
© 2016 Journal of Ophthalmic and Vision Research | Published by Wolters Kluwer - Medknow 209

INTRODUCTION

Glaucoma is a kind of degenerative optic neuropathy 
characterized by retinal ganglion cell (RGC) loss 
and visual field defects.[1] Although high intraocular 
pressure (IOP) is considered as the most important risk 
factor for the development of glaucoma, it is neither 
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necessary nor sufficient. RGC loss continues in spite 
of IOP reduction in some glaucoma patients.[2] The 
risk of unilateral blindness in patients with treated 
open‑angle glaucoma is estimated to be around 27%, 
which is higher than previously expected.[3] Thus, IOP 
reduction may not be sufficient for some glaucoma 
patients.

The pathophysiology of glaucoma is not completely 
understood. Clinically, there is progressive loss of the 
retinal nerve fiber layer (RNFL)[4] leading to axonal 
degeneration and characteristic optic nerve head 
cupping.[5] The most susceptible cell to glaucomatous 
damage is the RGC, which is located in the inner 
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retina,[6,7] the axons of which constitute the RNFL and 
merge to form the optic nerve.

One of the areas of great interest in glaucoma is 
how RGC death occurs.[8] The molecular basis of RGC 
death stems from investigations on animal models 
of glaucoma. Deprivation of neurotrophic factors,[9] 
elevated concentrations of excitatory aminoacids such 
as glutamate,[10] and oxidative stress[11] may contribute 
to RGC apoptosis [Figure 1].

IOP reduction per se can prevent or delay RCG death 
in glaucomas and therefore is indirectly neuroprotective. 
However, neuroprotection in glaucoma is defined 
as any intervention, independent of IOP reduction, 
that can prevent RGC death. Several natural and 
synthetic compounds, have been reported to possess 
neuroprotective properties. Neuroprotection can affect 
glaucoma by direct protection of RGCs or neutralization 
of the deleterious effects of toxic factors. The present 
article reviews current evidence on neuroprotective 
compounds in the treatment of glaucoma.

GLUTAMATE ANTAGONISTS

Glutamate‑induced exitotoxicity has been implicated 
as a common pathogenic mechanism in a broad variety 
of neurological diseases, including Alzheimer’s disease 
and glaucoma.[12‑14] The detrimental effect of glutamate 
on RGCs has been documented by exposing the retina to 
high glutamate levels both in vitro[15] and in vivo.[16] This 
effect of glutamate on RGCs occurs through interaction 
with glutamate receptors. Excitatory receptors are 
abundant in RGCs.[17] However, under normal conditions, 
homeostatic mechanisms prevent overexpression of 
the receptors.[18] Glutamate‑induced excitotoxicity 
develops when extracelullar glutamate levels are 
increased.[19] Accumulation of excessive glutamate 
results in overstimulation of N‑methyl‑D‑aspartate 
(NMDA) receptors, which in turn causes intracellular 
calcium influx leading to the activation of a complex 
cascade which attacks cell components and produces 

free radicals,[20] followed by programmed cell death or 
apoptosis.[21‑23]

It has been shown in experimental models that 
after acute IOP elevation, there is an increase in 
intraocular glutamate levels.[24] In addition, analysis 
of the composition of vitreous fluid from dogs with 
glaucoma, experimental monkey glaucoma models 
and glaucomatous human eyes have revealed high 
levels of glutamate.[25,26] However, Carter‑Dawson 
et al found normal levels of glutamate in the vitreous 
of monkeys with experimental glaucoma.[27] Based on 
these observations, inhibition of glutamate activity by 
modulation of NMDA‑type receptors has been advocated 
as an important strategy for neuroprotection.[28]

MK801 (dizocilpine maleate), an uncompetitive 
NMDA antagonist, may be the most potent glutamate 
inhibitor[29] and neuroprotective agent in experimental 
glaucoma.[29,30] Nevertheless, because of the high 
affinity of the compound for the NMDA receptor, its 
long half‑life and interference with normal physiologic 
functions of glutamate, MK801 is neurotoxic[31] and has 
never been evaluated in higher‑level clinical trials.[32,33]

Memantine is a selective, non‑competitive blocker 
of the NMDA receptor with moderate affinity.[28] In a 
study to assess the effect of glutamate and its antagonist 
(memantine) on RGCs, three groups of rats were studied; 
in the first group, the animals received serial intravitreal 
injections of glutamate to induce chronic elevations in 
glutamate levels. The second group of rats was treated 
with intraperitoneal memantine and glutamate, while the 
third group received vehicle injection with or without 
concurrent memantine. After 3 months, RGC survival 
was evaluated: Intravitreal injections of glutamate had 
raised its intravitreal levels up to 3 to 5 times its normal 
endogenous concentration. Glutamate elevation caused 
death of 42% of RGCs after 3 months. When memantine 
was administered alongside low‑dose glutamate, it 
exhibited a partial protective effect against glutamate 
toxicity. However, memantine treatment alone, without 
concurrent injection of glutamate had no effect on 
ganglion cell survival.[22]

Although subsequent preclinical and experimental 
research with memantine appeared promising,[23,34,35] the 
phase III randomized, double‑masked, placebo‑controlled 
clinical trial conducted to test the efficacy of memantine 
as a neuroprotective agent in glaucoma, found no 
significant effect in preserving visual function.[36] These 
results came as a great disappointment for memantine, 
which had initially raised high hopes. It is possible that 
memantine may have actually benefited patients but to a 
level which was difficult to detect clinically, as observed 
in the study conducted by Hare et al In an experimental 
monkey model of glaucoma induced by laser destruction 
of the anterior chamber angle, Hare et al showed that 
memantine enhanced RGC survival only in animals with 

Figure 1. Simplified pathway of RGC death and assumed 
mechanisms of neuroprotective agents. IOP, intraocular 
pressure; NMDA, n-methyl-D-aspartate; NOS, nitric oxide 
synthase; RGC, retinal ganglion cell.
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moderately high IOP. Furthermore, although memantine 
treatment had reduced the rate of RGC loss based on 
electroretinographic (ERG) measurements early during 
the study, this beneficial effect could not be observed 
if the injury was allowed to progress too long.[35] These 
observations suggest limited efficacy of memantine for 
reducing RGC death in glaucoma patients.

Bis(7)‑tacrine is a newer NMDA receptor antagonist 
which possesses remarkable neuroprotective activity 
through concurrent inhibition of acetylcholinesterase[37,38] 
and nitric oxide synthase,[39] in addition to NMDA 
receptor blockade. Bis(7)‑tacrine demonstrated more 
potent neuroprotective effect as compared to memantine 
in a study on cultured RGCs.[23] This agent still awaits 
further experimental and clinical studies for evaluation 
as an effective neuroprotective agent in glaucoma. 
Amantadine,[40] psychotropic tetrahydrobannabinol, 
and non‑psychotropic cannabinol[41,42] are other potential 
neuroprotective agents that act via attenuation of NMDA 
activity.

GINKGO BILOBA EXTRACT

Ginkgo is an ancient species of tree similar to plants 
which were living 270 million years ago. This tree 
is widely grown in China and was introduced early 
in traditional Eastern medicine to treat a variety of 
problems such as asthma, vertigo, fatigue and tinnitus 
or circulatory disorders. In modern medical science, 
the extract from the leaves of ginkgo biloba, named as 
ginkgo biloba extract 761 (EGb761), has been shown to 
be beneficial for cognitive impairment and dementia.[43]

Because of biological and mechanistic similarities 
between Alzheimer’s dementia and glaucoma,[44] 
investigators have studied ginkgo for glaucoma. Several 
studies have illustrated the role of mitochondrial 
dysfunction in the pathogenesis of glaucoma.[45] 
Only anti‑oxidants capable of penetrating into the 
mitochondria can be of benefit as neuroprotective 
agents. Ginkgo contains certain substances, including 
poly‑phenolic flavonoids which may theoretically 
prevent oxidative stress in the mitochondria and thereby 
protect RGCs.[46‑48]

In a crossover randomized clinical trial, ginkgo 
biloba extract (GBE) improved pre‑existing visual field 
defects of NTG patients. Twenty‑seven NTG patients 
were included. Forty milligrams of GBE, three times a 
day, prescribed orally for 4 weeks, followed by 8 weeks 
washout period and then 4 weeks of placebo treatment 
were given. The other group of NTG patients were given 
the placebo first and GBE later on. Visual fields were 
examined at the end of each phase of the study and 
compared with the baseline perimetry. A significant 
improvement in visual field indices was recorded with 
GBE treatment in NTG patients.[49] More recently and 
in another short course placebo‑controlled, crossover 

clinical trial, GBE could not improve contrast sensitivity 
or visual field damage in Chinese patients with NTG.[50]

The duration of follow‑up in the above‑mentioned 
studies was only 4 months; considering the chronic 
course of glaucoma, these studies were limited by short 
follow up period and small sample size. Despite the 
inconclusive results of clinical studies regarding the 
neuroprotective effect of GBE, because of its relatively 
safe profile,[51] some glaucomatologists have been 
prescribing GBE for their patients as adjuvant therapy 
for several years.[52] However, increasing risk of bleeding 
during surgery has been a cause of concern in patients 
using ginkgo.[53]

Efficacy and safety reports have recommended a 
daily dose of 120 mg of GBE.[51] Because of the beneficial 
effect of IOP reduction in most glaucoma cases and 
the economic burden associated with the use of GBE, 
its administration is recommended only in subjects 
with normal‑tension glaucoma or in patients with 
high‑pressure glaucoma whose condition progresses 
despite apparently adequate IOP reduction.[52]

NEUROTROPHIC FACTORS

Disruption of axonal transport has been demonstrated 
in experimental glaucoma models in monkeys and 
in human glaucoma.[5,54,55] These results suggest that 
interruption of the retrograde supply of a trophic factor 
to RGCs may play role in the RGC death observed in 
glaucomatous optic neuropathy.[56,57] In vivo and in vitro 
studies have revealed that neurons and glial cells within 
the mammalian retina possess receptors for different 
trophic factors, and that direct application of these factors 
may enhance the survival of injured ganglion cells.[58,59]

Among a variety of candidate growth and trophic 
factors for RGCs, brain‑derived neurotrophic factor 
(BDNF), as a member of the nerve growth factor proteins, 
appears to be of particular importance to RGC function 
and survival.[60‑64] BDNF has been shown to undergo 
both anterograde and retrograde axonal transport,[65] 
and has been effective in preventing lesion‑induced 
axonal die‑back in the rat optic nerve; however, it could 
not prevent the rapidly progressive degeneration of 
RGCs after axotomy. Weibel et al reported that BDNF 
has a selective influence on mechanisms responsible for 
survival of optic nerve axons.[66] Presence of the BDNF 
receptor, TrkB, in optic nerve axons and a change in its 
distribution with acute and chronic glaucoma in rats and 
monkeys was shown later by Pease et al.[57]

Therefore, disruption of BDNF supply to RGCs could 
be considered as a contributing factor in glaucomatous 
damage.[56] Several experimental investigations have 
demonstrated the protective effect of intravitreal 
injection of BDNF on RGCs in rat and primate models 
of optic nerve damage.[67‑69] Di Polo et al observed a 
protective influence on RGCs by adenovirus‑infected 
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retinal Muller cells through production and release of 
BDNF.[70] Quigley et al suggested the optimal dose of 
BDNF to be 0.01 mg per milliliter of vitreous volume for 
intravitreal injections and found that higher intravitreal 
doses decrease the protective effect of BDNF on RGCs 
possibly due to down‑regulation of Trk B, the BDNF 
receptor.[56]

In all preclinical studies mentioned above, the 
neuroprotective effect of BDNF on RGCs was assessed 
in the setting of optic nerve lesions such as transection 
and crushing.[59,71] However, experimental studies for 
demonstrating the protective effect of exogenous BDNF 
in models simulating glaucoma are scarce.

Another trophic factor undergoing preclinical 
investigation is the human ciliary neurotrophic factor 
(CNTF), which also showed a neurotrophic effect on 
RGCs. A single injection of CNTF protein into the 
vitreous significantly protected RGCs in a rat model of 
optic nerve axotomy[61,72] and against nitric oxide (NO) 
induced cell death.[73] CNTF promoted the survival of 
purified rat RGCs in culture[74] and it showed a promising 
effect on RGC protection after optic nerve axotomy when 
transferred by adenovirus vectors.[75]

Pease et al assessed virally‑mediated over‑expression 
of CNTF and BDNF in an experimental model of 
laser‑induced glaucoma in rats. Loss of RGC axons was 
15% lower in CNTF‑treated retinas than in controls; 
however, neither the combined CNTF‑BDNF group nor 
the BDNF over‑expression group showed any significant 
improvement in RGC survival.[76]

Artemin,[77] basic fibroblast growth factor,[78] 
interleukin‑6[79] and erythropoietin[80] are other trophic 
factors or cytokines for which a neuroprotective effect 
has been proposed.

The challenge facing the application and efficacy 
of these trophic factors is how to accomplish effective 
and sustainable delivery to the retina. The blood‑retina 
barrier impedes such large proteins from reaching the 
retina with systemic administration. Intravitreal injection 
is an alternative route to deliver purified recombinant 
trophic factors to the retina, but this may not be feasible 
for life‑long administration in chronic conditions such 
as glaucoma. The integration of neurotrophic factors in 
drug delivery devices for intraocular implantation is one 
possible approach for long‑term provision of such agents.

Although viral vector‑delivery of trophic factors in 
animal models of retinal degeneration have demonstrated 
protective effects, certain issues such as precise control 
of dosage make the clinical application of this approach 
questionable.[81]

CALCIUM CHANNEL BLOCKERS 

The neurotoxic effect of NMDA is mediated by calcium 
influx into neural cells, followed by apoptosis and 
cell death.[82] Thus, calcium‑channel blockers (CCBs) 

seem to be a rational alternative for neuroprotection 
in glaucoma. CCBs theoretically rescue RGCs by 
prevention of cell death mediated by calcium influx and 
by improving local blood flow in ischemic tissues by 
inducing vasodilation.[83]

Different calcium channel blockers such as 
iganidipine, nimodipine and lomerizine have been 
shown to significantly increase purified rat RGC 
viability under hypoxia.[84] In another laboratory 
study, unlike nilvadipine, diltiazem could not prevent 
glutamate‑induced RGC apoptosis.[85] The effect of 
topical 2% flunarizine on the rabbit retina under ischemic 
conditions induced by high IOP was evaluated by ERG; 
topical flunarizine reduced IOP and attenuated injury to 
the retina, including RGCs.[86]

Other members of this family, brovincamine and 
nilvadipine, have high blood–brain barrier permeability 
and are expected to induce favorable effects in the optic 
nerve or retina with minimal influence on systemic 
blood pressure.[87] They were shown to improve visual 
field defects and ocular circulation in NTG patients 
and diminished the rate of deterioration in visual field 
sensitivity of NTG patients in randomized clinical 
trials.[88‑90]

There seem to be drawbacks to the use of CCBs in 
glaucoma. Inadequate perfusion pressure at the ONH, 
may play a role in the pathogenesis of glaucoma.[91‑94] 
There is concern that although nilvadipine or other CCBs 
may increase blood flow, these agents may impair the 
autoregulation of blood circulation at the ONH during 
acute IOP elevation.[95] One should keep in mind that 
oral CCBs prescribed for systemic hypertension may 
be harmful to the optic nerve in glaucoma patients; 
lower systemic blood pressure seems to reduce ONH 
blood flow, which is a risk factor in the pathogenesis of 
glaucoma.[96]

ANTIOXIDANTS

A number of investigations have supported the role of 
oxidative stress in the pathogenesis of glaucoma.[97] These 
mainly demonstrated lower levels of antioxidants[98,99] 
and elevated oxidative stress markers in the aqueous 
humor of eyes with glaucoma,[99] antibodies against 
glutathione‑S‑transferase,[100] decreased plasma levels of 
glutathione[101] and increased lipid peroxidation products 
in the plasma of glaucoma patients.[102] Furthermore, 
tissue analysis studies comparing cultured human 
trabecular meshwork (TM) from eyes with POAG to 
that of non‑glaucomatous eyes have revealed higher 
concentrations of reactive oxygen species, decreased cell 
membrane potentials and reduced ATP production in 
the TM of eyes with POAG.[103] Insufficiency of reactive 
oxygen species (ROS)‑neutralizing mechanisms has 
been proposed as the cause of accumulation of oxidative 
free radicals in the TM.[104‑106] Oxidative free radicals 
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have been implicated in human TM degeneration and 
subsequent IOP increase and glaucoma.[107] In another 
study, the correlation between DNA oxidative damage 
in the TM, increased IOP and visual field defects was 
reported.[108]

Theoretically, inhibition of ROS and up‑regulation of 
cell defense systems may enhance RGC survival.[109‑112] 
Cell defense mechanisms against oxidative stress include 
the superoxide dismutase, glutathione (GSH) and 
thioredoxin (TRX) systems.[110] The TRX system mitigates 
oxidative damage by scavenging intracellular ROS. The 
reaction leads to TRX oxidation, which is returned to 
its reduced form by TRX reductase in the presence of 
NADPH.

In a rat glaucoma model induced by laser damage to 
the TM, it was shown that overexpression of thioredoxins 
1 and 2 could decrease RGC death following IOP 
elevation.[110]

In an experimental study, an association was found 
between a vitamin E‑deficient diet and increased RGC 
death in a rat glaucoma model. The vitamin‑E deficient 
group demonstrated greater lipid peroxidation as 
compared to rats with the usual diet. This study 
suggested that accelerated RGC death in the vitamin 
E‑deficient group could be related to increased lipid 
peroxidation.[113]

Coenzyme Q10 (CoQ10), cofactor of the electron 
transport chain, is assumed to protect neuronal cells 
against oxidative stress by stabilizing the mitochondrial 
membrane potential, supporting ATP synthesis 
and inhibiting the generation of ROS.[114‑116] A study 
by Nakajima, demonstrated that CoQ10 protected 
retinal neurons against hydrogen peroxide–induced 
oxidative stress in vitro and NMDA‑induced glutamate 
excitotoxicity in vivo.[117] Moreover, CoQ10 prevented 
retinal damage caused by transient ischemic injury due 
to acutely elevated IOP.[118,119] The level of CoQ10 in the 
human retina has been shown to decrease by about 
40% with age. The senile decrease in CoQ10 suggested 
the possibility that it may contribute to age‑related 
RGC loss.[120] In a mouse model of glaucoma, diet 
supplemented with coenzyme Q10 inhibited glutamate 
excitotoxicity, and oxidative stress‑mediated RGC 
and axonal degeneration by 29%.[121] To evaluate the 
effect of antioxidants in a clinical trial, Coqun eye 
drops (coenzyme Q10 combined with vitamin E) were 
administrated to 22 glaucoma patients twice daily in 
addition to beta‑blockers. Retinal and cortical evoked 
responses of treated patients were compared to that of 
glaucoma patients treated with beta‑blockers alone after 
6 and 12 months. This topical preparation demonstrated 
a beneficial effect on inner retinal function as measured 
by pattern ERG with consequent improvement of visual 
cortical responses assessed by visually evoked potentials 
(VEPs).[122]

Natural substances such as polyphenolic flavoids 
in green tea, coffee, wine and dark chocolate; 
anthocyanosides in bilberry; vitamins including thiamin 
(vitamin B1) and even melatonin have been suggested 
to possess antioxidant activity.[123] Further studies 
are required to investigate the effect of antioxidants 
in glaucoma. Another open question is whether 
antioxidants are beneficial for all glaucoma patients or 
only those with reduced antioxidant reserve.

ALPHA 2 ADRENERGIC AGONISTS 
INCLUDING BRIMONIDINE

The presence of alpha‑adrenergic receptors in human, 
bovine and porcine retinas, particularly in RGCs 
and the inner nuclear layer of the rat retina has been 
demonstrated by immunohistochemical studies.[124,125] 
In a histological study, brimonidine (a selective 
alpha‑2 receptor adrenergic agonist) increased retinal 
metabolism and promoted neuronal growth in cultured 
retinal cells.[126]

It has been suggested that brimonidine may 
prevent RGC death by direct interaction with alpha‑2 
adrenergic receptors, leading to reduced accumulation of 
extracellular glutamate and blockade of NMDA receptors; 
this protective effect is thought to be independent of IOP 
reducing mechanisms attributed to this agent.[127‑129] 
Elimination of the protective effect of brimonidine by 
co‑administration of an alpha 2‑antagonist confirms that 
the mentioned effect is secondary to alpha‑2 receptor 
activation.[127,130]

In a pre‑clinical study, continuous subcutaneous 
treatment with brimonidine significantly improved 
RGC survival exposed to elevated IOP for 8 weeks. 
Brimonidine treatment also preserved morphology, 
density and the total number of axons in the optic nerve 
subjected to high IOP.[131]

It is increasingly recognized that ocular blood flow 
alteration is involved in the pathogenesis of glaucomatous 
optic neuropathy.[132,133] In contrast to alpha‑1 receptor 
activation which leads to vasoconstriction of ocular 
and systemic blood vessels, there is no evidence that 
alpha‑2 agonists alter optic nerve, retinal, choroidal or 
retrobulbar blood flow.[134,135]

A randomized clinical trial from Singapore compared 
the effect of brimonidine and timolol on the incidence of 
glaucomatous visual field defects and the rate of visual 
field deterioration after acute IOP rise. Evaluation of the 
visual field tests during the 16‑week follow‑up period did 
not show any protective effect from brimonidine.[136] In 
another study, however, measurement of RNFL thickness 
by scanning laser polarimetry (GDx) demonstrated less 
RNFL loss with brimonidine in comparison to timolol 
0.5% in ocular hypertensive patients over 12 months of 
treatment.[137]
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The industry‑supported “Low‑Pressure Glaucoma 
Treatment Study (LoGTS)” evaluated the neuroprotective 
effect of brimonidine versus timolol in 190 NTG patients 
over four‑year follow‑up.[138] This study suggested that 
brimonidine may halt visual field deterioration more 
than timolol, but the authors did not consider the higher 
rate of incomplete follow up in the brimonidine group 
(55% and 29% missing data in the brimonidine and 
timolol groups, respectively).[139]

NITRIC OXIDE SYNTHASE 
INHIBITORS

Evidence in the literature points to a possible role for 
NO in RGC degeneration.[140‑142] Increased levels of NO 
to twice normal values was shown in rat retinas with 
induced glaucoma.[143] Aslan et al suggested that excessive 
NO could result in apoptosis and necrosis of RGCs.[144] 
There are three forms of nitric oxide synthase (NOS): 
NOS‑1 (neuronal NOS) and NOS‑3 (constitutive NOS) 
act as vasodilators or neurotransmitters in normal retinal 
tissue, however NOS‑2 (inducible NOS) contributes to 
RGC neurotoxicity.[145] An increased expression of NOS 
has been shown in optic nerve head (ONH) of glaucoma 
patients.[146,147] In an experimental study, in vitro elevation 
of hydrostatic pressure upregulated NOS‑2 expression in 
cultured rat RGCs and astrocytes of the human lamina 
Cribrosa.[148,149] The ability of aminoguanidine as a NOS‑2 
inhibitor in protecting RGCs in the rat cautery model of 
retinopathy led to the suggestion that NOS‑2 inhibition 
may be protective in glaucoma.[141,150] The possibility 
that NOS‑2 inhibition could be neuroprotective in 
glaucoma was strengthened by reports showing that 
another NOS‑2 inhibitor (N‑nitro‑L‑arginine) delayed 
RGC degeneration.[151] The non‑psychotropic component 
of marijuana, cannabidiol (CBD), and the synthetic 
cannabinoids, tetrahydrocannabinol and HU‑211 have 
been demonstrated to possess protective actions in part 
due to an effect on reducing formation of lipid peroxides, 
nitrite/nitrate and nitrotyrosine.[42,152,153]

These data suggest that activation of NOS, especially 
NOS‑2, may play a significant role in glaucomatous optic 
neuropathy and that nitric oxide synthase inhibitors 
could halt neurodegeneration.

On the other hand, the role of NOS‑2 in optic 
neuropathy has been argued by subsequent studies. 
Pang et al did not find any evidence for NOS‑2 in 
glaucomatous neurodegeneration in their study. They 
induced elevated IOP in rats by injection of hypertonic 
saline into episcleral veins. No significant increase in 
NOS‑2 expression was found in the optic nerve head. 
Furthermore, aminoguanidine treatment had no effect 
on glaucomatous damage in rats.[154] In another study 
conducted by Libby et al with the same IOP elevation 
method, a similar result was achieved.[155] Kasmala et al 

found that oral administration of another inhibitor of 
NOS2, SC‑5, did not prevent optic neuropathy induced 
by saline injection ocular hypertension.[156]

Technical differences in the simulation of glaucoma and 
different mouse races in experimental studies may explain 
the discrepancy between different investigations.[157] In 
short, preclinical evidence regarding the effect of NOS 
in neurodegeneration is inconclusive and NOS inhibitors 
have not yet been tested in any clinical study.

ANTI‑GLAUCOMA MEDICATIONS 
WITH BLOOD REGULATION EFFECT

Vascular dysregulation has been implicated in the 
pathogenesis of glaucoma,[158] therefore a neuroprotective 
effect has been suggested for agents which can 
improve regulation of ocular blood perfusion.[159] 
Some anti‑glaucoma medications have additional 
ocular blood perfusion effects. For instance, carbonic 
anhydrase inhibitors increase ocular perfusion.[160] 
Improvement of ocular blood has also been reported 
with latanoprost.[161,162]

Betaxolol is a putative selective B1‑adrenoceptor 
blocker. Experimental studies have suggested a 
neuroprotective effect from betaxolol in animal models 
of retinal ischemia.[163,164] However, the reports did 
not provide evidence on how betaxolol modulates 
neurodegeneration and which types of retinal cell are 
affected by betaxolol.[165,166] Some studies have suggested 
that betaxolol reduces the NMDA‑stimulated influx 
of calcium into isolated cells of rat retinas by direct 
interaction with voltage‑dependent calcium channels 
or sodium channels.[167]

Anti‑glaucoma medications have a large preservative 
effect on RGCs by IOP reduction, therefore clinical 
studies to evaluate their action as a “neuroprotective” 
agent independent of their protective action due to IOP 
reduction are difficult to conduct and interpret.

STEM CELL TRANSPLANTATION 
FOR RGC NEUROPROTECTION

Stem cell transplantation has gained significant interest 
because of its potential to treat neuro‑degenerative 
diseases such as glaucoma. There are two mechanisms 
by which stem cell therapy might be applicable to 
glaucoma. The most important therapeutic power of stem 
cells lies in their ability to generate new cells of many 
types and to induce RGC regeneration.[168] Nevertheless, 
RGC replacement would require that the cells become 
integrated into the complex circuitry and be capable of 
synapsing at precise brain locations. Thus, protection of 
RGCs from degeneration might be a more accessible goal 
in glaucoma therapy in the short term.[169]
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It has been hypothesized that implantation of some 
types of stem cells activates multiple neuroprotective 
pathways simultaneously via secretion of various 
factors.[170] Transplanted stem cells may be utilized as 
an intraocular delivery device for diffusible bioactive 
factors. Supply of various neurotrophic factors is 
the most widely acceptable mechanism by which 
transplanted cells can modulate excitotoxicity. This 
method may provide the advantage of long‑lasting and 
localized effect. Delivery of a single prolonged effective 
treatment could also prevent the common problem of 
patient noncompliance with pharmacologic therapy. 
Even though cells which fulfill all the required criteria 
for stem cell transplantation have not yet been identified, 
multiple cells have been suggested in different studies, 
which can secrete different neurotrophic factors, such as 
embryonic or adult tissue‑derived stem cells.[171]

There are important concerns in this field since 
implanted cells may secrete other agents with unknown 
activity, in addition to the desired neurotrophic factor. 
Some of these factors may even be harmful. Therefore, 
it is necessary to determine all factors produced by the 
transplanted stem cells before they come into clinical 
practice.[172]

Another limitation in this field is graft survival. 
Prolonged survival is necessary to achieve continuous 
benefit from stem cell transplantation; however, longer 
survival times are associated with an increased risk of 
tumorigenesis.[173] Consequently, careful selection of 
stem cells, thorough long‑term observation, and safety 
evaluation will be necessary to ensure that the potential 
benefit of neuroprotection outweighs the risk of inducing 
tumors. On the other hand, stem cell transplantation 
has been shown to induce reactive gliosis in the host 
retina which caused retinal folding, up‑regulation of 
intermediate filaments, and recruitment of macrophages. 
Inhibition of stem cell‑induced reactive gliosis would 
be fundamental for successful transplantation‑based 
strategies.[174]

Even once these questions are resolved, numerous 
issues should be addressed during translation of 
successful laboratory models to the clinic. Difference in 
animal models used for glaucoma, the rapid time course 
of optic nerve damage in the laboratory setting and 
different mechanisms for simulating RCG injuries are 
some of the issues which should be taken into account 
in order to achieve the desired results in the clinical 
setting.[171]

SUMMARY

Over the past 30 years, numerous pharmacologic agents 
have been advocated as neuroprotective agents in 
glaucoma, however few of them such as brimonidine 

or memantine have advanced to clinical trials. In a 
systematic review by the Cochrane group in 2013 for 
neuroprotection in glaucoma, from dozens of clinical 
trials, only one study (LoGTS) fulfilled the criteria for 
review which itself faced criticism. Through an updated 
search for the current review, as of July 2015, no more 
completed clinical trials corroborating neuroprotection in 
glaucoma have been published after the Cochrane review 
in October 2012. This has occurred despite encouraging 
evidence from laboratory and preclinical studies.

Several conceptual and methodological issues hinder 
the translation of experimental results to clinical glaucoma 
practice. First of all, glaucoma is a chronic heterogenous 
group of disorders, and no animal model can fully mimic 
the course of human disease. Furthermore, considerable 
disease variability exists in human clinical trials; these 
include the presence of comorbidities, polypharmacy 
in elderly glaucoma patients, and minimal control 
over a myriad of physiologic factors. Another basic 
difference between animal and human clinical trials in 
the neuroprotection field is the time of the intervention. 
In most experimental studies, the neuroprotective agent 
is given at the time or even prior to injury, unlike human 
studies, in which the patient is eligible for enrollment 
after the disease is well establishment. Another basic 
difference between experimental studies and human 
clinical trials is outcome measure. Most animal studies 
employ histopathologic endpoints to assess the treatment 
efficacies. Clinical trials, however, judge efficacy by using 
functional outcomes, which most often take months to 
show any change. Extrapolation of the appropriate dose 
of a neuroprotective agent for use in humans from animal 
or laboratory studies is another issue. Many of these 
agents are toxic or ineffective, at concentrations higher 
or lower than optimum. Human ocular bioavailability 
with a given dose also is often difficult to predict.

Broad and multidisciplinary collaborative effort is 
required to design a set of guidelines for experimental 
and clinical studies on neuroprotection in ophthalmic 
disease. A consensus on how to design and execute 
translational research in neuroprotection in ophthalmic 
disease would optimize the use of resources and facilitate 
the development of effective neuroprotective agents.[36] 
To that day, the main therapeutic option for glaucoma 
treatment will remain to decrease intraocular pressure 
and the selection of anti‑glaucoma medications should 
be based on their ability to reduce IOP.
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