges by

incorporating prior knowledge from the geometry of the white

surface. Instead of using the unreliable dMRI signal near the

white surface, SET uses a surface flow technique to model the

superficial WM structure. In SET, all reconstructed streamlines

intersect with the white surface.

• SBCI treats SC and FC as continuous functions, avoiding the need for

pre-specified atlases. For any two points on the white surface, SBCI

defines connectivity strengths for SC and FC. We smooth the

sparse SC to result in a continuous measure that facilitates integra-

tion with FC. Continuous treatment of SC and FC has two clear

advantages in the study of SC-FC integration: (a) connectomes can

be represented at very high spatial resolution compared to current

atlas-based methods and (b) there is no need to rely on predefined

parcellations to construct connectivity matrices, allowing for a

more flexible and robust treatment of connectivity analysis

(Messé, 2019).

F IGURE 1 Flowchart of the SBCI pipeline. CFC, continuous FC; CSC, continuous SC; FC, functional connectivity; fODF, fiber orientation
distribution function; FsFast, Freesurfer's Functional Analysis Stream; GM, gray matter; SBCI, surface-based connectivity integration; SC,
structural connectivity; SET, surface-enhanced tractography; WM, white matter
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• SBCI produces continuous and discrete SC-FC coupling features on

the white surface. We define SC-FC coupling (SFC) as the similarity

between continuous SC and FC at any point on the white surface.

SBCI gives three novel measures of different SFC features: contin-

uous global coupling between SC and FC without a predefined

parcellation, continuous local coupling within ROIs defined by a

given parcellation, and discrete coupling with a given parcellation.

Details are presented in Section 2.5.

In the following sections, we describe the details of the SBCI

pipeline, experiments used to validate it, and an application of the

SFC features as imaging markers to distinguish biological sex.

2 | METHODS

2.1 | Datasets

The HCP is the current gold standard for human brain connectivity

mapping. In order to develop and validate the SBCI pipeline, we used

the HCP Young Adult (HCPYA) and HCP Test–Retest (HCPTR) data.

Data were downloaded from the ConnectomeDB website.

The data used in this paper include preprocessed T1-weighted

(T1w) and dMRI images and unprocessed resting-state fMRI images

from the HCPYA and HCPTR datasets. Full imaging acquisition infor-

mation and minimal fMRI and dMRI image preprocessing steps are

documented in Glasser et al. (2013). Briefly, all imaging was conducted

on the 3T Siemens Connectom scanner (Erlangen, Germany). High-

resolution T1w anatomical images were acquired with the 3D

MPRAGE (magnetization prepared rapid gradient echo) sequence with

a slice acceleration factor of 2 using 0.7 mm isotropic resolution. Dif-

fusion imaging was performed using a 2D spin-echo EPI (echo planar

imaging) sequence with approximately 90 diffusion directions at three

nonzero b-values (1,000, 2,000, and 3,000 s/mm2 ) each and 6 b0 ref-

erence scans at 1.25 mm isotropic resolution. A full diffusion MRI run

includes 6 runs of about 9 min 50 s each, representing 3 gradient

tables, with each table acquired once with right-to-left (RL) and left-

to-right (LR) phase encoding polarities, respectively. Resting-state

functional imaging was performed using a 2D gradient-echo EPI

sequence with repetition time 720 ms, echo spacing 33.1 ms, and

2 mm isotropic resolution. Parallel imaging was enabled using a

multiband acceleration factor of 8. Resting-state fMRI scans were

acquired in 4 runs of approximately 15 min each, with eyes open in a

dark room. Runs alternated encoding polarities, resulting in two RL

and two LR scans.

Our HCPTR data include 38 subjects with complete MR imaging

data collected at Washington University in St. Louis as a follow-up to

an initial HCPYA scan, resulting in two full sets of imaging data (test

and retest) for each subject. Our HCPYA data include 89 random sub-

jects (46 females) from the S500 data release in the 26–30 year old

group. We also tested SBCI in a few subjects collected in a Siemens

MAGNETOM PrismaFit (Erlangen, Germany) scanner at the University

of Rochester to verify that SBCI can give valid results in relatively

low-resolution MRI data (details are presented in Section S1; Data S1)

and K. D. Murray et al. (2020)).

2.2 | Image preparation and preprocessing

Diffusion image preprocessing steps including brain extraction,

susceptibility-induced distortion correction, motion correction, and

eddy-current distortion correction are performed using tools in

FMRIB's software language (FSL) (Smith et al., 2004; Sotiropoulos

et al., 2013; Woolrich et al., 2009). For both HCP datasets, we down-

loaded the diffusion data after eddy-current correction. We begin

with the T1w anatomical images after gradient correction and the raw

rs-fMRI. Additional diffusion processing are performed using a combi-

nation of tools from Mrtrix3 (https://www.mrtrix.org/), advanced nor-

malization tools (ANTs) (Avants et al., 2011), and the Sherbrooke

Connectivity Imaging Lab toolbox in Python (Scilpy) and included

resampling to 1 mm isotropic resolution and building the fODFs to

prepare for tractography.

The anatomical T1w processing includes registration to the

high resolution diffusion images via ANTs and surface reconstruc-

tion using the recon_all tool available in Freesurfer (http://

freesurfer.net/).

Resting-state fMRI images are processed using Freesurfer's func-

tional analysis stream (FsFast) which includes motion correction, brain

masking, sampling to the surface (left and right), and surface smooth-

ing with a Gaussian kernel with full width at half-maximum (FWHM) σ

in Freesurfer. Common nuisance variables are calculated in Freesurfer

and include the WM signal, CSF signal, six motion parameters (three

translational and three rotational), and the global signal (Murphy &

Fox, 2017), where we use the top 5 principal components (PCs) for

WM and CSF signals. More details about this regression can be found

in Fox, Iaria, and Barton (2009); Murphy, Birn, and Bandettini (2013);

and Murphy and Fox (2017). Additional processing details are avail-

able in Section S2 (Data S1).

2.3 | Continuous functional connectivity on the
white surface

During the FsFast pipeline, we map the volumetric BOLD signals to

the subject's 32k white surface, resulting in a BOLD time series at

each vertex on the surface meshes. The FC between any pair of verti-

ces is usually calculated using a partial correlation between the two

BOLD time series (Smith, 2012), controlling for confounding signals.

Let svi tð Þ be the residual BOLD time series after regressing out nui-

sance variables at the ith vertex vi, and the FC between any vertex

pair (vi, vj) is calculated as:

FCij ¼
corr svi ,svj

� �
, if i≠j

0, if vi ¼ vj

(
, ð1Þ

where we do not consider self-interactions.
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Although the FC obtained in (1) can be high resolution with

dense surface meshes, it is still considered to be discrete. In our

SBCI pipeline, we represent FC in a continuous fashion. Hence, we

introduce the continuous FC concept with some mathematical for-

malism. We use the convention that a vertex is a location on the

mesh grid and a point is any location on the surface. Let Ω be the

union of two disjoint white surfaces of the brain; the continuous

FC is represented as a symmetric function on the space Ω�Ω. For

any pair of points (x,y)�Ω�Ω, we define the continuous FC as

CFC x,yð Þ¼ corr sx,syð Þ , where sx and sy are the BOLD time series at

points x and y. We define the set of all possible FCs as F FC ¼
CFC :Ω�Ω7! �1,1½ � : CFC x,yð Þ¼0 if x¼ y;andCFC x,yð Þ¼ CFC y,xð Þf g.

Now we have two major problems before getting the continuous

FC. First, we only observe BOLD signals at discrete vertices (after the

FsFast preprocessing), not every point on Ω. Second, the white surfaces

between subjects are different, making any group-wise analyses (analyses

across multiple subjects) difficult. To solve these problems we inflate each

white surface into a 2-sphere, and with some abuse of notation also

denote Ω as the union of two 2-spheres 21[22 . The geometry of a

2-sphere will more easily facilitate signal processing and inter-subject

alignment (Dale, Fischl, & Sereno, 1999; Fischl, Sereno, & Dale, 1999).

To obtain a BOLD signal for any point x�Ω, we apply the following

signal interpolation method on the 2-sphere. Without loss of generality,

assume x�21 (the first 2-sphere in Ω) and let B(x; σ) represent a neigh-

borhood near x such that all vertices in B(x; σ) have geodesic distances

to x less than σ. We have the BOLD time course sx at x calculated as

sx ¼
P

v0�B x;σð Þwσ x,v0;ð Þsv0 , where sv0 are observed BOLD signals and

wσ(x,v0) are the corresponding weights. wσ(x,v0) can be obtained from a

truncated Gaussian or bi-weight (quartic) kernel with bandwidth σ

defined with a geodesic distance on the 2-sphere, for example,

wσ x,v0ð Þ ¼ 15=16σð Þ 1� d x,v0ð Þ=σð Þ2
n o2

d x,v0ð Þ< σ (Risk & Zhu, 2019).

When multiple subjects are involved in the analysis, registration

between subjects is necessary, i.e., finding correspondence among

Ω1, …, Ωn for n subjects. One of the advantages of inflating the origi-

nal complex white surfaces to two 2-spheres is that registration of

signals on a 2-sphere is much easier than on an irregular manifold

space (Coalson et al., 2018; Glasser, Coalson, et al., 2016; Kurtek

et al., 2010; Robinson et al., 2014). In this work, we used the align-

ment algorithm and registration results from Freesurfer. Other

spherical registration algorithms have been proposed in the litera-

ture (Robinson et al., 2014).

2.4 | Continuous structural connectivity on the
white surface

In SBCI, we rely on two recent developments to reliably extend

SC to the white surface and represent it in a continuous fashion.

First, a recently published tractography algorithm called SET (St-

Onge et al., 2018) builds streamlines that extend through the

white surface. Second, similar to the work of Moyer, Gutman,

Faskowitz, Jahanshad, and Thompson (2017), we define the con-

tinuous SC by estimating a probability density function on Ω�Ω.

In SET, the white surface is used to initiate the flow with a

parameter t controlling for the amount of flow into the WM,

resulting in a surface beneath the white surface. Starting from the

surface at t > 0, we initialize streamlines using Ns seed points on

the surfaces and propagate them using the particle filtering tech-

nique (PFT) (Girard et al., 2014). Figure 2 illustrates some results

from the SET pipeline, where (a) shows the initial white matter seg-

ments constructed by SET and (b) shows the final tractography

result. Experiments have shown that SET decreases SC gyral biases

and better approximates the underlying anatomy by using a more

stringent assumption in regions where dMRI signals are less infor-

mative (St-Onge et al., 2018).

We deviate from the traditional parcellation-based approach

to SC and define a continuous SC similar to the continuous FC

described in Section 2.3. Maintaining both SC and FC in a compa-

rable continuous framework allows for a more robust treatment

of the integration of the two modalities. For any two distinct

points x and y on the brain surfaces, we define SC as

CSC x,yð Þ�ℝþ [ 0f g , where SC is the probability density function rep-

resenting the likelihood that x and y are structurally connected by

WM fibers. CSC is a symmetric function defined on Ω�Ω and the set

of all SC functions can be denoted as F SC ¼fCSC :Ω�Ω7!ℝþ [ 0f g :
CSC x,yð Þ¼0 if x¼ y;CSC x,yð Þ¼ CSC y,xð ÞandÐ ÐΩ�ΩCSC x,yð Þdxdy¼1g.

The limited number of streamlines (typically a few million) con-

structed with SET gives us a discrete and sparse sampling of CSC
(refer to Figure 4 panel (a)). In contrast, FC has non-zero values for

nearly every connection. In order to more fairly compare and integrate

structural and functional connectivities, we estimate a smooth and

dense SC using kernel density estimation (KDE) on Ω�Ω. Assume

that we have a symmetric kernel kh defined as a mapping from Ω�Ω

to ℝ+[ {0} with a bandwidth parameter h. The smoothed SC under a

standard KDE procedure is given by:

ĈSC x,yð Þ¼N�1
XN
i¼1

kh x,yð Þ; xi ,yið Þð Þ, ð2Þ

where N is the total number of observed streamlines, and (xi, yi) repre-

sents the endpoints of the ith observed streamline. Now, we must

define an appropriate kernel function kh on Ω�Ω. Similar to Moyer

et al. (2017) and Risk and Zhu (2019), we begin by defining a symmet-

ric heat kernel (Hartman & Watson, 1974) on a 2-sphere as:

fh x;μð Þ¼A�1
2

X∞
m¼0

Nmexp �m mþ1ð Þh½ �Pm ⟨x,μ⟩
� �

, ð3Þ

where μ�2 and h�ℝ+ represent the mean and bandwidth, respec-

tively, A2 = 4π (the area of 2 ), m(m+1) are the eigenvalues of the

Laplacian on 2 for m = 0, 1, …, ∞, Pm is the Legendre polynomial of

order m for ℝ3, Nm equals 2m+1, the number of linearly independent

homogeneous spherical harmonics of degree m in ℝ3, and ⟨,⟩ indicates

the inner product of two elements on 2. Since Ω¼21[22, we extend

fh to Ω trivially by letting fh(x; μ) = 0 if x and μ are not on the same

sphere. We then define a kernel function on the domain Ω�Ω using
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a product of two functions fh on Ω. That is, given a mean (μx, μy) the

kernel is defined as kh((x,y); (μx, μy)) = fh(x, μx)fh(y, μy).

The bandwidth of the kernel function is a key parameter under

KDE. Although many bandwidth selection criterion have been pro-

posed (Botev, Grotowski, & Kroese, 2010; A. W. Bowman, 1984;

C. Jones, Marron, & Sheather, 1996; M. C. Jones, Marron, &

Sheather, 1996; Moyer et al., 2017; Risk & Zhu, 2019; Turlach, 1993,

January; Zhengwu Zhang, Klassen, & Srivastava, 2019), there is no

consensus on the best general approach. In this paper, we select h

based on the reproducibility of ĈSC x,yð Þ calculated on the HCPTR

dataset.

2.5 | SC-FC coupling

We are ready to study the integration of continuous SC and FC

defined on the domain Ω�Ω. We define three novel definitions of

SC-FC coupling (SFC) based on our continuous SC and FC.

F IGURE 2 Tractography results from SET. (a) shows the surface flow to the white surface, and (b) shows the final tractography with the
reconstructed fanning structure near the white surface

F IGURE 3 Example grids of Ω in SBCI. From (a) to (d), we have different sparsity levels of vertices on a 2-sphere: (a) 163,842 vertices;
(b) 8,453 vertices; (c) 5,157 vertices; and (d) 1,834 vertices. The down-sampling is conducted by removing vertices that induce the least error
(measured by the Hausdorff distance) between the resulting mesh and the full resolution mesh
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Continuous global SC-FC coupling: We first evaluate the consis-

tency between SC and FC on the surface without any predefined

parcellation of the brain. Let CSC x,yð Þ and CFC x,yð Þ denote the continu-

ous SC and FC for a particular subject. At any point x0 in Ω, we define

the global SC-FC coupling using a normalized inner product of two

functions f1 yð Þ¼ CSC x0,yð Þ and f2 yð Þ¼ CFC x0,yð Þ:

SFCgbl x0ð Þ¼ f1
k f1 k ,

f2
k f2 k

� �
¼

Ð
s�ΩCSC x0,sð ÞCFC x0,sð ÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

s�ΩC2SC x0,sð ÞdsÐs�ΩC2FC x0,sð Þds
q ð4Þ

The inner product h,i is defined for two functions on Ω and is anal-

ogous to calculating the correlation between two rows of a functional

connectivity and structural connectivity matrix in a traditional setting.

The SFCgbl(x0) returns a scalar at x0, and therefore, SFCgbl is a con-

tinuous function on Ω, measuring the similarity/consistency between

SC and FC at different locations on the white surface. In practice, we

evaluate the SFCgbl on a discrete grid of Ω. The mesh surfaces from

Freesurfer provide a natural choice for such a grid. However, the

dense vertices on these surfaces cause computational challenges. In

our implementation of SBCI, we down-sample each white surface

mesh (left and right) from over 120,000 vertices to around 2,100

using the Visualization Toolkit (VTK) in Python (Schroeder, Martin, &

Lorensen, 2006; Schroeder, Zarge, & Lorensen, 1992). To maintain as

much topological information as possible, we sample vertices from the

white surface such that the induced Hausdorff distance (Aspert,

Santa-Cruz, & Ebrahimi, 2002) between the full and down-sampled

meshes is minimized. We then generate the down-sampled white,

inflated, and spherical surface meshes using Delaunay triangulation

(Barber, Dobkin, & Huhdanpaa, 1996) and the coordinates

corresponding to the sampled vertices on the full meshes. Figure 3

shows a surface mesh before (panel (a)) and after down-sampling at

three different sparsity levels of vertices (panels (b), (c) and (d)). With

the down-sampled mesh in (d), in the experiment section, our final

continuous SC and FC are represented with matrices of 3668�3668

dimensions before masking out the corpus callosum region.

Continuous local SC-FC coupling: When a parcellation of the brain

surface is available, we can evaluate the coupling strength of our con-

tinuous SC and FC within ROIs. For an ROI E and a point x0� E, our

continuous local SFC (SFCloc) is defined as:

SFCloc x0ð Þ¼ fE1
k fE1 k

,
fE2

k fE2 k

* +
¼

Ð
s�ECSC x0,sð ÞCFC x0,sð ÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ

s�EC2SC x0,sð ÞdsÐs�EC2FC x0,sð Þds
q : ð5Þ

Discrete parcellation-based SC, FC and SC-FC coupling: At last, fol-

lowing existing literature (Cocchi et al., 2014; Jiang et al., 2019;

F IGURE 4 Outputs from SBCI. (a) Discrete SC before smoothing; (b) continuously smoothed SC using h = 0.005; (c) Continuous FC; and (d–f)
zoomed in on the left frontal lobe for connectomes in (a–c). The black horizontal and vertical lines in (e–f) designate different ROIs in the
Desikan–Killiany atlas for comparison with typical atlas-based connectivity matrices. We multiplied a constant to the continuous SC in (b) and
(e) for visualization purposes
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J. Wang et al., 2018; Zhiqiang Zhang et al., 2011), we define discrete

SFC for a given parcellation. We first convert our continuous SC and

FC to finite adjacency matrices based on the given parcellation. For

any two ROIs E1 and E2, we define the SC between the two

regions as:

SC E1,E2ð Þ¼
Ð Ð

x�E1,y�E2
CSC x,yð Þdxdy

E1j j E2j j , ð6Þ

where jEij represents the area of region Ei for i = 1, 2. The defined SC

strength represents the connectivity density in a unit area square.

The traditional way to calculate FC is to first obtain a mean BOLD

signal for each region and then calculate the Pearson correlation coef-

ficient. To be more consistent with the SC calculation, we instead con-

sider an average of the correlations. We calculate the FC in the

following way: first apply the Fisher z-transformation to the correla-

tion, calculate the average, and then apply the inverse Fisher z-

transformation:

FC E1,E2ð Þ¼ tanh

Ð Ð
x�E1,y�E2

artanh CFC x,yð Þð Þdxdy
E1j j E2j j

 !
, ð7Þ

where tanh(�) and artanh(�) represent the hyperbolic tangent function

and its inverse respectively. Finally, we define the discrete SC-FC cou-

pling (SFCdct) as:

SFCdct Eð Þ¼ corr SC E, �ð Þ,FC E, �ð Þð Þ ð8Þ

where corr(�, �) represents the Pearson correlation and SC(E, �) and FC

(E, �) represent the structural and functional connections between ROI

E and all other ROIs respectively.

2.6 | Evaluation and analysis

To construct and validate the SBCI pipeline, we performed the follow-

ing analyses. Note that in our experiments, a few parcellation

approaches were involved: atlas-free (our continuous SC, FC, and

SFC), the Desikan–Killiany (Desikan et al., 2006) atlas (68 cortical

ROIs), the Destrieux (Destrieux, Fischl, Dale, & Halgren, 2010) atlas

(148 cortical ROIs), and the Brainnetome (Fan et al., 2016)

atlas (210 cortical ROIs). We did not consider any connections to sub-

cortical regions.

2.6.1 | SBCI parameter selection

A few parameters in SBCI are critical to connectome mapping: the sur-

face flow size t in SET, the number of tractography seeds Ns, and the

SC smoothing bandwidth h. Using the HCPTR dataset, we optimized

these parameters based on the reproducibility of our final SC. The

reproducibility is measured using the distance-based intraclass corre-

lation coefficient (dICC), defined as dICC¼ �d
2
bs=

�d
2
bsþ�d

2
ws

� �
(Zhengwu

Zhang et al., 2018), which is a generalization of the intraclass correla-

tion coefficient (ICC) (Shrout & Fleiss, 1979), with values in the range

(0, 1). �d
2
bs and �d

2
ws represent the average distance squared between

subjects and within multiple scans of a subject respectively. The dICC

is calculated under the Frobenius norm using the entire connectivity

matrix. Higher dICC values indicate better reproducibility.

The surface smoothing kernel FWHM σ is another parameter in

SBCI that can be tuned for the functional data. We selected σ = 5 mm

to remain consistent with typical fMRI preprocessing procedures.

2.6.2 | SBCI connectome reproducibility

To validate the SBCI pipeline, we performed qualitative and quantita-

tive exploratory analyses to assess the reliability of our pipeline and

compared them to previous studies. These analyses fall into two cate-

gories: SC and FC reproducibility and the relationship between SC

and FC. Comparisons were made using the atlas-free approach and

atlas-based approaches. With the atlas-free approach, we performed

visual inspections of SC and FC at different spatial resolutions (differ-

ent grids on Ω, refer to Figure 3) and calculated the ICC and dICC

using the HCPTR dataset. While ICC produces a value at every vertex,

allowing for the calculation of summary statistics of the distribution,

dICC produces only a single value per connectome. As such, to

account for variability we obtained 10,000 bootstrap samples (ran-

domly sampling 36 subjects with replacement) and took the median

dICC value and interquartile range (IQR). IQR is defined as the differ-

ence between the 75th and 25th percentiles. Given the bootstrap

results, we also calculated the p-value P(dICC<0.5), where dICC<0.5

indicates that the measurement is not reproducible. Note that in each

test and retest scanning session in the HCPTR dataset, we had one

dMRI scan and four resting state fMRI runs, resulting in a total of

72 SC matrices and 288 FC matrices for the entire dataset.

2.6.3 | SC-FC coupling reproducibility

After confirming the validity of our SBCI pipeline to produce consis-

tent and reproducible SC and FC at both standard atlas and atlas-free

resolutions, we sought to examine the reproducibility of the SFC fea-

tures. After registering each subject's images to the standard

fsaverage space, we obtained aligned SC and FC on a common white

surface. Using the SFC definitions presented in Section 2.5, we quan-

tified the reproducibility of each feature using both ICC and dICC

measures. For each subject in the HCPTR dataset, we had 2 SC matri-

ces and 4 FC matrices, and therefore obtained 8 (= 2 �4) SFC mea-

sures for each definition of SFC for each subject, resulting in 288 (=

8 �36) total features for all 36 subjects. The five SFC features con-

sidered in this paper were: global SC-FC coupling (SFCgbl; Equation (4));

local SC-FC coupling based on the Desikan–Killiany atlas (SFClocdk;

Equation (5)); local SC-FC coupling using major brain lobes (SFCloclb;

Equation (5)); discrete SC-FC coupling based on different atlases

(SFCdct..) defined by Equation (8); and traditional discrete SC-FC
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coupling (SFCtrd..), where SC is calculated based the summation of

streamlines in a connection and FC is calculated based on the Pearson

correlation of the mean BOLD signals in each ROI pair.

Note that for SFCloclb the lobar parcellation was created by merg-

ing ROIs within the Desikan–Killiany atlas to achieve 12 larger areas

(right and left frontal, parietal, temporal and occipital lobes, and the

right and left insula and cingulate).

2.6.4 | SC-FC coupling as imaging markers

In order to assess the usefulness of the SFC features as imaging markers,

we used the HCPYA dataset, described in Section 2.1, to find group differ-

ences due to sex. We first performed independent t-tests on the surface.

A nonparametric suprathreshold cluster test (Nichols & Holmes, 2002) was

conducted to determine significant regional differences between the two

groups. Clusters were defined as those regions of neighboring vertices at

which the uncorrected p-values (from the t-tests) between the two groups

were ≤ 0.05. We then generated a permutation distribution for the maxi-

mal cluster size and determined a critical suprathreshold cluster size with

threshold p≤0.05. All vertices within a significantly large cluster were

deemed to be significant. Suprathreshold cluster tests like this are generally

more powerful for neuroimaging data than techniques such as Bonferroni

adjustment and Benjamini–Hochberg false discovery rate control (Friston

et al., 1994; Nichols & Holmes, 2002).

We also conducted a classification analysis to compare the dis-

criminative abilities of different SFC features in distinguishing males

from females. Principle component analysis (PCA) was first performed

on the training data and applied to the test data to reduce the dimen-

sionality of each SFC feature before different classifiers were applied.

To make a robust comparison, results were obtained from different

classifiers including the logistic regression classifier (LRC), support

vector classifier (SVC), and random forest classifier (RFC). Repeated

five fold cross-validation was performed (100 times), tuning hyper-

parameters through nested cross-validation, and the receiver operator

characteristic (ROC) area under the curve (AUC) was used to evaluate

the classification performance for each iteration.

3 | RESULTS

3.1 | Parameter selection

We selected t = 75 and Ns = 3�106 for all subsequent experi-

ments. Details are presented in Data S1. The flow parameter t = 75

maximizes the dICC and thus SC reproducibility regardless of the

number of seeds used for every approach except the Desikan–

Killiany atlas. The number of seeds selected was determined based

on a diminishing return of dICC as a function of computational

resources.

We then sought an optimal value for h to maximize the dICC of the

atlas-free approach. Table 1 shows dICC values for the four approaches

with five different KDE bandwidth values, h� {0, 0.002, 0.005, 0.01,

0.02} after removing two outliers. As our pipeline is designed to con-

duct connectivity analyses using an atlas-free approach, we selected

h = 0.005 because it maximized the dICC value when using the atlas-

free approach and was still close to maximizing the atlas-based

approaches. We found that smoothing was especially helpful for

enhancing the reproducibility of high resolution SC. In fact, after

smoothing, the dICC for our atlas-free approach was nearly the same as

all three parcellations, which is a substantial improvement over the orig-

inal unsmoothed SC (h = 0). Using an Intel CPU (2.70 GHz), it took

approximately 8, 4, and 2 hrs to smooth SC matrices obtained using

grids Ω of 16,906, 10,314, and 3,668 vertices, respectively, producing

SC matrices requiring 1.1GB, 0.5GB, and 0.1GB of storage. The full

SBCI pipeline took approximately 4–5 days (10 hrs for fMRI processing,

1 day for T1w processing, 2–3 days for dMRI processing, and 12 hrs for

connectome integration) to run for a single subject.

3.2 | Exploratory connectome analyses

Figure 4 shows SC and FC matrices for one randomly selected subject,

comparing different types of SC and their sparsity levels to the contin-

uous FC. The sparsity (defined as the percentage of 0 elements) of

each connectome was 0.97 and 0.55 for the discrete and continuous

SC, respectively. As we can see, the continuous SC is much more

dense after smoothing.

Next, we evaluated the relationship between SC and FC. In

Figure 5, we show the histograms of FC strengths with and without

direct SC connections. In our continuous SC framework, we defined a

direct SC connection as those node-pairs with SC values greater than

10�7. This means if ten million streamlines were built for a subject,

the connections that had more than one expected streamline were

considered to have a direct SC connection. We found that FC

strengths between regions with direct SC is consistently higher

than FC strengths between regions without direct SC connections

(p-value < 10�6).

Finally, we quantitatively assessed the reproducibility of SC and

FC produced by SBCI. We compared the dICC and node-wise ICCs

TABLE 1 Reproducibility measure
dICC vs. bandwidth for the
continuous SC

Atlas h = 0 h = 0.002 h = 0.005 h = 0.010 h = 0.020

Desikan 0.80 0.81 0.81 0.80 0.80

Destrieux 0.79 0.78 0.79 0.80 0.80

Brainnetome 0.79 0.80 0.81 0.81 0.81

Atlas-free 0.75 0.79 0.80 0.79 0.79

Note: The table shows results after removing outliers when using three atlases and the atlas-free

approach with different KDE bandwidth parameters (h). The parameters with the best dICC are in bold

for each approach.
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between two parcellation approaches: Desikan–Killiany and atlas-free.

The median (IQR) dICC values of SCs derived from the Desikan–

Killiany and atlas-free approaches were 0.80 (0.03) and 0.79 (0.01)

respectively. The median (IQR) dICC values of FC for Desikan–Killiany

and atlas-free approaches were 0.60 (0.01) and 0.61 (0.01) respec-

tively. All dICC values were significant with p-values less than 10�6.

We also examined the reproducibility of individual connections by cal-

culating node-wise ICC values. Structural ICC distributions had

medians (IQR) 0.74 (0.17) and 0.69 (0.27) for the Desikan–Killiany and

atlas-free approaches respectively. Functional ICC distributions had

medians (IQR) 0.30 (0.20) and 0.27 (0.25) for the Desikan–Killiany and

atlas-free parcellations.

3.3 | SC-FC coupling reproducibility

We then evaluated the reproducibility of our SFC features. Figure 7

shows the pairwise distance matrices, dICC, and ICC histograms for

the six different SFC features. The median (IQR) dICC values of the

continuous SFC features SFCgbl, SFClocdk, and SFCloclb were 0.68 (0.01),

0.72 (0.01), and 0.70 (0.01) respectively. All p-values were less than

10�6. Most of the ICC values of the global and local SFC features fall

in the fair to good reliability range. In contrast, the median (IQR) dICC

values of the discrete SFC features SFCdctdk (Desikan), SFCdctds

(Destrieux), and SFCdctbr (Brainnetome) were 0.60 (0.01), 0.61 (0.01),

and 0.62 (0.01) respectively. All p-values were less than 10�6. The ICC

F IGURE 5 Histograms of resting state FC for nodes-pairs with and without direct WM SC connections. Elements from the FC matrix were
assigned to one of two groups depending on whether or not there is a value > 10�7 present at the corresponding element in the SC matrix. The
histograms show the distribution of FC strength for both of these groups using only those connections within a region (a, b, d, and e) (defined by
the Desikan–Killiany atlas) or only those connections shared across regions (c, f, g, and h). Finally, (i) shows the histogram for the whole brain
using every connection over the entire surface
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values for the discrete SFC features were all in the poor reliability

range.

Comparing results in Figure 7 with the ones in Figure 6, we had a

few interesting findings: (a) our continuous SFC features had much

better reproducibility values (as measured by both ICC and dICC)

compared to the FC; (b) the continuous local SFCs (representing the

local SC-FC association) were more reproducible than the global SFC

(representing the global SC-FC association); and (c) the discrete SFCs

(SFCdct) were the least reproducible of all SFC measures. Plots of these

SFC features for an individual can be found in Figures S3, S5, and S6.

Our results show that the within-subject SFCgbl, SFClocdk, SFCloclb,

SFCdctdk, SFCdctds, and SFCdctbr were reproducible (although to different

degrees) in data from two sessions that occurred in the span of sev-

eral months in healthy young adults, and the SFCgbl was more variable

between subjects than within subjects. Therefore, we expected the

SFC features to be informative and robust markers to detect individ-

ual or group effects.

3.4 | SC-FC coupling sex difference

Finally, we evaluated the usefulness of our SFC features as markers to

detect group differences in sex. We used a small subset of the HCPYA

data (due to high computational times and storage demand for each

subject we have not processed all HCPYA subjects yet) containing

43 randomly selected males and 46 randomly selected females

from the 26 to 30 year old group in the S500 data release. Figure 8

shows the average continuous (atlas-free) SFC features (SFCgbl,

SFClocdk, and SFCloclb) across all males and females on the inflated

brain surfaces, and Figure S7 displays the average discrete SFC

features (SFCdctdk, SFCdctds, and SFCdctbr). Additionally, using the

three continuous SFC features, we conducted point-wise indepen-

dent t-tests on the surface between males and females. Figure 9

shows the p-values on the surface (the first two rows) and binary

maps (the third and fourth rows) indicating significant differences

after correcting for multiple comparisons based the nonparametric

suprathreshold cluster test.

Table 2 shows the median and IQR of the AUCs from 100

repeated five fold stratified cross-validation for each prediction

model. Note that different classifiers and latent dimensions (denoted

as K and obtained based on PCA) were used to provide a robust com-

parison across various choices of models and hyperparameter selec-

tions. We see that for nearly all classification models, the continuous

SFC features were better at predicting sex than the discrete SFCs

(both the novel and the traditional ones). The newly proposed discrete

SFC features had much better performance compared with the tradi-

tional discrete SFC features. Table S3 shows the percent variance

explained by different numbers of principle components for each SFC

measure. For comparison, prediction results based on the continuous

FC and SC connectomes are in Table S4.

F IGURE 6 Reproducibility analysis of SC and FC from SBCI. The first row shows pairwise distance matrices of SCs and FCs generated under

(a) the Desikan–Killiany atlas and (b) our atlas-free approach. The Frobenius norm was used to calculate the distance between connectivity
matrices, and the different scales are due to the differences in the connectivity matrices generated by each method (the relative difference
between the intra-subject distances and the intersubject distances is more important than the magnitude of those distances). Note that we had
72 SC and 288 FC matrices in the HCPTR dataset. Medians (IQR) from bootstrap sampling are displayed above each distance matrix. Panels
(c) and (d) show ICC histograms for every node-pair in the SCs and FCs corresponding to panels (a) and (b) respectively. Medians (IQR) are
displayed above each histogram. We placed scans from the same subject next to each other, so that we could observe a block pattern along the
diagonal of these distance matrices
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F IGURE 7 SFC reproducibility analysis. The first and third rows from left to right show pairwise distance matrices for the SFCgbl, SFClocdk, and
SFCloclb and the SFCdctdk (Desikan), SFCdctds (Destrieux), and SFCdctbr (Brainnetome) features respectively. Medians (IQR) from bootstrap sampling
are displayed above each distance matrix. The second and fourth rows show the corresponding histograms of ICC at each node. Medians (IQR)
are displayed above each histogram
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4 | DISCUSSION

In this paper, we developed a novel atlas-free approach for studying

connectivity integration. The proposed SBCI framework can extract

reproducible and discriminative high-resolution structural connectivity

(SC) and functional connectivity (FC) from high-quality MRI data on

the white surface of the brain. Additionally, SBCI produces three

novel subject-level imaging markers that are reflective of the relation-

ships between structural and functional brain signals. By using the

HCP Test–Retest data, we showed that SBCI can build reproducible

continuous SC, FC, and SFC measures. Further, using data from the

HCP Young Adult study, we demonstrated that these novel continu-

ous SFCs show greater discriminative power as markers, producing

better clustering results than the typical atlas-based SFC features.

4.1 | Advantages of SBCI

SBCI uses a novel tractography algorithm (St-Onge et al., 2018)

together with the KDE smoothing technique (Moyer et al., 2017;

Moyer, Gutman, Faskowitz, Jahanshad, & Thompson, 2016) to project

both SC and FC to the white surface and extend the traditional defini-

tions of SC and FC to a continuous framework. By treating SC and FC

in a continuous fashion, we obtain high resolution SC and FC and

avoid the need to rely on discrete brain parcellations to study connec-

tivity. Further, by extending the typically sparse SC to be a continuous

feature, we close the sparsity gap between SC and FC, allowing us to

interrogate structural-functional relationships more robustly, as FC is

naturally more dense. This continuous treatment of SC also allows us

to overcome some of the computational challenges that come with

big data; we do not need to recover hundreds of millions of stream-

lines in order to obtain reproducible SC at high resolutions (refer to

Table 1 and Table S3).

Another advantage of SBCI is that we can inspect SC-FC relation-

ships in local brain regions as well as across the entire cortical surface

(Honey et al., 2009). Figure 5 shows that in general, FC connection

strengths are higher between areas of the brain when direct SC con-

nections are present compared to those without direct SC connec-

tions. The mean differences between the two types of FC are

different for different brain regions, for example, the left and right

parietal lobes (plots d and e) had larger differences than the left and

right frontal lobes (plots a and b). More interestingly, we found that

FC strengths without direct SC connections have a mean strength

close to zero, while FC strengths with direct SC connections have a

mean strength greater than zero. These patterns are consistently

observed in all subjects in our study. As previously mentioned, publi-

shed findings regarding how FC strength varies with SC is heteroge-

neous (Chamberland et al., 2017; Honey et al., 2009), implying that

more care should be taken in the future to more completely examine

such relationships.

Although the idea of dense FC and SC has been proposed before

(e.g. the HCP promotes the use of brain mesh surfaces to analyze

fMRI data (Coalson et al., 2018; Glasser, Coalson, et al., 2016) and

Moyer et al. (2017) proposed a point process model to estimate con-

tinuous SC), continuous structural and functional connectome cou-

pling has not been studied before to the best of our knowledge. In

F IGURE 8 Mean SFCgbl, SFClocdk, and SFCloclb values calculated over 43 male and 46 female subjects
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existing literature, using predefined parcellations to calculate discrete

SFC is a standard choice (Baum et al., 2020; Buckner et al., 2013;

Chamberland et al., 2017; Cocchi et al., 2014; Ghumman et al., 2016;

Honey et al., 2009; Honey et al., 2010; Jiang et al., 2019) with almost

no exceptions. From our results in Figures 7 and S7, and Table 2, we

found that the discrete SFC measures have several drawbacks

compared to our continuous SFC features: (a) they have low resolu-

tion (decided by the number of ROIs in the atlas); (b) they are less

reproducible; and (c) they are less powerful to distinguish between

groups. Our results demonstrate that SC and FC are more robustly

integrated at higher resolutions. Finally, by introducing the continuous

SFC, we introduce a large set of analysis tools for functional data

F IGURE 9 Results of testing differences in SFCgbl, SFClocdk, and SFCloclb between two groups, one consisting of 43 male subjects, the other of

46 female subjects. The first two rows show the uncorrected negative logp-values of t-tests at every point on the surface for each of the SFC
features. The second two rows show the significant suprathreshold clusters (thresholding with p≤0.05)

TABLE 2 Sex prediction median(IQR) AUC scores for different classification models with five fold stratified cross-validation randomly repeated
100 times for various SFC measures.

Continuous SFC Our discrete SFC Traditional discrete SFC

Model NPCs SFCgbl SFClocdk SFCloclb SFCdctdk SFCdctds SFCdctbr SFCtrddk SFCtrdds SFCtrdbr

LRC K = 10 0.81(0.04) 0.86(0.03) 0.89(0.03) 0.77(0.03) 0.71(0.04) 0.69(0.04) 0.62(0.04) 0.66(0.04) 0.68(0.04)

K = 15 0.82(0.03) 0.84(0.03) 0.86(0.04) 0.74(0.04) 0.69(0.04) 0.76(0.04) 0.63(0.04) 0.69(0.04) 0.70(0.04)

K = 20 0.84(0.04) 0.81(0.03) 0.83(0.04) 0.73(0.04) 0.73(0.04) 0.83(0.03) 0.66(0.05) 0.66(0.04) 0.70(0.05)

SVC K = 10 0.81(0.03) 0.84(0.03) 0.84(0.03) 0.77(0.03) 0.71(0.04) 0.66(0.05) 0.48(0.08) 0.62(0.08) 0.66(0.05)

K = 15 0.86(0.03) 0.82(0.03) 0.85(0.05) 0.73(0.04) 0.71(0.04) 0.78(0.05) 0.58(0.09) 0.63(0.06) 0.67(0.04)

K = 20 0.81(0.04) 0.78(0.05) 0.81(0.04) 0.73(0.05) 0.70(0.04) 0.80(0.03) 0.62(0.07) 0.62(0.05) 0.67(0.05)

RFC K = 10 0.72(0.03) 0.80(0.03) 0.77(0.04) 0.69(0.04) 0.66(0.05) 0.76(0.04) 0.63(0.05) 0.63(0.04) 0.71(0.05)

K = 15 0.79(0.04) 0.81(0.03) 0.77(0.05) 0.73(0.05) 0.67(0.03) 0.81(0.04) 0.64(0.04) 0.64(0.04) 0.74(0.04)

K = 20 0.74(0.05) 0.82(0.04) 0.76(0.04) 0.76(0.04) 0.68(0.05) 0.84(0.04) 0.59(0.05) 0.67(0.04) 0.73(0.04)

Note: K corresponds to the number of principal component scores used for dimension reduction. The SFC features with the best median predictive power

are in bold for each classification model. Subscripts denote the type of SFC {gbl, global (Equation (4)); loc, local (Equation (5)); dct, discrete (Equation (8));

trd, traditional (defined as the correlation of the streamline count (SC) and correlation of the mean BOLD signals (FC) between two regions)} and the

corresponding parcellated atlas {dk, Desikan–Killiany; lb, Lobar; ds, Destrieux; br, Brainnetome}.

Abbreviations: LRC, logistic regression classifier; SVC, support vector classifier; RFC, random forest classifier.
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analysis in mathematics and statistics to the field of brain network

analysis. For example, we can define basis functions to represent the

continuous SFC to significantly reduce dimensionality for subsequent

statistical analysis and inference.

4.2 | Continuous Connectome reproducibility

We found that the reproducibilities of our continuous con-

nectomes are consistent at high resolution with previous atlas-

based studies. In general, we observed mostly good (0.75 ≥ ICC >

0.6) to excellent (ICC > 0.75) SC reproducibility for both the

Desikan–Killiany parcellation and our atlas-free approach. Our high

resolution atlas-free connectome reproducibilities as measured by

the dICC were nearly on par with the Desikan–Killiany atlas-based

connectomes for both SC and FC, indicating that SBCI can produce

high-quality high resolution connectomes. Further, the mainte-

nance of dICC values across both parcellation approaches for SC

and FC data demonstrates that the within-subject variations of

each connectome were less than between-subject variations

regardless of spatial resolution. In comparison to SC, FC has poor

(0.4 ≥ ICC) to fair (0.6 ≥ ICC > 0.4) reproducibility, with a majority of

connections falling in the relatively poor reproducibility range.

However, our FC reproducibility results are consistent with those

presented in the literature using the same dataset (Tomasi, Shokri-

Kojori, & Volkow, 2017) and other processing pipelines (Noble

et al., 2017). Compared with previous reproducibility studies

(Noble, Scheinost, & Constable, 2019), SBCI maintains a typical FC

reliability range even at very high spatial resolution.

4.3 | Novel SC-FC coupling features

In this work we proposed three novel continuous SFC features: SFCgbl,

SFCloc, and SFCdct, defined by Equation (4), (5), and (8) respectively.

The SFCgbl characterizes how the SC between a given location and all

other locations in the cortex relates to the FC at that location and

all other locations. In discrete space, this is analogous to the correla-

tion between a row of the FC matrix and the corresponding row of

the SC matrix. In other words, both short and long range connections

to the vertex will contribute to the final value of SFCgbl. The SFCloc

measures the similarity of SC and FC within a predefined region,

bounded as defined by a given atlas. From the results in Figure 8, we

saw that at most locations, SFCloc is larger than SFCgbl, indicating that

local SC and FC have much greater similarity within ROIs than global

SC and FC. Finally, we defined the discrete SFC using the continuous

SC and FC directly, deviating from the definitions most commonly

presented in the literature, i.e., where SC is calculated by the summa-

tion of streamline counts and FC is calculated by the Pearson correla-

tion of the mean BOLD signals between two regions.

From the first two columns in Figure 8, we found that the

global SC and FC are more correlated in primary sensory/motor

areas such as S1/M1 and the visual and auditory cortices and less

correlated in secondary association areas like the prefrontal cortex.

The spatial distribution of SFCgbl seems to be consistent with the

fundamental organizing architecture of the brain known since

Brodmann's map was published in 1909 (Brodmann, 2007).

Brodmann's work began with the idea that “specific physiological

functions in the cerebral cortex depend on specific histological

structure and connectivity.” This principle is clear in primary sen-

sory areas where specific histological patterns and cortical layer

structures are closely associated with functional activity

(Zeki, 2016). More modern mapping identified the hierarchical map

organization according to unimodal and multimodal association

areas (Mesulam, 2000). Our global SFC feature peaks in sensory

areas and gradually drop into the unimodal and multimodal associa-

tion areas. These observations highlight the ability of our approach

to advance brain mapping using modern data measurement tech-

niques based on MRI.

4.4 | SFC differences between males and females

The difference between the brains of males and females remains

an interesting question that is largely unanswered. Past findings

show that male and female brains have anatomical, functional, and

biochemical differences (Weis et al., 2020; Zaidi, 2010). With SBCI,

sex differences were observed most strongly in the ventro-medial

prefrontal cortex, the somatosensory-motor areas, the supra-

marginal gyrus, and the occipitoparietal (before FDR) areas exten-

ding into the fusiform gyrus. These results emphasize how struc-

ture and function are differentially related between the sexes and

are consistent with reported behavioral differences between men

and women. For example, men and women perform differently on

emotional recognition (Lausen & Schacht, 2018) and emotional

decision making (van den Bos, Homberg, & de Visser, 2013), which

is well known to engage the ventro-medial prefrontal cortex

(Bechara, Tranel, & Damasio, 2000). Men and women are also

known to perform differently on facial recognition (Herlitz &

Lovén, 2013), visual motion processing (S. O. Murray et al., 2018),

and episodic memory recollection (Yonker, Eriksson, Nilsson, &

Herlitz, 2003). Direct correlation between our measure of sex-

related SFC differences and cognitive-behavioral differences

between the sexes remains to be tested.

Our classification results (Table 2) demonstrate that the continu-

ous SFC features were better at predicting sex than discrete SFCs

regardless of base classification algorithm and number of PCs. Fur-

thermore, the discrete SFC features based on the discretization of our

continuous SFCs outperformed those calculated using the traditional

definition of SFC. However, note that we only used the Desikan–

Killiany atlas to calculate SFCloc and three common atlases to calculate

the discrete SFC features, which may not be optimal choices

(Messé, 2019). Given the predictive powers of our SFC features to

distinguish sex, we expect that these measures will also act as robust

connectivity biomarkers for pathological applications, to be explored

in future studies.
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4.5 | Future work

One limitation of the SBCI pipeline is that SET is sensitive to the input

surfaces according to our results from the HCPTR dataset. SET uses

the geometry of the surface a priori to initiate WM streamlines. If sur-

face reconstructions are significantly different across two scanning

sessions for a single subject, then SBCI is unlikely to produce reliable

SC for that subject. As such, we removed two outliers as determined

by the differences in white surface reconstructions between the test

and retest scans for our reproducibility analyses. Future work for

improving SBCI should also focus on faster and more robust surface

reconstruction (e.g. better segmentation and surface reconstruction

methods (Henschel et al., 2020; Zhao et al., 2019) or collecting and

incorporating high resolution T2-weighted (T2w) or fluid attenuated

inversion recovery (FLAIR) images to the T1w processing pipeline

(Glasser et al., 2013; Renvall, Witzel, Wald, & Polimeni, 2016; Van

Essen et al., 2013; Zaretskaya, Fischl, Reuter, Renvall, &

Polimeni, 2018). Further, the fMRI signal resampling and smoothing of

SC were conducted on the spheres and the actual mapping between

the white surfaces and spheres may introduce distortions. Another

future work is to develop a more direct method where the resampling

and SC smoothing are performed on the original white surfaces and

compare it with the current spherical framework.

The computational resources required to perform SBCI, while not

prohibitive, provide a challenge for analyzing large datasets. Future

work will involve decreasing the total processing time. For example,

deep learning has made it possible to reconstruct reliable surfaces in a

fraction of the time required to perform recon_all (Henschel

et al., 2020). Additionally, improvements to the KDE smoothing algo-

rithm employed in this pipeline should also reduce processing time. As

other faster diffusion and functional preprocessing pipelines (provided

by FSL and Freesufer) become available, the computational cost

accompanied by SBCI should decrease.

Finally, the use of subcortical structures is crucial to understand-

ing the effects of various pathologies on SC and FC. As such, future

developments to SBCI include extending both SC and FC to include

subcortical regions in order to study functional networks beyond the

cortical areas.

We have demonstrated that the SBCI pipeline can reliably recon-

struct high resolution SC and FC and produce novel SFC features,

removing the need of using predefined brain parcellations for con-

nectomics studies that can potentially bias their results. Future work

should use SBCI to explore pathological differences in various neuro-

logical diseases including HIV-associated cerebral small vessel disease

(CSVD), mild cognitive impairment (MCI), Alzheimer's disease (AD),

and chronic pain, among others. Finally, we intend to use SBCI to

determine an optimal brain parcellation for studying structural, func-

tional, and structural-functional coupling for individual and group

effects.
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