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ABSTRACT
Purpose Observational studies using electronic administrative healthcare databases are often used to estimate the effects of treatments and
exposures. Traditionally, a cohort design has been used to estimate these effects, but increasingly, studies are using a nested case–control
(NCC) design. The relative statistical efficiency of these two designs has not been examined in detail.
Methods We used Monte Carlo simulations to compare these two designs in terms of the bias and precision of effect estimates. We
examined three different settings: (A) treatment occurred at baseline, and there was a single outcome of interest; (B) treatment was time
varying, and there was a single outcome; and C treatment occurred at baseline, and there was a secondary event that competed with the
primary event of interest. Comparisons were made of percentage bias, length of 95% confidence interval, and mean squared error (MSE)
as a combined measure of bias and precision.
Results In Setting A, bias was similar between designs, but the cohort design was more precise and had a lower MSE in all scenarios. In
Settings B and C, the cohort design was more precise and had a lower MSE in all scenarios. In both Settings B and C, the NCC design tended
to result in estimates with greater bias compared with the cohort design.
Conclusions We conclude that in a range of settings and scenarios, the cohort design is superior in terms of precision and MSE.
Copyright © 2012 John Wiley & Sons, Ltd.

key words—observational study; cohort design; nested case–control design; case–control design; Monte Carlo simulations; bias; precision;
pharmacoepidemiology

Received 06 February 2012; Revised 18 April 2012; Accepted 28 April 2012

INTRODUCTION

There is an increasing interest in using large adminis-
trative healthcare databases for comparative effective-
ness, epidemiological, and pharmacoepidemiological
research. Advantages to the use of administrative
healthcare databases include comprehensive coverage
of entire populations, relatively low cost for the acqui-
sition of data on outcomes and covariates, and the
ability to examine the effects of treatments and inter-
ventions as they are applied outside of the tightly
controlled confines of randomized controlled trials.

The traditional approach to the analysis of these
large observational datasets is the retrospective cohort
design. The treatment status of each subject is deter-
mined at the time of cohort entry or at some observ-
able time subsequent to cohort entry. Subjects are
followed over time for the occurrence of the outcome
of interest. The incidence of the outcome is then
compared between those who were treated and those
who were untreated using the incidence rate ratio.
In observational studies, treatment assignment is not

at random but is often influenced by subject charac-
teristics. There are often systematic differences in
baseline characteristics between treated and untreated
subjects. Therefore, statistical methods must be used
to reduce the bias in the estimate of association. For
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a cohort design with time-to-event data, this is often
accomplished using the Cox proportional hazards
model.1 The estimated hazard ratio represents the
adjusted incidence rate ratio.
There has been a recent increase in the use of the

nested case–control (NCC) design in pharmacoepide-
miological studies.2–12 The NCC is a variant of the
classic case–control design where cases and controls
are sampled from a well-defined cohort.13–17 The
measure of association derived from any case–control
study, the odds ratio, is mathematically equivalent to
the incidence rate ratio derived from a cohort study
given that the ratio of treated to untreated in the control
series is equivalent to the ratio of the treated to
untreated person-time in the source population.18

Traditional arguments in favor of the case–control
design focused primarily on its improved efficiency
relative to the cohort design. In this context, efficiency
was defined as the potential to reduce the costs and/or
burden of data collection. This efficiency arises from
the fact that, whereas in a cohort study, data on
covariates must be collected from all subjects, in a
case–control design, data on covariates are required
from all cases, but from only a sample of those who
do not experience the outcome (i.e., the controls). This
is not relevant in studies using administrative or other
secondary data where the marginal cost of data collec-
tion for covariates is close to zero. More recently,
some authors have suggested that another form of
efficiency relates to computational efficiency, in
particular, where there may be some time-varying
element to the treatment.19 Given the ongoing
increases in computational speed and processing
power, this aspect of efficiency may be less relevant
for many analyses.
Because identifying a well-defined cohort is the first

step when using either a cohort or NCC design, it is
possible to use either design to estimate treatment
effects in the same set of subjects. Although both
designs, given specific conditions, can result in unbi-
ased treatment effects when the research question
relates to a relatively simple treatment–outcome rela-
tionship, it is less clear how these designs compare
when more complex treatment–outcome relationships
are of interest. Understanding the implications of one
design over the other is required for investigators to
make informed decisions. One way to judge the com-
parative quality of the estimates of treatment effect
produced by the two designs is the bias and precision
of these estimates.
The objective of the current study was to compare

estimates of treatment effect made from a cohort
design with those from an NCC design in terms of bias

and precision. We used a series of Monte Carlo simu-
lations to examine these issues in three different
settings that describe important treatment–outcome
relationships in pharmacoepidemiology: Setting A,
the least complex setting, in which there is a single event
of interest and subjects are treated/exposed at baseline
and treatment status remains fixed over the duration of
follow-up time. Setting B introduces a variation in the
definition of treatment, with treatment status being
allowed to vary over time. However, there is still only
one event of interest. Setting C introduces an issue
related to the outcome by allowing there to be secondary
outcomes or events, which compete with the primary
event of interest. In each of the three settings, we
examined several different scenarios defined by the
magnitude of the true treatment effect, the proportion
of subjects who were treated, and the proportion of
subjects who experienced the event or outcome.

MONTE CARLO SIMULATIONS—DESIGN

The operational definition of exposure varies widely
across studies that use the NCC design. We examined
three simple settings that form a foundation for more
complex definitions of exposure. First, we considered
a setting in which exposure is applied at the time of
cohort entry and remains fixed over the duration of
follow-up. Examples of this include studies comparing
the effect of different chemotherapy regimes on
patients diagnosed with specific cancers. A second
example is a study to examine serum levels of
superoxide dismutase activity and the risk of cancer
mortality, in which the base cohort was the Japan
Collaborative Cohort Study.20 Cases were subjects
who died of cancer. Exposure was defined using blood
serum donated close to the time of cohort entry. The
second setting we considered involved a point expo-
sure that was applied at some point during the duration
of follow-up. Examples of this include studies in
which vaccines may have been administered at some
point after cohort entry. Another is an Australian study
to examine the effect of anti-inflammatory drugs on
the incidence of myocardial infarction and all-cause
mortality in the Australian veteran community.21

Cases were subjects who experienced myocardial
infarction, heart failure, or death of any cause. In the
first reported analysis, exposure was defined as any
receipt of a nonsteroidal anti-inflammatory medication
during the follow-up period. The third scenario that we
considered is an adaption of the first scenario, but with
the outcome being a nonmortality outcome that is
subject to competing risks (e.g., hip fracture, hospitali-
zations, or occurrence of a specific disease).
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Data-generating process

We used a series of Monte Carlo simulations to exam-
ine bias and precision of estimates from cohort designs
with those from NCC designs. We examined the fol-
lowing three settings: Setting A: a binary treatment
was assigned and fixed at baseline; Setting B: a binary
treatment was assigned at some time during the
duration of the follow-up; and Setting C: similar to
Setting A, but there were competing events. The basic
setup of the simulations was similar across the three
settings. These settings are important because they
form the basis for more complex methods of defining
exposure.
For a given iteration of the Monte Carlo simulation,

we simulated baseline covariates, treatment status, and
an outcome for each of 5000 subjects. For each
subject, we simulated six baseline covariates (X1–X6),
the first three from independent Bernoulli distributions
with parameter 0.5 and the last three from independent
standard normal distributions.
In Settings A, B, and C, we determined a treatment

status at baseline using a logistic regression model:

logit pið Þ ¼ b0;treat þ bweakx1i þ bmediumx2i
þ bstrongx3i þ bweakx4i þ bmediumx5i
þ bstrongx6i (1)

The values of bweak, bmedium, and bstrong were set
to log(1.10), log(1.50), and log(2), respectively, to
denote weak, medium, and strong treatment selection
effects. The value of the intercept, b0,treat, was selected
so that the marginal probability of receipt of treatment
would be fixed at the desired level (this was one of the
factors of the Monte Carlo simulations). We then sim-
ulated a treatment status from a Bernoulli distribution
with subject-specific parameter pi. For Settings A and
C, treatment status was assigned at baseline and then
fixed over the duration of follow-up. In Setting B, for
those subjects who were assigned to receive treatment,
time to receipt of treatment was randomly generated
from a Weibull distribution with shape and scale
parameters of 0.25 and 433.2097, respectively; thus,
the median time to treatment would be 100 days. We
thus generated a treatment status for each subject
and in Setting B, a time at which treatment was to
be received.
We then simulated a time-to-event outcome for each

subject using a Cox–Weibull model. For Setting A,
in which treatment selection was fixed at baseline, a
previously described data-generating process 22,23

was used to simulate time-to-event outcomes from
the following Cox model:

log h tð Þð Þ ¼ log h0 tð Þð Þ þ btreatzþ aweakx1
þ amediumx2 þ astrongx3 þ aweakx4
þ amediumx5 þ astrongx6 (2)

where h0(t) denotes the baseline hazard function, and z
is an indicator variable denoting treatment status. The
values of aweak, amedium, and astrong were set at log
(1.25), log(2), and log(3), respectively, to denote
weak, medium, and strong effects on the hazard of
the outcome. The coefficient btreat, which denotes the
log–hazard ratio for the effect of treatment on the haz-
ard of the outcome, is one of the factors that will be
varied in the Monte Carlo simulations. In each setting,
we assumed a Weibull distribution for time-to-event
outcomes, with shape and scale parameters of 0.45
and 0.01, respectively. If the entire population were
untreated, this would result in a marginal distribution
of event times with a median of approximately 1000
days and a 25th percentile of approximately 53 days.
In Setting B, in which treatment status was time

dependent, a time-to-event outcome was simulated for
each subject using a data-generating process described
elsewhere.24 The same shape and scale parameters were
used as stated earlier so that the marginal distribution of
event times under lack of treatment was the same as in
Setting A. If subjects experienced the event of interest
prior to the time of receipt of treatment, the subject
was defined to have been untreated for the entire
duration of follow-up.
In Setting C, in which there were competing risks, a

time-to-event outcome was simulated for each subject
using a data-generating process described by Beyersmann
et al.25 In this setting, we assumed that there were two
competing events (the primary event of interest and a
competing event). Furthermore, we assumed that each of
these two events had the same hazard function (and that
the hazard function for each event was the same as that
from Setting A). Thus, the overall hazard function of
either event occurring was twice the cause-specific hazard
function of the primary event of interest. For each subject,
using the approach described by Bender et al., we simu-
lated a time-to-event outcome by inverting the cumulative
overall hazard function. Then, because the two event
types had the same hazard function, using the approach
described by Beyersmann et al., we randomly selected
which of the two types was the event type that occurred,
with each event type having a probability of 0.5. We then
followed a similar approach to the one given in Setting A.

Factors of the Monte Carlo simulations

In each of the three settings, we used a full factorial
design in which we allowed the following factors to
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vary: the true hazard ratio for the effect of treatment on
the hazard of the outcome; the prevalence of treatment
(the percentage of subjects who were assigned to
treatment); and the proportion of subjects for whom
the event was observed to occur, with the remaining
subjects being subject to censoring. When inducing
censoring, an event time was initially simulated for
all subjects as described in the previous section. We
then determined the appropriate percentile of survival
or event times. All subjects with event times that
exceeded this percentile of event time were then
treated as censored observations, with their observed
survival time set to this percentile. In using this
approach, we induce Type II censoring.26 However,
this will not induce any bias in estimating regression
coefficients (26; Section III.2).
In each of the three settings, the hazard ratio was

allowed to take on the following values: 1.25 and 2.
The proportion of subjects who were treated took on
the following values: 0.10, 0.25, and 0.50, whereas
the proportion of subjects for whom the event was
observed to have occurred was 0.05, 0.10, and 0.25.
Thus, for each of the three settings, there were 18
different scenarios (2 hazard ratios � 3 proportion of
subjects treated � 3 proportion of subjects who were
censored). In each of these 18 different scenarios, 1000
datasets were simulated, each consisting of 5000 sub-
jects. In Setting C, although the proportion of subjects
for whom any event was observed to have occurred took
the following values: 0.10, 0.20, and 0.50 (because half
of the observed events would be the primary event,
whereas the other half would be the competing event,
this implies that the primary event would be observed
to occur for 5%, 10%, and 25% of subjects).

Statistical analyses

In each simulated dataset, the following statistical
analyses were conducted. First, an analysis based on
a conventional cohort design was conducted. A Cox
proportional hazards regression model was used to
regress survival time on an indicator variable denoting
treatment status and the six baseline covariates. In
Setting A, a conventional Cox model with time-
invariant covariates was fit to each simulated dataset.
In Setting B, the Cox model accounted for the time-
dependent nature of treatment status: For subjects
who were assigned to receive the treatment, subjects
were considered untreated until the time of receipt of
treatment. In Setting C, a Cox model was used to
model the cause-specific hazard of the primary event
of interest, treating the occurrence of the competing
event as a censoring event.27 In each case, the

log–hazard ratio for the treatment effect and its
standard error were estimated, along with the 95%
confidence interval for the estimated hazard ratio.
Second, an analysis based on the NCC design was

used. Cases were defined to be subjects who experi-
enced the event of interest. For each case, one or more
controls were selected by simple random sampling
without replacement from the subjects in the case’s
risk set. A case’s risk set is the set of subjects who
were still at risk of the event at the time at which the
case experienced the event of interest. Thus, each case
was matched to a subject who, at the time that the case
experienced the event of interest, had not yet experi-
enced the event of interest. In Setting A, we used both
1:1 and 5:1 matching. In 1:1 matching, pairs of cases
and controls were formed, whereas with 5:1 matching,
each case was matched to up to five controls. Thus, for
1:1 matching, from a case’s risk set, one subject was
selected at random for matching to the given case;
for 5:1 matching, five subjects were selected at random
from the case’s risk set for matching to the case. For
each case, the index date was defined to be the time
of the occurrence of the event of interest, whereas for
each control, the index date was the time at which
the event occurred for the matched case. For each case
and the matched controls, we determined whether
they had been treated/exposed prior to the index date.
Conditional logistic regression was then used to deter-
mine the association between exposure and the occur-
rence of the event of interest while adjusting for the six
baseline covariates and accounting for matched sets.
From the conditional logistic regression model, we
estimated the adjusted log–odds ratio for exposure, the
standard error of the adjusted log–odds ratio, and the
95% confidence interval for the adjusted odds ratio.
For each setting and each scenario, let θi denote the

log–hazard ratio or log–odds ratio estimated in the
ith simulated dataset (i= 1,. . .,1000). Bias was defined
as 1

1000

P1000
i¼1 θi � θð Þ , where θ denotes the true

log–hazard ratio used in the data-generating process.
Relative bias was defined as 100� �θ�θ

θ , where �θ ¼
1

1000

P1000
i¼1 θi . Mean squared error (MSE) was calcu-

lated as 1
1000

P1000
i¼1 θi � θð Þ2. We calculated the propor-

tion of estimated 95% confidence intervals for the
estimated hazard ratio/odds ratio that contained the
true hazard ratio used in the data-generating process.
Because we used 1000 simulated datasets per scenario,
an empirical coverage rate that was less than 0.9365 or
greater than 0.9635 would be statistically significantly
different from the advertized rate of 0.95 using a
standard normal-theory test. Finally, we estimated the
mean width of the estimated 95% confidence intervals

cohort vs. nested case–control designs 717

Copyright © 2012 John Wiley & Sons, Ltd. Pharmacoepidemiology and Drug Safety, 2012; 21: 714–724
DOI: 10.1002/pds



across the 1000 simulated datasets and compared the
relative width of confidence intervals from the NCC
design with those from the cohort design. Comparing
the mean width of confidence intervals is equivalent
to comparing the mean standard error of the estimated
treatment effect from the NCC design with the mean
standard error from the cohort design. Thus, this
final comparison permits a comparison of the relative
statistical efficiency of the two different designs.
The simulations and statistical analyses were con-

ducted in SAS v9.2 (SAS Institute Inc., Cary, NC)
and R v2.11.1 (The R Foundation for Statistical
Computing, Vienna, Austria).

MONTE CARLO SIMULATIONS—RESULTS

Setting A—fixed exposure

Results for this setting are reported in Figures 1 and 2.
Due to space constraints, we do not report detailed
results for 1:1 matching in the NCC design; however,
we summarize these results in the following two para-
graphs. In Figure 1, we report relative bias. Across the
18 scenarios, the median relative bias was 0.1% for
the cohort design, whereas it was 0.2% and �0.7%
for the NCC analyses with 1:1 and 5:1 matching,
respectively. For the cohort design, the 25th and 75th
percentiles of relative bias were �0.2% and 1.6%,
respectively, whereas for the NCC design with 1:1
matching, the upper and lower quartiles of relative bias
were �3.4% and 2.3%. With 5:1 matching, the 25th

and 75th percentiles of relative bias were �4.0% and
1.5%, respectively. In examining Figure 1, one
observes that there was a trend, when using the NCC
design, towards an increase in the magnitude of rela-
tive bias as the proportion of subjects for whom events
were observed to have occurred increased. However,
in all 18 scenarios, the relative bias tended to be small.
When using the cohort design, the magnitude of
relative bias tended to decrease as the proportion of
subjects who were treated increased.
In the top two panels of Figure 2, we report the ratio

of the mean length of the 95% confidence intervals for
the NCC design with 5:1 matching to the mean length
of the 95% confidence intervals for the cohort design.
This is equivalent to the asymptotic relative effi-
ciency—the ratio of the standard error of the estimate
from the NCC design to the standard error of the
estimate from the cohort design. The median ratio of
widths of confidence intervals was 1.26 across the 18
scenarios, whereas the 25th and 75th percentiles were
1.19 and 1.32, respectively. When 1:1 matching was
employed, the 25th, 50th, and 75th percentiles of this
ratio were 1.60, 1.83, and 2.09, respectively. In 17 of
the 18 scenarios, the empirical coverage rates from
the cohort design and the NCC (with 5:1 matching)
were not statistically significantly different from their
advertized rates of 0.95. The inefficiency of the NCC
design relative to the cohort design increased as the
proportion of subjects who were treated decreased.
Furthermore, the relative inefficiency of the NCC
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design decreased as the proportion of subjects for
whom an event occurred increased.
The MSEs of the estimated treatment effects are

reported in the lower two panels of Figure 2. The
MSE from the cohort design was always smaller than
that from the NCC design. The median MSE from
the former design was 0.0105, whereas it was 0.0307
for the NCC design with 1:1 matching and 0.0173
with 5:1 matching. The MSE of the estimated treat-
ment effect decreased as the proportion of subjects
for whom an event occurred increased.

Setting B—time-dependent treatment status

The relative bias is reported in Figure 3. Across the 18
scenarios, the median relative bias was �1.1% and
8.9% for the cohort and NCC designs, respectively.
For the cohort design, the 25th and 75th percentiles
of relative bias were �4.4% and �0.5%, respectively,
whereas for the NCC design, the upper and lower
quartiles of relative bias were 3.9% and 17.4%. For
the NCC design, the relative bias tended to increase
as the proportion of subjects for whom an event was
observed increased. When the percentage of subjects
who experienced an event was low (5%) and the
prevalence of treatment was either 5% or 25%, then
the cohort design resulted in estimates with greater

relative bias compared with the NCC design.
However, in the remaining scenarios, the NCC design
resulted in greater relative bias. Furthermore, relative
bias tended to be greater when the true treat-
ment hazard ratio was 1.25 compared with when
it was 2. When the treatment hazard ratio was 1.25
and the event occurred for 25% of the subjects,
then the relative bias could be substantial for the
NCC design.
In the upper two panels of Figure 4, we report the

ratio of the mean length of the 95% confidence inter-
vals for the NCC design to the mean length of the
95% confidence intervals for the cohort design. This
is equivalent to the relative efficiency of the two
designs: the ratio of the standard error of the NCC
design to that of the cohort design. The median ratio
of widths of confidence intervals was 1.51 across the
18 scenarios, whereas the 25th and 75th percentiles
were 1.44 and 1.60, respectively. In 2 of the 18 scenar-
ios, the empirical coverage rates from the cohort
design were statistically significantly different from
their advertized rates of 0.95. However, in 8 of the
18 scenarios, the empirical coverage rates from the
NCC design were statistically significantly different
from their advertized rates of 0.95. The relative
inefficiency of the NCC design decreased as the
proportion of subjects who experienced an event
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increased. The relative inefficiency also decreased as
the proportion of subjects who were treated increased.
The MSEs of the estimated treatment effects are

reported in the lower two panels of Figure 4. The

MSE from the cohort design was always smaller than
that from the NCC design. The median MSE from
the former design was 0.0255, whereas it was 0.0490
for the latter. Differences between the MSEs of the
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estimated treatment effects from the two designs
tended to decrease as the proportion of subjects who
experienced an event increased and as the proportion
of subjects who were treated increased.

Setting C—competing risks

The relative bias is reported in Figure 5. Across the 18
scenarios, the median relative bias was 0.2% and
�4.2% for the cohort and NCC designs, respectively.
For the cohort design, the 25th and 75th percentiles
of relative bias were �0.8% and 1.5%, respectively,
whereas for the NCC design, the upper and lower
quartiles of relative bias were �13.0% and �0.4%.
When 25% of subjects experienced the event, the
relative bias of the NCC design was substantial.
However, when the percentage of subjects who experi-
enced the event was low (10%), then the magnitude of
the relative bias was modestly greater for the cohort
design than for the NCC design.
In the upper two panels of Figure 6, we report the

ratio of the mean length of the 95% confidence inter-
vals for the NCC design to the mean length of the
95% confidence intervals for the cohort design. This
is equivalent to the relative efficiency of the two
designs: the ratio of the standard error of the NCC
design to that of the cohort design. The median ratio
of widths of confidence intervals was 1.21 across the
18 scenarios, whereas the 25th and 75th percentiles
were 1.16 and 1.28, respectively. In none of the 18

scenarios was the empirical coverage rate of 95% con-
fidence intervals from the cohort design statistically
significantly different from the advertized rate of
0.95. However, in 5 of the 18 scenarios, the empirical
coverage rates of the 95% confidence intervals from
the NCC design were statistically significantly differ-
ent from the advertized rate of 0.95. The relative
inefficiency of the NCC design decreased as the
proportion of subjects who experienced the event
increased and as the proportion of subjects who were
treated increased.
The MSEs of the estimated treatment effects are

reported in the lower two panels of Figure 6. The
MSE from the cohort design was always smaller than
that from the NCC design. The median MSE from
the former design was 0.0114, whereas it was 0.0208
for the latter.

DISCUSSION

We compared the estimation of treatment effects in
cohort designs using the Cox proportional hazards
model with estimation in NCC designs using condi-
tional logistic regression. When exposure was applied
at time of cohort entry and in the absence of competing
risks, both designs resulted in approximately unbiased
estimation of log–hazard ratios. However, the cohort
design resulted in estimates with greater precision
and lower MSE. Thus, the penalty for using an NCC
design in this context is the decreased precision or
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diminished statistical efficiency: The treatment effect
is estimated with less precision. Thus, associated con-
fidence intervals will be wider than if a cohort design
was used. When both events or outcomes were rare
and treatment or exposure occurred infrequently, then,
although negligible in magnitude, the cohort design
resulted in modestly more bias than did the NCC
design. However, this modest increase in bias was off-
set by greater precision. When treatment was time
dependent, then the NCC design tended to result in
estimates with greater bias than those arising from a
cohort design. As mentioned, the cohort design
resulted in estimates with greater precision and lower
MSE. Finally, in the presence of competing risks, the
use of an NCC design resulted in greater bias com-
pared with the cohort design. As with the other two
settings, the cohort design resulted in estimates with
greater precision and lower MSE. Thus, the primary
penalty for using an NCC design rather than a cohort
design is the decreased statistical efficiency, with the
attendant increase in the width of estimated confidence
intervals. However, in some settings, there was also an
increase in the magnitude of the relative bias of the
estimated treatment effect.
Our findings on bias in the setting with an exposure

fixed at baseline and with no competing risks should
be of no surprise. The conditional likelihood of the

conditional logistic regression model is of the same
form as the partial likelihood used in the Cox propor-
tional hazards model.28 For this reason, one would
expect the estimated log–hazard ratio and the log–odds
ratio to coincide. We found that the use of a cohort
design resulted in estimates of greater precision than
those arising from the use of an NCC design. This is
also expected, given that in the cohort design, all of
the available data are used for estimation, whereas in
the case–control design, only the data on cases and a
sample of controls are used. When we extended our
examination to settings in which time-dependent
covariates and competing risks occur, we found that
bias was introduced with the NCC design and that this
design also resulted in estimates with less precision
than that of the cohort design.
The primary rationale for conducting an NCC study

even when a cohort has been assembled is to obtain
additional data that would be prohibitive to collect
on the full cohort (18, p. 94). Thus, as noted by
Rothman and Greenland, an NCC design is more
efficient than a cohort study. However, it is important
to note that they are using the term efficiency in an eco-
nomic or expenditure of effort sense and not in a
statistical perspective. They suggested that an NCC
study may be substantially cheaper to conduct than a
cohort study, with nearly the same level of precision
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(p. 90). In our simulations, we found that the cohort
design resulted in estimates with moderately greater
precision as evidenced by confidence intervals that
were, on average, moderately narrower than those
arising from NCC designs. Thus, the increased eco-
nomic efficiency of the NCC design comes at the cost
of decreased statistical efficiency.
Essebag and colleagues examined the relative com-

putational efficiency of the NCC design and the cohort
design with time-dependent exposures.19 Using a
single dataset, they compared the computing time
required for cohort and NCC analyses with time-
dependent exposures. Although the relative increase
in computing time for the cohort analysis compared
with the NCC analysis was substantial, the absolute
differences in computing time were small. In today’s
era of fast and relatively inexpensive computing
power, we speculate that in most settings, the choice
between which design to use will not be based on
computational demand. We suspect that in most
settings that use administrative or other secondary
data, the decreased statistical efficiency in the NCC
design will result in the cohort analysis being the
default approach.
In the current study, we have focused on relatively

simple approaches to operationalizing exposure. In
two of the three settings, exposure was fixed at base-
line, whereas in the other setting, exposure was a
binary exposure that occurred once over the course
of follow-up. In the applied literature, there is a move
to more complicated methods of operationalizing
exposure, particularly in settings with time-varying
exposures or looking at the recentness of exposure.
In such settings, it may be reasonable to use the
NCC design for ease of operationalizing exposure,
analyzing the data, and interpreting the findings.
However, we suspect that such an approach will be
accompanied with a reduction in statistical efficiency
compared with what would be possible with the
conventional cohort design.
There are certain limitations to the current study that

suggest directions for further research. First, in the
current study, we selected controls from subjects
who were in the risk set of the case at the time that
the case experienced the event of interest. However,
we did not examine the effect of additional matching
on other risk factors or confounding variables. Sub-
sequent work is needed to examine the impact of
matching on additional sets of covariates. Second, in
the current study, we have restricted our attention on
NCC designs and have ignored other case-based
designs such as the nested case–cohort design.17 Sub-
sequent research comparing the relative performance

of the nested case–cohort design with that of the
NCC design and the cohort design is merited.
Langholz reviewed analytical approaches for the
case–cohort design and discussed its advantages and
disadvantages, including issues of statistical effi-
ciency, in comparison with the NCC design.29 Third,
we have focused our attention on settings in which
the values of confounding variables are fixed at base-
line and do not vary over the duration of follow-up.
We have not examined estimation of treatment effects
in settings in which both treatment and confounding
variables vary over time and in which time-varying
confounding variables can be influenced by prior
treatment or exposure. Marginal structural models
have been developed for use in this context.30–33 Con-
sideration of these types of scenarios was beyond the
scope of the current study. We also want to note that,
although the most common NCC design is based on
the simple random sampling of the controls, there are
other sampling designs for the controls such as
countermatching design, which is a stratified NCC
design.34 This design may provide improvement in
statistical efficiency depending on the available
additional information on cohort members and the
type of the study. Other sampling designs for the
controls are discussed by Langholz.35

In conclusion, we found that, across a wide range of
different settings and different scenarios, the use of a
cohort design tended to result in estimates with lower
bias and greater precision compared with the use of
an NCC design.
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KEY POINTS
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