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Abstract: Chemotherapy-induced peripheral neuropathy is a common factor in limiting therapy
which can result in therapy cessation or dose reduction. Gabapentin, a calcium channel inhibitor,
and duloxetine, a serotonin noradrenaline reuptake inhibitor, are used to treat a variety of pain
conditions such as chronic low back pain, postherpetic neuralgia, and diabetic neuropathy. It has
been reported that administration of gabapentin suppressed oxaliplatin- and paclitaxel-induced
mechanical hyperalgesia in rats. Moreover, duloxetine has been shown to suppress oxaliplatin-
induced cold allodynia in rats. However, the mechanisms by which these drugs prevent oxaliplatin-
and paclitaxel-induced neuropathy remain unknown. Behavioral assays were performed using
cold plate and the von Frey test. The expression levels of proteins were examined using western
blot analysis. In this study, we investigated the mechanisms by which gabapentin and duloxetine
prevent oxaliplatin- and paclitaxel-induced neuropathy in mice. We found that gabapentin and
duloxetine prevented the development of oxaliplatin- and paclitaxel-induced cold and mechanical
allodynia. In addition, our results revealed that gabapentin and duloxetine suppressed extracellular
signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation in the spinal cord of mice. Moreover,
PD0325901 prevented the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain
behavior by inhibiting ERK1/2 activation in the spinal cord of mice. In summary, our findings
suggest that gabapentin, duloxetine, and PD0325901 prevent the development of oxaliplatin- and
paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 phosphorylation in mice.
Therefore, inhibiting ERK1/2 phosphorylation could be an effective preventive strategy against
oxaliplatin- and paclitaxel-induced neuropathy.

Keywords: chemotherapy-induced peripheral neuropathy; gabapentin; duloxetine; ERK1/2; oxali-
platin; paclitaxel

1. Introduction

Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting
adverse effect of multiple chemotherapeutic agents, including oxaliplatin and paclitaxel,
which can result in therapy cessation or dose reduction [1–3]. In addition, neuropathy
causes a significant loss of functional abilities and decreases the quality of life of patients.
Among chemotherapeutic agents, platinum drugs (oxaliplatin and cisplatin), vinca al-
kaloids (vincristine and vinblastine), taxanes (paclitaxel and docetaxel), and bortezomib
induce the most severe effects on the peripheral nervous system [4–7]. Since little is known
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about the mechanisms involved in the development of CIPN, no drugs are currently avail-
able to prevent or treat CIPN. Thus, the identification of drugs that effectively prevent or
treat CIPN is important.

The activation of protein kinase C (PKC)/extracellular signal-regulated kinase 1/2
(ERK1/2) pathway contributes to the development of neuropathic pain. Administra-
tion of oxaliplatin to rats evoked thermal and mechanical hypersensitivity via increased
PKC/ERK1/2 activation in the spinal cord and cortical areas [8–10]. Treatment with pacli-
taxel induced mechanical hypersensitivity via increased ERK1/2 activation in the dorsal
root ganglion (DRG) of rats [11]. In addition, PKC-induced ERK1/2 phosphorylation has
been associated with neuropathic pain in rats [12,13]. Moreover, it has been reported that
PKC mediates a positive feedback mechanism regulating calcium channel activity, which
may affect nerve sensitivity during chemotherapy [14,15].

Gabapentin, an anticonvulsant, has been used to treat a variety of non-epileptic condi-
tions such as chronic pain, psychiatric disorders, and movement disorders. It is thought to
act by binding to the α2δ subunit of voltage-dependent calcium channels, thus inhibiting
the release of excitatory neurotransmitters [16,17]. Duloxetine, a serotonin-noradrenaline
reuptake inhibitor, is used to treat painful diabetic neuropathy, osteoarthritis-related pain,
and chronic low back pain [18–21]. A number of studies have reported that these drugs
suppress oxaliplatin- and paclitaxel-induced mechanical hyperalgesia and cold allodynia
in rat and mice models [22–24]. However, the mechanisms underlying this analgesic ef-
fect remains unclear. Therefore, the present study investigated the mechanism by which
gabapentin and duloxetine suppress oxaliplatin- and paclitaxel-induced neuropathic pain.

2. Results
2.1. Effects of Gabapentin on Oxaliplatin- and Paclitaxel-Induced Cold and Mechanical Allodynia

To evaluate the effect of gabapentin on oxaliplatin- and paclitaxel-induced cold sen-
sitivity, mice received oxaliplatin or paclitaxel on days 0 and 7 and were administered
gabapentin (30 or 100 mg/kg/day, p.o.) daily. Oxaliplatin and paclitaxel induced a sig-
nificant progressive reduction in withdrawal thresholds at 10 ◦C. Oral administration of
gabapentin prevented the development of oxaliplatin- and paclitaxel-induced cold allody-
nia (Figures 1A and 2A). No significant differences were observed in withdrawal latency at
any time point by the combination treatment with 30 mg/kg gabapentin and 6 mg/kg ox-
aliplatin or 6 mg/kg paclitaxel compared with the combination treatment with 100 mg/kg
gabapentin and 6 mg/kg oxaliplatin or 6 mg/kg paclitaxel (Figures 1A and 2A). In addition,
we investigated the effect of gabapentin on the development of oxaliplatin- and paclitaxel-
induced mechanical allodynia using the following von Frey filaments: 0.16 g (mechanical
allodynia), 0.4 g (intermediate), and 1.4 g (mechanical hyperalgesia). Administration of
30 mg/kg gabapentin prevented the development of oxaliplatin- and paclitaxel-induced
mechanical allodynia and hyperalgesia, although the difference was more significant than
that in the vehicle group in a few days (Figures 1B–D and 2B–D). In addition, treatment
with 100 mg/kg gabapentin significantly prevented the development of oxaliplatin- and
paclitaxel-induced mechanical allodynia and hyperalgesia compared with the combination
treatment with 30 mg/kg gabapentin and oxaliplatin or paclitaxel (Figures 1B–D and 2B–D).
Although treatment of mice with 6 mg/kg oxaliplatin, 6 mg/kg oxaliplatin plus 30 mg/kg
gabapentin, 6 mg/kg oxaliplatin plus 100 mg/kg gabapentin, and 6 mg/kg paclitaxel
resulted in weight loss in a few days, no dramatic changes were observed (Supplementary
Materials, Figure S1). Moreover, no significant differences in weight gain were observed at
any time point in the gabapentin group compared with the vehicle group (Supplementary
Materials, Figure S1). These observations indicated that gabapentin prevented oxaliplatin-
and paclitaxel-induced neuropathic-like pain behavior in a dose-dependent manner.
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Figure 1. Inhibitory effect of gabapentin on oxaliplatin-induced cold allodynia in mice. Oxaliplatin (6 mg/kg/i.v.) was 
administered on days 0 and 7, and gabapentin (30 or 100 mg/kg, p.o.) was administered daily from days 0 to 14. (A) 
Withdrawal latencies, presented as means ± standard deviations (S.D.), represent the time taken by mice to withdraw their 
hind paws following cold stimulation (10 °C) (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles (Shapiro–Wilk test and 
Kruskal–Wallis test followed by the Scheffe test). (B–D) The number of paw lifts elicited by five mechanical stimulations 
using von Frey filaments corresponding to (B) innocuous (0.16 g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending 
forces. The aversive response score was calculated based on two paw lifts (n = 7 per group). * p < 0.05, ** p < 0.01 vs. 
vehicles, # p < 0.05, ## p < 0.01 vs. 6 mg/kg oxaliplatin + 30 mg/kg gabapentin (Shapiro–Wilk test and one-way analysis of 
variance (ANOVA) with the Tukey test). 

Figure 1. Inhibitory effect of gabapentin on oxaliplatin-induced cold allodynia in mice. Oxaliplatin (6 mg/kg/i.v.)
was administered on days 0 and 7, and gabapentin (30 or 100 mg/kg, p.o.) was administered daily from days 0 to 14.
(A) Withdrawal latencies, presented as means ± standard deviations (S.D.), represent the time taken by mice to withdraw
their hind paws following cold stimulation (10 ◦C) (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles (Shapiro–Wilk test
and Kruskal–Wallis test followed by the Scheffe test). (B–D) The number of paw lifts elicited by five mechanical stimulations
using von Frey filaments corresponding to (B) innocuous (0.16 g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending
forces. The aversive response score was calculated based on two paw lifts (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles,
# p < 0.05, ## p < 0.01 vs. 6 mg/kg oxaliplatin + 30 mg/kg gabapentin (Shapiro–Wilk test and one-way analysis of variance
(ANOVA) with the Tukey test).

2.2. Effects of Duloxetine on Oxaliplatin- and Paclitaxel-Induced Cold and Mechanical Allodynia

To investigate the effect of duloxetine on oxaliplatin- and paclitaxel-induced
neuropathic-like pain behavior, mice received oxaliplatin or paclitaxel on days 0 and
7 and were administered duloxetine (10 or 30 mg/kg/day, p.o.) daily. Oral administration
of duloxetine prevented the development of oxaliplatin- and paclitaxel-induced cold allo-
dynia (Figures 3A and 4A). No significant differences were observed in withdrawal latency
at any time point by the combination treatment with 10 mg/kg duloxetine, 6 mg/kg oxali-
platin, or 6 mg/kg paclitaxel compared with the combination treatment with 30 mg/kg
duloxetine and 6 mg/kg oxaliplatin or 6 mg/kg paclitaxel (Figures 3A and 4A). In addition,
we investigated the effect of duloxetine on the development of oxaliplatin- and paclitaxel-
induced mechanical allodynia. Administration of 10 mg/kg duloxetine prevented the
development of oxaliplatin- and paclitaxel-induced mechanical allodynia and hyperalgesia,
although the difference was more significant than that in the vehicle group in a few days
(Figures 3B–D and 4B–D). In addition, treatment with 30 mg/kg duloxetine significantly
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prevented the development of oxaliplatin- and paclitaxel-induced mechanical allodynia
and hyperalgesia compared with the combination treatment with 30 mg/kg duloxetine
and oxaliplatin or paclitaxel (Figures 3B–D and 4B–D). Although treatment of mice with 6
mg/kg oxaliplatin, 6 mg/kg oxaliplatin plus 10 mg/kg duloxetine, 6 mg/kg oxaliplatin
plus 30 mg/kg duloxetine, and 6 mg/kg paclitaxel in mice resulted in a little weight loss
in a few days, no dramatic changes were observed (Supplementary Materials, Figure S2).
Moreover, no significant differences in weight gain were observed at any time point in the
gabapentin group compared with the vehicle group (Supplementary Materials, Figure S2).
These observations indicated that duloxetine prevented oxaliplatin- and paclitaxel-induced
neuropathic-like pain behavior in a dose-dependent manner.Pharmaceuticals 2020, 13, x FOR PEER REVIEW 4 of 16 
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Figure 2. Inhibitory effect of gabapentin on paclitaxel-induced mechanical allodynia in mice. Paclitaxel (6 mg/kg, i.p.)
was administered on days 0 and 7, and gabapentin (30 or 100 mg/kg, p.o.) was administered daily from days 0 to 14.
(A) Withdrawal latencies, presented as means ± standard deviations (S.D.), represent the time taken by mice to withdraw
their hind paws following cold stimulation (10 ◦C) (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles (Shapiro–Wilk test
and Kruskal–Wallis test followed by the Scheffe test). (B–D) The number of paw lifts elicited by five mechanical stimulations
using von Frey filaments corresponding to (B) innocuous (0.16 g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending
forces. The aversive response score was calculated based on two paw lifts (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles,
# p < 0.05, ## p < 0.01 vs. 6 mg/kg paclitaxel + 30 mg/kg gabapentin (Shapiro–Wilk test and one-way analysis of variance
(ANOVA) with the Tukey test).
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Figure 3. Inhibitory effect of duloxetine on oxaliplatin-induced cold and mechanical allodynia in mice. Oxaliplatin (6 mg/kg,
i.v.) was administered on days 0 and 7, and duloxetine (10 or 30mg/kg, p.o.) was administered daily from days 0 to 14.
(A) Withdrawal latencies, presented as means ± standard deviations (S.D.), represent the time taken by mice to withdraw
their hind paws following cold stimulation (10 ◦C) (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles (Shapiro–Wilk test
and Kruskal–Wallis test followed by the Scheffe test). (B–D) The number of paw lifts elicited by five mechanical stimulations
using von Frey filaments corresponding to (B) innocuous (0.16 g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending
forces. The aversive response score was calculated based on two paw lifts (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles,
# p < 0.05, ## p < 0.01 vs. 6 mg/kg oxaliplatin + 10 mg/kg duloxetine (Shapiro–Wilk test and one-way analysis of variance
[ANOVA] with the Tukey test).

2.3. Gabapentin and Duloxetine Inhibited the Expression of Phosphorylated ERK1/2 in the Lumbar
Spinal Cord

We examined whether gabapentin and duloxetine altered the expression of phospho-
rylated ERK1/2 in the lumbar spinal cord (lumbar segments 4–6) using western blotting.
A marked increase in the expression of phosphorylated ERK1/2 was observed in mice
treated with oxaliplatin or paclitaxel. Mice treated with gabapentin in addition to oxali-
platin or paclitaxel exhibited significantly reduced phosphorylated ERK1/2 expression
compared to those treated with oxaliplatin or paclitaxel alone (Figure 5). Similarly, mice
treated with duloxetine in addition to oxaliplatin or paclitaxel exhibited significantly re-
duced phosphorylated ERK1/2 expression compared to those treated with oxaliplatin or
paclitaxel alone. These results indicate that gabapentin and duloxetine suppress oxaliplatin-
and paclitaxel-induced neuropathy by inhibiting the expression of phosphorylated ERK1/2.
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Figure 4. Inhibitory effect of duloxetine on paclitaxel-induced cold and mechanical allodynia in mice. Paclitaxel (6 mg/kg,
i.p.) was administered on days 0 and 7, and duloxetine (10 or 30mg/kg, p.o.) was administered daily from days 0 to 14.
(A) Withdrawal latencies, presented as means ± standard deviations (S.D.), represent the time taken by mice to withdraw
their hind paws following cold stimulation (10 ◦C) (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles (Shapiro–Wilk test
and Kruskal–Wallis test followed by the Scheffe test). (B–D) The number of paw lifts elicited by five mechanical stimulations
using von Frey filaments corresponding to (B) innocuous (0.16 g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending
forces. The aversive response score calculated based on two paw lifts (n = 7 per group). * p < 0.05, ** p < 0.01 vs. vehicles,
# p < 0.05, ## p < 0.01 vs. 6 mg/kg paclitaxel + 10 mg/kg duloxetine (Shapiro–Wilk test and one-way analysis of variance
(ANOVA) with the Tukey test).

2.4. PD0325901 Prevented Oxaliplatin- and Paclitaxel-Induced Neuropathic-Like Pain Behavior

Our results indicated that gabapentin and duloxetine prevented oxaliplatin- and
paclitaxel-induced neuropathic-like pain behavior by suppressing ERK1/2 activation
in the lumbar spinal cord (lumbar segments 4–6) of mice. Therefore, we investigated
whether PD0325901, a MEK1/2 inhibitor, prevented oxaliplatin- and paclitaxel-induced
neuropathy in mice. Treatment with 30 mg/kg PD032501 prevented the development of
oxaliplatin- and paclitaxel-induced cold allodynia, mechanical allodynia, and hyperalgesia
(Figures 6 and 7). In addition, PD0325901 suppressed oxaliplatin- and paclitaxel-induced
ERK1/2 activation in the lumbar spinal cord (lumbar segments 4–6) of mice (Figure 8).
These observations indicate that inhibition of ERK1/2 activation by a MEK inhibitor cor-
relate with the prevention oxaliplatin- and paclitaxel-induced neuropathic-like pain by
pre-treatment with gabapentin, and duloxetine.
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Figure 5. Gabapentin and duloxetine inhibited oxaliplatin- and paclitaxel-induced extracellular signal-regulated kinase
1/2 (ERK1/2) activation. Western blotting was conducted to analyze phosphorylated ERK1/2 (phospho-ERK1/2) protein
expression in the spinal cord (L4–L6) obtained from mice on day 14 after treatment with oxaliplatin, paclitaxel, gabapentin,
or duloxetine. β-actin was used as a protein loading control. Quantification of phospho-ERK1/2 and ERK1/2 expression,
normalized against that of β-actin. The results show four independent experiments. ** p < 0.01 vs. controls (Shapiro–Wilk
test and ANOVA with Dunnett’s test).
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Figure 6. Inhibitory effect of PD0325901 on oxaliplatin-induced cold and mechanical allodynia in mice. Oxaliplatin
(6 mg/kg, i.v.) was administered on days 0 and 7, and PD0325901 (30 mg/kg, p.o.) was administered daily from days
0 to 14. (A) Withdrawal latencies, presented as means ± standard deviations (S.D.), represent the time taken by mice to
withdraw their hind paws following cold stimulation (10 ◦C) (n = 7 per group). ** p < 0.01 vs. vehicles (Shapiro–Wilk test
and Kruskal–Wallis test followed by the Scheffe test). (B–D) The number of paw lifts elicited by five mechanical stimulations
using von Frey filaments corresponding to (B) innocuous (0.16 g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending
forces. The aversive response score was calculated based on two paw lifts (n = 7 per group). ** p < 0.01 vs. vehicles
(Shapiro-Wilk test and one-way analysis of variance (ANOVA) with Tukey test).
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i.p.) was administered on days 0 and 7, and PD0325901 (30 mg/kg, p.o.) was administered daily from days 0 to 14.
(A) Withdrawal latencies, presented as means ± standard deviations (S.D.), represent the time taken by mice to withdraw
their hind paws following cold stimulation (10 ◦C) (n = 7 per group). ** p < 0.01 vs. vehicles (Shapiro–Wilk test and
Kruskal–Wallis test followed by the Scheffe test). (B–D) The number of paw lifts elicited by five mechanical stimulations
using von Frey filaments corresponding to (B) innocuous (0.16 g), (C) intermediate (0.4 g), and (D) noxious (1.4 g) bending
forces. The aversive response score was calculated based on two paw lifts (n = 7 per group). ** p < 0.01 vs. vehicles
(Shapiro-Wilk test and one-way analysis of variance (ANOVA) with Tukey test).
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Figure 8. PD0325901 inhibited oxaliplatin- and paclitaxel-induced extracellular signal-regulated
kinase 1/2 (ERK1/2) activation. Western blotting was conducted to analyze phosphorylated ERK1/2
(phospho-ERK1/2) protein expression in the spinal cord (L4–L6) obtained from mice on day 14 after
treatment with oxaliplatin, paclitaxel, or PD0325901. β-actin was used as a protein loading control.
Quantification of phospho-ERK1/2 and ERK1/2 expression, normalized against that of β-actin. The
results show four independent experiments. ** p < 0.01 vs. controls (Shapiro–Wilk test and ANOVA
with Dunnett’s test).

3. Discussion

In this study, we demonstrated that gabapentin and duloxetine prevented the devel-
opment of oxaliplatin- and paclitaxel-induced cold and mechanical allodynia. In addition,
100 mg/kg gabapentin and 30 mg/kg duloxetine significantly suppressed the develop-
ment of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior. Moreover,
gabapentin and duloxetine treatment did not affect body weight when administered alone,
and did not have an effect on the transient loss of body weight in mice treated with ox-
aliplatin or paclitaxel. Western blot analysis showed that mice treated with gabapentin
or duloxetine in addition to oxaliplatin or paclitaxel exhibited significantly reduced phos-
phorylated ERK1/2 expression compared to those treated with oxaliplatin or paclitaxel
alone. Furthermore, we observed that PD0325901 prevented oxaliplatin- and paclitaxel-
induced neuropathic-like pain behavior by inhibiting ERK1/2. These findings suggested
that gabapentin and duloxetine exerted their analgesic effects of suppressing ERK1/2 phos-
phorylation in the spinal cord. Our previous study showed that trametinib, a MEK inhibitor,
inhibited oxaliplatin-, paclitaxel-, vincristine-, and bortezomib-induced neuropathy by
repressing chemotherapy-induced ERK1/2 activation in the lumbar spinal cord of mice [25].
Therefore, ERK1/2 phosphorylation appears to be involved in CIPN, and its inhibition
by gabapentin and duloxetine effectively prevented oxaliplatin- and paclitaxel-induced
neuropathic-like pain behavior.

We found that 6 mg/kg oxaliplatin and paclitaxel induced neuropathy in mice. Ox-
aliplatin is injected at 85 mg/m2 every 2 weeks or 130 mg/m2 every 3 weeks in humans,
which corresponds to approximately 6 mg/kg in mice [24]. In addition, several studies have
shown that treatment with oxaliplatin (6 or 10 mg/kg) induced neuropathy in mice [26–29].
In the clinical setting, the recommended paclitaxel dose is 210 mg/m2. For an adult human
body weighing 60 kg, the paclitaxel dose is 5.9 mg/kg [30]. Moreover, the dose required to
induce peripheral neuropathy with paclitaxel is 4–10 mg/kg in mice [31–35]. Therefore,
we selected a dose of 6 mg/kg oxaliplatin and paclitaxel in mice. In addition, the equiv-
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alent dose (mg/kg) of gabapentin or duloxetine for mice was calculated by multiplying
human equivalent doses by a factor of 12.3 [36,37]. The resultant therapeutic equivalent
doses of duloxetine and gabapentin were found to be 140 and 28 mg/kg, respectively.
Thus, 100 mg/kg (round off) of gabapentin or 30 mg/kg (round up) of duloxetine was
administered as the maximum dose to mice.

Oxaliplatin administration induces PKCγ up-regulation and PKCγ and PKCε phos-
phorylation within the thalamus and periaqueductal gray area in rats [10,38]. In mouse
model, treatment with paclitaxel induced persistent activation of PKCβII, PKCδ, and PKCε
in the DRG and spinal cord [11,39–41]. In addition, PKC-induced ERK1/2 phosphorylation
has been associated with chronic pain [10,42]. Moreover, ERKs act as regulators of noci-
ceptive sensitivity in various models of inflammatory pain and mechanical and thermal
hyperalgesia, and have been used as measurable marker for sensitization in pain stud-
ies [43–48]. Therefore, inhibiting ERK signaling may be an effective strategy for preventing
chemotherapy-induced neuropathy.

A number of studies have suggested that transient receptor potential (TRP) chan-
nels are involved in chemotherapy-induced neuropathic pain [49,50]. Treatment with
oxaliplatin increases the expression of TRPV1, TRPV4, TRPA1, and TRPM8, and the up-
regulation of TRPA1 and TRPM8 in mice and rats is associated with oxaliplatin-induced
cold allodynia [51–53]. Furthermore, TRPV1 and TRPV4 are involved in paclitaxel-induced
cold and mechanical allodynia in rats and mice [54–56]. In addition, ERK activation in
DRG nociceptive neurons promotes TRPV1 expression [57]. The activation of TRP channels
activates several signaling pathways such as the nuclear factor-kappa B pathway and
mitogen-activated protein kinase pathways, including ERK and p38 pathways [58–60].
Thus, this evidence indicates that ERK1/2 and members of the TRP family interact with
each other, and together may be involved in the pathophysiology of neuropathic pain.

It has been reported that administration with 40 mg/kg duloxetine improved the
chemotherapy (oxaliplatin-based chemotherapy: FOLFOX therapy, paclitaxel, and
bortezomib)-induced peripheral neuropathic pain in patients with multiple myeloma,
colon, and breast cancer [61]. It has also indicated that treatment with duloxetine for
chemotherapy-induced peripheral neuropathy was moderate recommendation in the
American Society of Clinical Oncology guidelines [62]. In addition, administration with
gabapentin was improved paclitaxel-induced neuropathy symptoms, neuropathic pain,
neurologic deficit, and quality of life in ovarian cancer patients [63]. Our results showed
that gabapentin and duloxetine prevented the development of oxaliplatin- and paclitaxel-
induced neuropathy via inhibition of ERK1/2 activation in spinal cord of mice. Therefore,
the present study showed part of the mechanism of action of gabapentin and duloxetine,
which has been shown to be useful in clinical trials.

There is one limitation in our study. Although we used male mice to investigate the
preventive effects of gabapentin, duloxetine, and PD0325901 on oxaliplatin- and paclitaxel-
induced neuropathic-like pain behavior, did not investigated female mice. It has been
reported that sphingosine-1-phosphate receptor subtype 1 (S1PR1) antagonists and A3
adenosine receptor subtype (A3AR) agonists suppressed the oxaliplatin- and paclitaxel-
induced neuropathy in male and female rats, but S1PR1 antagonists and A3AR agonists
only inhibited the bortezomib-induced neuropathy in male rats. [64]. It has also indicated
that resolvin D5 inhibited the paclitaxel-induced mechanical allodynia in male mice, but
did not affect female mice [65]. These findings suggest that the effectiveness of drugs to
suppress pain-like behavior present sex differences. Thus, future studies will examine the
preventive effects of gabapentin, duloxetine, and PD0325901 on oxaliplatin- and paclitaxel-
induced neuropathic-like pain behavior in female mice.

4. Materials and Methods
4.1. Animals

Male 5-week-old BALB/c mice were purchased from Shimizu Laboratory Animals
(Kyoto, Japan). The mice were housed in standard cages maintained at 25 ◦C, kept under a
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12 h light/12 h dark cycle, and allowed free access to water and food pellets. All animal
experiments were approved by the Animal Care and Use Committee of Kindai University
(project identification code KAPS-2020-011, 1 April 2020).

4.2. Drugs

Oxaliplatin and PD0325901 were purchased from LC Laboratories (Woburn, MA, USA).
Paclitaxel was purchased from FUJIFILM Wako (Tokyo, Japan). Gabapentin was purchased
from Sigma (St Louis, MO, USA). Duloxetine was purchased from LKT Laboratories,
Inc. (St Paul, MN, USA). Oxaliplatin was dissolved in 5% glucose solution. Paclitaxel
was dissolved in cremophor/ethanol/saline (1:1:18, Sigma). Gabapentin, duloxetine, and
PD0325901 were dissolved in dimethyl sulfoxide (DMSO), then diluted to 0.5% DMSO in
phosphate buffered saline.

4.3. Oxaliplatin- and Paclitaxel-Induced Neuropathy Models

After measuring the baseline nociceptive threshold, mice (6-week-old) were adminis-
tered drugs as per the following schedule. Mice were administered oxaliplatin (6 mg/kg)
by intravenous injection (i.v.), paclitaxel (6 mg/kg) by intraperitoneal injection (i.p.), 5%
glucose solution, or cremophor/ethanol/saline (vehicle) on days 0 and 7 (n = 7 for each
group). On day 0, 12 h after treatment with oxaliplatin or paclitaxel, mice were admin-
istered gabapentin, duloxetine, or PD0325901. Behavioral tests were performed daily
from day 0 to 14. Gabapentin (30 or 100 mg/kg, p.o.), duloxetine (10 or 30 mg/kg, p.o.),
PD0325901 (30 mg/kg, p.o.), or 0.5% DMSO (vehicle, p.o.) was administered daily from
day 0 to 14 (n = 7 for each group) after conducting behavioral tests. The investigator
was blinded to the experimental conditions while evaluating the antinociceptive effects of
gabapentin, duloxetine, or PD0325901 on the behavioral features of mice.

4.4. Behavioral Tests

Behavioral assays were performed as described in a previous study [25,66,67]. Sen-
sitivity to cold was assessed using a hot/cold plate analgesiometer (Ugo Basile, Milan,
Italy). Each mouse was placed at the center of a plate maintained at 10 ◦C (cold allodynia),
following which oxaliplatin- and paclitaxel-induced pain-related behaviors, such as lifting
and licking of the hind paw, were observed, and the time was recorded (cut-off time was
30 s).

Mechanical allodynia and hyperalgesia were studied using 0.16, 0.4, and 1.4 g of von
Frey filaments (Ugo Basile). For each filament, five stimuli were applied at an interval of
3–5 s, and mechanical sensitivity was scored as follows: 0, no response; 1, paw withdrawal;
and 2, immediate flinching of the stimulated paw. Aversive response score of five trials
from both hind paws of each mouse were averaged and recorded as mean ± S.D.

4.5. Western Blotting

Mice were sacrificed, and the lumbar spinal cords were quickly dissected. The dis-
sected tissue was homogenized in ice-cold buffer (20 mM Tris-HCl (Sigma, pH 7.4), 2%
Triton X-100 (Sigma), 150 mM NaCl (FUJIFILM Wako), 1 mM EDTA (FUJIFILM Wako),
5 mM MgCl2 (FUJIFILM Wako), 10% anhydrous glycerol (FUJIFILM Wako), protease
and phosphatase inhibitor cocktail (Roche, Indianapolis, IN, USA)) and centrifuged. The
extracts (20 µg of protein) were separated by sodium dodecyl sulfate–polyacrylamide
gel electrophoresis and transferred onto polyvinylidene fluoride membranes (GE Health-
care, Buckinghamshire, UK). The membranes were blocked with a solution containing 3%
skimmed milk and incubated overnight at 4 ◦C with anti-phospho-ERK1/2 (Thr202/Tyr204;
1:3000; #9101) (Cell Signaling Technology, Beverly, MA, USA), anti-ERK1/2 (1:3000; #9102,
Cell Signaling Technology), and anti-β-actin (1:3000; AC-74, Sigma) antibodies. The mem-
branes were incubated with horseradish peroxidase-coupled anti-rabbit IgG sheep anti-
bodies (GE Healthcare) for 1 h at room temperature. The reactive proteins were visualized
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using Luminata Forte HRP substrate (Merck Millipore, Nottingham, UK) according to the
manufacturer’s instructions.

4.6. Statistics

All results are expressed as the mean ± S.D. of at least 4 number of independent
experiments. Following ANOVA test, multiple comparisons were conducted using the
Tukey test, and the control group and various drug-treated groups were compared and
analyzed using Dunnet’s test. Data were tested for normality using the Shapiro-Wilk test.
When data were not normally distributed, these were analyzed using the Kruskal-Wallis
test followed by the Scheffe test. p values < 0.05 were considered significant.

5. Conclusions

In summary, our study suggests that the analgesic effects of gabapentin, duloxetine,
and PD0325901 against the development of oxaliplatin- and paclitaxel-induced neuropathic-
like pain behavior in mice are mediated via the inhibition of ERK1/2 activation. In addition,
we demonstrated that the activation of ERK1/2 in the spinal cord plays a critical role in
the induction of mechanical and cold allodynia in oxaliplatin- and paclitaxel-induced
neuropathic-like pain. Furthermore, these data implicate that inhibiting ERK1/2 activation
using gabapentin, duloxetine, PD0325901, or other therapeutic agents could be an effective
preventive strategy against oxaliplatin- and paclitaxel-induced neuropathy.

Supplementary Materials: The following are available online at https://www.mdpi.com/1424-8
247/14/1/30/s1, Figure S1: Safety of oxaliplatin, paclitaxel, and gabapentin administrated in vivo,
Figure S2: Safety of oxaliplatin, paclitaxel, and duloxetine administrated in vivo, Figure S3: Safety of
oxaliplatin, paclitaxel, and PD0325901 administrated in vivo, Figure S4: Full length of western blot
analysis for Figures 5 and 8.
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