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A B S T R A C T   

Colorimetric loop-mediated DNA isothermal amplification-based assays have gained momentum in the diagnosis 
of COVID-19 owing to their unmatched feasibility in low-resource settings. However, the vast majority of them 
are restricted to proprietary pH-sensitive dyes that limit downstream assay optimization or hinder efficient result 
interpretation. To address this problem, we developed a novel dual colorimetric RT-LAMP assay using in-house 
pH-dependent indicators to maximize the visual detection and assay simplicity, and further integrated it with the 
artificial intelligence (AI) operated tool (RT-LAMP-DETR) to enable a more precise and rapid result analysis in 
large scale testing. The dual assay leverages xylenol orange (XO) and a newly formulated lavender green (LG) dye 
for distinctive colorimetric readouts, which enhance the test accuracy when performed and analyzed simulta-
neously. Our RT-LAMP assay has a detection limit of 50 viral copies/reaction with the cycle threshold (Ct) value 
≤ 39.7 ± 0.4 determined by the WHO-approved RT-qPCR assay. RT-LAMP-DETR exhibited a complete 
concordance with the results from naked-eye observation and RT-qPCR, achieving 100% sensitivity, specificity, 
and accuracy that altogether render it suitable for ultrasensitive point-of-care COVID-19 screening efforts. From 
the perspective of pandemic preparedness, our method offers a simpler, faster, and cheaper (~$8/test) approach 
for COVID-19 testing and other emerging pathogens with respect to RT-qPCR.   

1. Introduction 

The spread of novel coronavirus (COVID-19) disease, caused by se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has 
claimed a tally of nearly 4.3 million lives worldwide with accumulated 
infections rapidly soaring beyond 200 million cases in August 2021 [1]. 

Although mass vaccination programs have already been rolled out in 
many countries, it is still unclear when herd immunity will be achieved 
due to the existing challenges associated with vaccine efficacy, devel-
opment, distribution, and hesitation [2,3]. Hence, broad access to 
testing is still essential to keep the COVID-19 pandemic under control. 

The World Health Organization (WHO) has published guidelines that 
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favor the use of real-time reverse transcription polymerase chain reac-
tion (RT-qPCR). Albeit robust, qPCR critically lacks the accessibility 
required for mass screening, especially in the landscape of public health 
infrastructure of developing nations. To address the existing challenge, 
various testing modalities that can be operated de-centrally, such as 
antigen test [4,5], antibody test [6,7], and isothermal detection, 
including CRISPR-Cas-based assays [8,9], were leveraged for rapid 
SARS-CoV-2 diagnosis in resource-limited settings. 

Among the nucleic amplification technologies (NAAT), loop- 
mediated isothermal amplification (LAMP) presents the competitive 
advantage that lends itself exploitable for COVID-19 detection. LAMP 
mechanism inherently permits its further integration with colorimetric 
or visual readouts by which results can easily be observed with the 
naked eye [10]. Mechanistically, as LAMP propagates, pyrophosphates 
and protons (H+) are generated as by-products by the 
strand-displacement activity of Bst polymerase [11]. In a weak buffering 
environment, the excess of protons causes a dramatic pH drop that en-
sues a spontaneous change in the optical property of a pH-sensitive dye 
whose conversion point matches the operational pH range of the Bst 

DNA polymerase. 
Both RT-LAMP assays presented herein share a common utilization 

of XO (yellow < pH 6.7 < purple) that is traditionally used as an indi-
cator for industrial titration of various metal ions that offers a higher 
contrast between the positive (yellow) and negative (purple) test out-
comes relative to other dyes, e.g. phenol red [12], leuco crystal violet 
[13], hydroxy naphthol blue (HNB) [14], and calcein [15]. The devel-
opment of COVID-19-RT-LAMP-XO has ushered in a co-development of 
another composite colorimetric dye system that incorporates the exist-
ing XO [16,17] with malachite green (MG) [18]. This new colorimetric 
system, which shall be addressed as lavender green (LG), is exploited for 
the internal control detection of human 18 S rRNA (IC-RT-LAMP-LG) 
performed as an alternative approach to conventional spectrophoto-
metric analysis after RNA extraction (Fig. 1 A and B). 

We utilized deep learning to enable high-throughput colorimetric 
analysis based on images of multiple reaction tubes (Fig. 1C). The 
analysis can be done on a mobile phone by taking a picture with our 
mobile application, and the result will be displayed as an overlay on the 
original image as shown in Fig. 2. We adapt the detection transformer 

Fig. 1. Diagnostic principle of the combined colorimetric COVID-19 RT-LAMP-XO and IC-RT-LAMP-LG assay with AI-assisted automated result analysis 
(RT-LAMP-DETR). A RNA extracted from commercial RNA extraction kits can be eluted in water, and directly supplied to the COVID-19-RT-LAMP-XO and IC-RT- 
LAMP-LG reactions. The two tests were designed to complement each other to ensure the accuracy of test results. During the incubation at 65 ◦C, in the presence of 
target RNAs (Nsp 9 for COVID-19-RT-LAMP-XO, and human 18 S rRNA for IC-RT-LAMP-LG), the buildup of excess protons (H+) in the reactions will cause a dramatic 
pH drop, and change the hues of pH-sensitive dyes that can be further analyzed with the naked-eye or an AI model for automated, high-volume testing. With the 
exception of RNA extraction, the entire operation takes less than 2 hours to finish with very limited hands-on time. B The colorimetric results of the combined COVID- 
19-RT-LAMP-XO and IC-RT-LAMP-LG assay could be cross-compared according to the graphical guideline to accurately interpret the test results. For the COVID-19- 
RT-LAMP-XO assay, the presence of SARS-CoV-2 in the test samples will trigger the change of reaction hue from purple to yellow. On the contrary, for the IC-RT- 
LAMP-LG assay, the presence of human 18 S rRNA in the test samples will trigger the change of reaction hue from purple to green. In both tests, a lack of detection 
targets will preserve the original purple hue of the reaction. In the context of point-of-care testing, the outcomes of IC-RT-LAMP-LG assay provide a qualitative 
assessment of the RNA extraction process, and can be used as an alternative method to the standard spectrophotometry for nucleic acid quality determination. C 
Images of multiple reaction tubes can be taken via a smartphone camera for AI-assisted automated result analysis by the RT-LAMP-DETR mode. Details of the RT- 
LAMP-DETR analysis pipeline are in Fig. 2. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(DETR) model [19] to efficiently solve the task. While most object 
detection methods require multiple hand-designed components, such as 
region proposals [20] and anchor generations [21], DETR combines the 
transformer model architecture [22] and a set-based objective function 
to eliminate these requirements and streamline the object detection 
pipeline. In our proposed deep learning model, entitled RT-LAMP-DETR, 
we added additional prediction pathways that estimate the row and 
column position indices to simultaneously analyze the colorimetric re-
sults of both COVID-19-RT-LAMP-XO and IC-RT-LAMP-LG assays. 
Therefore, the novelty of this research lies in the 1) the integration of 
Xylenol Orange (XO) and newly formulated Lavender Green (LG) in 

colorimetric RT-LAMP for COVID-19 diagnosis. For the first time, we 
demonstrated LG for its ability to clearly discriminate the positive from 
negative reactions. 2) Aside from providing easy-to-read colorimetric 
results, we addressed the critical need for high-throughput screening of 
our RT-LAMP assay in the future by developing an AI-based analysis tool 
that could help determine the colorimetric results more accurately and 
rapidly. An overview of our RT-LAMP-DETR analysis pipeline is illus-
trated in Fig. 2. 

Fig. 2. Analysis pipeline of RT-LAMP-DETR. Image features are extracted from an image of reaction tubes that has been taken by a smartphone camera using the 
pretrained ResNet50 model, and then used as inputs to the proposed encoder-decoder model which outputs the estimated 1) reaction tubes’ locations with their 
corresponding categories and 2) row and column position indices of the tubes. Each tube’s location is represented by a bounding box with its color indicating the 
predicted category. The number above each bounding box represents the model’s confidence in the estimated category (1.0 = highest, and 0.0 = lowest). The row 
and column position indices of the tubes are used to identify which RNA sample (e.g. from #1 to #16) each tube belongs to. Once the sample is identified, we 
combine the two estimated reaction tubes’ categories with the same identifier to form the final predicted result: COVID-19 positive, COVID-19 negative, RNA absent, 
and False positive (inconclusive result due to a combination of positive RT-LAMP-XO and negative RT-LAMP-LG). If a sample cannot be identified, its predicted result 
is marked as Void. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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2. Materials and methods 

2.1. Primer designs and optimization 

We explored a fragment of 216 bp in the Nsp9 of the ORF1ab gene 
(GenBank accession number: NC_045512.2) as an alternative single 
target for SARS-CoV-2 detection to avoid the previously reported targets 
of N, E, and ORF1ab genes [12,23,24]. In addition to the 6 common 
LAMP primers, we designed 4 additional primers (loop forward and 
backward 2; LF2 and LB2, and forward inner and backward inner 2; FIP2 
and BIP2) as shown in Fig. S1 to further improve the reaction kinetics 
[25]. Primers were examined for possible cross dimerization by basic 
local alignment search tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Bla 
st.cgi). Those for the IC-RT-LAMP-LG (internal control) assay targeting 
the human 18 S RNA were from our previous study [26]. Primers are 
listed in (Table S1). The optimal condition of the 
COVID-19-RT-LAMP-XO was determined empirically through the vari-
ation of incubation temperature in the 63–70 ◦C range and time (30–75 
min). 

2.2. Development of LG colorimetric system for IC-RT-LAMP-LG 

Optimization of the LG system was performed by varying the 
working concentration of XO (0–0.5 mM) in fixed 0.02 mM MG in the IC 
assay. The optimal balance of XO and MG in the novel LG system was 
investigated through the limit of detection (LoD) of human 18 S rRNA 
(total RNA) target and the clarity of contrast between negative and 
positive RT-LAMP reactions. 

2.3. Isothermal amplification of COVID-19-RT-LAMP-XO and IC-RT- 
LAMP-LG 

Unless otherwise stated, all reagents were purchased from New En-
gland Biolabs (MA, USA). To prepare a 25-μL premix solution, the in-
dividual components were combined according to the specified volumes 
and concentrations as follows: 1.4 mM dNTP mix, 0.4 M Betaine (Merck 
Millipore, MA, USA), 6 mM MgSO4, 0.12% Triton X-100 (Merck Milli-
pore, MA, USA), 8 UμL− 1 Bst 2.0 WarmStart™ DNA polymerase, 15 
UμL− 1 WarmStart™ RTx Reverse Transcriptase and 1 × isothermal 
buffer. The primer set of COVID-19-RT-LAMP-XO comprises 0.2 μM each 
of the outer primers (F3 and B3), 1 μM each of the inner primers (FIP-BIP 
and FIP2-BIP2) and 1 μM each of the loop primer (LF-LB and LF2-LB2). 
The primer set of IC-RT-LAMP-LG comprises 0.2 μM each of the outer 
primers (F3 and B3), 2 μM each of the inner primers (FIP-BIP) and 2 μM 
each of the loop primer (LF-LB). Additionally, the COVID-19-RT-LAMP- 
XO requires 0.12 mM XO from the 5 mM stock, while IC-RT-LAMP-LG 
requires a total of 1 × LG solution (see Reagent setup in Supplemen-
tary Materials). The reaction volume was adjusted to 25 μL with DNase-, 
RNase-free water prior to template addition. 

The reaction mixture was aliquoted into individual PCR tubes to 
which negative (blank) controls were supplied with 25 μL water. In a 
space designated for template addition, 25 μL of RNA template (see in 
vitro RNA preparation in Supplementary Materials) were added into 
the PCR tubes assigned for testing. The reactions were incubated at 65 ◦C 
for 75 min. Once the run is finished, the reaction tubes were set at room 
temperature for an additional of 2 min to allow the color to fully 
develop. 

2.4. Specificity and sensitivity of COVID-19-RT-LAMP-XO 

The specificity of COVID-19-RT-LAMP-XO assay was examined using 
a panel of human respiratory viruses and other disease agents that 
include SARS-CoV-2, MERS-CoV, RSV, Influenza A virus subtype H1N1, 
Influenza A virus subtype H3N2, Influenza B virus (Yamagata lineage), 
Influenza B virus (Victoria lineage), Influenza B virus (B/Lee/40), 
Mycobacterium tuberculosis, Klebsiella pneumoniae strain ATCC 700603, 

Acinetobacter baumannii strain ATCC19606, Pseudomonas aeruginosa 
strain ATCC 27853, Bacillus cereus strain BCC 6386, Streptococcus pneu-
monia, Listeria monocytogenes strain ATCC 19115 and Porcine epidemic 
diarrhea virus strain AVCT12. 

The analytical sensitivity of COVID-19-RT-LAMP-XO assay was 
investigated first by using in vitro RNA transcripts prepared in serial 
dilutions ranging from 1000 to 0 copies/reaction (N = 8 per dilution). 
Once the analytical sensitivity was determined by in vitro RNA tran-
script, we repeated the sensitivity analysis with COVID-19 infected 
patient-derived total RNA templates that were serially diluted by a 
factor of 1,000, 2,000, 10,000, 50,000 and 100,000 (N = 12 per dilu-
tion), followed by comparing the results to that of the WHO reported RT- 
qPCR (references assay) [27]. For both types of the template, the num-
ber of positive reactions based on colorimetric results was used to 
calculate the positive rate of detection for each dilution. The last dilution 
whose positive rate was still at 100% was regarded as the LoD of the 
method. 

2.5. Data collection and augmentation for image analysis 

To train our RT-LAMP-DETR model, 60 images of a set of 25-μL and 
50-μL reaction tubes were captured using a smartphone camera (Sam-
sung Galaxy S7): 29 and 31 images taken under controlled and uncon-
trolled lighting conditions, respectively. Each image contains an even 
number of tubes, ranging from 8 to 32 tubes which correspond to a 
minimum and maximum of 4 and 16 RNA samples, respectively. For 
each reaction tube in the images, we drew a rectangular bounding box 
that enclosed the solution region of the tube and categorized it based on 
colors: yellow (COVID-19-RT-LAMP-XO positive), green (IC-RT-LAMP- 
LG positive) and purple (COVID-19-RT-LAMP-XO negative or IC-RT- 
LAMP-LG negative). Each bounding box is represented by four 
numbers (x,y,h,w) where x and y are the (x,y)-coordinates of the upper- 
left corner of the box; w and h are the width and height of the box. We 
also assigned the row and column position indices to each bounding box 
to identify the RNA sample that a reaction tube belongs to. For example, 
the tubes with indices (0,0) and (1,0) belong to RNA sample #1, and the 
tubes with indices (2,7) and (3,7) belong to RNA sample #16, as shown 
in Fig. 2. We split the annotated images into two groups: 54 images as 
training data and 6 images as validation data. The training data were 
used to optimize the proposed RT-LAMP-DETR model. The validation 
data were used to monitor the training process, select the hyper-
parameters of the model, and prevent model overfitting. 

To assess the performance of the optimized model on unseen test 
data, we used the captured images of de-identified 213 RNA samples as a 
test set for model validation. The numbers of images and RNA samples 
were summarized in Table S2. For each image in the training set, we 
applied a sequence of image transformations consisting of brightness- 
contrast-saturation perturbations, image rotations, image translations, 
and shear mapping to increase the size of the training set (example 
images shown in Fig. S2). 

2.6. The proposed RT-LAMP-DETR model and training 

We extended the standard DETR architecture [19] with ResNet50 
[28] as the backbone to include additional prediction heads to predict 
the row and column position indices of the reaction tubes for automatic 
association of tubes to its RNA samples as shown in Fig. 2. The proposed 
model uses six encoding layers and six decoding layers with hidden di-
mensions of 256. The number of attention heads and the number of 
queries used are 8 and 64, respectively. Each feedforward layer has 2, 
048 nodes. Our proposed neural network model takes an image as its 
input and outputs the predicted row position indices, column position 
indices, category, and bounding box locations. Mathematically, we have 

Prow,Pcol,Pclass,Pbbox = f
(
Ximage

)
,
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where Prow, Pcol, Pclass, Pbbox are the predicted row position indices, col-
umn position indices, category, and bounding box locations, respec-
tively, Ximage is the input image, and f is a function describing our neural 
network model with 36,799,318 parameters in total. Since different 
values of the parameters give rise to different functional behaviors, we 
optimize the parameters by solving the following optimization problem: 

fnet = argminf LRT− LAMP− DETR
(
f
(
Ximage

)
,Trow, Tcol, Tclass,Tbbox

)
,

where f is in the universe of all possible neural network models, and 

LRT − LAMP− DETR
(
f
(
Ximage

)
, Trow,Tcol,Tclass,Tbbox

)

= λrowLCE(Prow,Trow)

+ λcolLCE(Pcol,Tcol)

+ λclassLCE(Pclass, Tclass)

+ λbboxLbbox(Pbbox, Tbbox)

+ λGIoULGIoU(Pbbox, Tbbox)

.

Trow, Tcol, Tclass, Tbbox are the target (i.e., true) row position indices, 
column position indices, category, and bounding box locations, respec-
tively. LCE is the cross-entropy loss function. Lbbox is the L1 loss function 
(also known as mean absolute error). LGIoU is the generalized intersec-
tion over union (GIoU) loss function [29]. λrow, λcol, λclass, λbbox, and λGIoU 
are the regularization parameters that can be modified to assign a 
different contribution to each term in the objective function 
LRT− LAMP− DETR. 

To accelerate the model training, we attached the additional pre-
diction heads with He initialization [30] to the pretrained DETR model 
[19] and then optimized the model parameters by minimizing our 
proposed loss function for 400 epochs using AdamW [31] with the 
learning rates of 10− 5 and 10− 4 for the CNN backbone and the rest of the 
model, respectively. We dropped these learning rates to 10− 6 and 10− 5 

at epoch 200 and used the batch size of 3, weight decay of 10− 4, and 
dropout of 0.3. The auxiliary loss [32] was also used to assist with the 
training. We set λrow = λcol = λclass = 1, λbbox = 5, and λGIoU = 2. The 
entire training process took approximately 3.6 h on a Tesla P100 12 GB 
GPU. As the number of epochs increases, the losses decrease and saturate 
at around 300 epochs (Fig. S3). The model that achieved the lowest 
validation loss was considered the best model and then used to evaluate 
the test set. 

2.7. Clinical validation of RT-LAMP assays by visual detection and the 
RT-LAMP-DETR model 

The total of blinded, de-identified 213 RNA samples were extracted 
from patient’s derived nasopharyngeal swabs collected at the Tropical 
Medicine Hospital, Mahidol University, Thailand, under the approval of the 
Ethics Committee (EC) of Mahidol University’s Institutional Review Board 
(IRB) with the Ethics Committee document No. MUTM 2021-004-01. They 
were stored initially in the viral transport medium (VTM; BioTrend, Ger-
many). Total RNA was extracted from 150 μL of the original VTM stock by 
using QIAamp Viral RNA Mini kit (Qiagen, Germany) according to the 
manufacturer’s instruction. RNA was reconstituted in 50 μL DNase-, RNase- 
free water, and then used to validate the COVID-19-RT-LAMP-XO and IC- 
RT-LAMP-LG assays that were performed in parallel. For each assay, 25 
μL of RNA samples were added into individual reaction tubes prior to in-
cubation at 65 ◦C for 75 min after which the colorimetric results were 
assessed according to the guideline shown in Fig. 1 B. Briefly, a test result of 
an individual sample is valid only when its IC-RT-LAMP-LG result is posi-
tive (green). Test results of the COVID-19-RT-LAMP-XO assay were 
compared with those of RT-qPCR targeting ORF1ab and N genes (Da An 
Gene Co., Ltd. of Sun Yat-Sen University, China). Test outcomes of both 
assays were analyzed based on the naked-eye colorimetric interpretations 
prior to taking images of reaction tubes with a smartphone camera for 
validation by RT-LAMP-DETR. 

3. Results 

3.1. Optimization, molecular specificity and sensitivity of colorimetric 
COVID-19-RT-LAMP-XO 

During assay optimization, using the incubation temperature of 65 
◦C enabled the detection of template down to 100 copies (Fig. S4 A and 
B). We next varied the time of amplification that resulted in the clearest 
colorimetric observation (Fig. S4 C). Although results could be observed 
after 45 min, 75 min was selected as a standard RT-LAMP assay time to 
allow the final reaction color to fully develop without compromising the 
turnaround time. The optimal condition (65 ◦C for 75 min) established 
here was then used in all following RT-LAMP reactions. 

Our COVID-19-RT-LAMP-XO exhibited its exclusive specificity to-
ward SARS-CoV-2 when tested against a panel of respiratory disease 
agents (Fig. 3 A). The visual difference between positive (yellow) and 
negative (purple) reactions also translated to their discrete spectro-
photometric fingerprints based on the UV–Vis absorptions at 430–440 
and 570–580 nm, respectively, (Fig. 3 B). Regarding the analytical 
sensitivity, our assay could detect down to 500 and 50 copies of in vitro 
RNA transcripts of the target Nsp9 segment with the positive rate of 
100% (N = 8) and 75% (N = 8), respectively (Fig. 3C). The UV–Vis 
analysis at 430–440 and 570–580 nm of these in vitro RNA transcripts 
also revealed highly distinguishable absorption spectra between positive 
and negative test results (Fig. 3 D). 

In the context of whole viral particles, our assay demonstrated a 
100% (N = 12) positive rate of detection when total RNA was diluted by 
10,000 folds (370 viral particles/mL by theoretical estimation) (Fig. 3 
E). It is worth mentioning that the assay was still able to detect 1:50,000 
diluted total RNA (~74 copies/mL) with a lower positive rate of 83% (N 
= 12) that generally still aligns with that of the WHO reported RT-qPCR 
method [27] at this dilution level (Fig. 3 F) with the Ct of 39.7 ± 0.4 
(Fig. 3 F, inset table). Based on this preliminary demonstration, the last 
reproducibly detectable dilution of total RNA at 1:10,000 has a Ct value 
of 37.87 ± 0.4 (Fig. 3 F), highlighting the ability of our 
COVID-19-RT-LAMP-XO assay that is on par with RT-qPCR for its ability 
to detect late-Ct samples (Ct > 35). 

3.2. Development of the LG colorimetric indicator for IC-RT-LAMP-LG 
assay 

In all variations of XO concentration, the contrast between positive 
and negative results was observable most clearly at 0.12 mM XO where 
the final reaction hue of the positive reaction is green (Fig. 4 A). The LoD 
of human 18 S rRNA was improved as the concentration of XO in the 
reaction dropped from 0.5 mM to 0.12 mM where the LoD lies at 10 pg as 
shown in Fig. 4 A and B. The UV–Vis analysis revealed the absorption 
spectra of LG that combined the characteristics of XO and MG where 
peaks at 440 nm, 580 nm, and 620 nm were observed (Fig. 4C). 

3.3. Clinical validation by the visual and AI-integrated analyses with 
respect to RT-qPCR 

The diagnostic results of visual analysis and RT-LAMP-DETR were 
classified according to the breakdowns of Ct values of samples (Table 1). 
Attributes of diagnostic performance, such as sensitivity, specificity and 
accuracy, were calculated according to equations provided in Table S3. 
Based on the RT-qPCR results of the ORF1ab gene, the COVID-19-RT- 
LAMP-XO and IC-RT-LAMP-LG could correctly identify all samples 
across the breakdowns of Ct values (Fig. 5 A). Note that RT-qPCR was 
performed simultaneously on both the ORF1ab and N gene targets, but 
the ORF1ab results were chosen as representative because the Ct values 
of both genes are highly correlated (Fig. S5). 

RT-LAMP-DETR conforms with visual analysis in all test samples 
(Fig. 5 B). Taking only 4.73 ms per RNA sample, it correctly generated 
the bounding boxes and categories, row and column position indices of 
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the tubes, and colorimetric diagnostic results (Fig. 2). The quality of the 
bounding boxes was evaluated using the mean Average Precision (mAP), 
a well-established metric to compare the performance of object de-
tectors. RT-LAMP-DETR achieved an mAP of 0.99 out of 1 on the test 
samples. The diagnostic results of the whole test set were summarized 
into a 5 × 5 confusion matrix (Fig. 5C). Non-zero values only appeared 
along the diagonal of the matrix, suggesting no misdiagnoses. RT-LAMP- 
DETR was able to identify all the 11 missing tubes in the test set by 
outputting the Void category. All predictions made by RT-LAMP-DETR 
were in perfect agreement with the “manual” visual detection 
(Table S3 and Fig. 5). This includes 16 late-Ct samples categorized in the 
35.1–40.0 Ct bracket of the ORF1ab detection results (Table 1) which 
linearly correlate with those of the N gene (Table S4). Both approaches 
achieved 100% sensitivity, specificity and accuracy (Table S3). 

4. Discussion 

Our dual one-step colorimetric RT-LAMP assays offer the versatility 
of analysis that accommodates testing at scale in the context of mass 
population screening. The two-color systems employed in this research 
help users quickly identify the assays, offering a simple solution to 
prevent clerical errors during result analysis. This instrument-free 
colorimetric analysis lends our technique readily exploitable for 
decentralized applications. The recommended use of IC-RT-LAMP-LG as 
a control assay for all test samples has never been reported elsewhere, 
and offers a critical means for sample quality assurance to rule out the 
possibility of false negatives owing to unqualified samples, which un-
derlie a major pitfall of many colorimetric assays [33]. 

Despite being developed around a lesser-known molecular target of a 
highly conserved Nsp9 segment of SARS-CoV-2 polyprotein, the COVID- 
19-RT-LAMP assay is highly sensitive and able to achieve a detection 

Fig. 3. Specificity and analytical sensitivity of COVID-19-RT-LAMP-XO for in vitro RNA transcripts and viral RNA isolate. A The molecular specificity of 
COVID-19-RT-LAMP-XO by the naked-eye observation (top) and AGE (bottom) for (1) SARS-CoV-2 with respect to the following pathogens: (2) Middle East Res-
piratory Syndrome Coronavirus, (3) Respiratory Syncytial Virus, (4) Influenza A virus subtype H1N1, (5) Influenza A virus subtype H3N2, (6) Influenza B virus 
(Yamagata lineage), (7) Influenza B virus (Victoria lineage), (8) Influenza B virus (B/Lee/40), (9) Porcine epidemic diarrhea virus strain AVCT12, (10) Klebsiella 
pneumoniae strain ATCC 700603, (11) Acinetobacter baumannii strain ATCC 19606, (12) Pseudomonas aeruginosa strain ATCC 27853, (13) Bacillus cereus BCC 6386, 
(14) Streptococcus pneumoniae, (15) Listeria monocytogenes strain ATCC 19115 and (16) Mycobacterium tuberculosis. B UV–Vis absorption spectra of samples (1)– 
(16) as shown in A. SARS-CoV-2 positive sample (yellow line) exhibits the peak at 430–440 nm while the remainder of SARS-CoV-2 negative samples exhibits the 
peak at 570–580 mm that corresponds to the purple hue of the reaction mixture. C The sensitivity of COVID-19-RT-LAMP-XO for in vitro RNA transcripts of the Nsp9 
target where the limit of detection was shown to be 500 copies and 50 copies/reaction with a positive rate of 100% and 75%, respectively (N = 8). D UV–Vis 
absorption measurements at 430–440 nm and 570–580 nm of the colorimetric results shown in C, demonstrating a statistical difference between the positive (POS) 
and negative outcomes (NEG). E The sensitivity of COVID-19-RT-LAMP-XO for total RNA of the SARS-CoV-2 isolate that was serially diluted down to a factor of 
100,000. The limit of detection was shown at 1:10,000 dilution (3.7 × 102 copies/mL-equivalent), which was the last dilution level to achieve a 100% positive rate 
(N = 12). F Real-time RT-PCR [27] fluorogram of the total RNA isolates shown in E, with summarized sensitivity and cross-comparison with the 
COVID-19-RT-LAMP-XO results at different dilution levels (inset Table). Both methods showed a comparable detection limit with a 100% positive rate in the Ct ≤
37.87 ± 0.38 (3.7 × 102 copies/mL-equivalent). M: the DNA marker/ladder. (*, p < 0.00001 Two-Sample t-test). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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limit that is on par with the standard RT-qPCR assay for late-Ct samples 
that could be challenging to detect via rapid NAAT without producing 
the nonspecific outcomes. Based on the available genomic data of 
existing variants of concern (VOCs), such as B.1.1.7 (Alpha) [34] or 
B.1.617 (Delta) [35], our COVID-19-RT-LAMP assay should also be able 
to detect these emerging strains since none of the known mutations are 
in the proximity of the target region. To highlight their robustness, our 
RT-LAMP assays were shown to retain activity up after 5 freeze-thaw 
cycles in an accelerated stability test (Fig. S6). The 
COVID-19-RT-LAMP-XO was proven to be active after 6 months of 
storage at a regular freezer temperature (− 20 ◦C) (Fig. S7). 

The development of the composite lavender green (LG) pH-sensitive 
indicator demonstrated in IC-RT-LAMP-LG has laid a vital foundation for 
improving the repertoire of novel colorimetric indicators compatible 
with isothermal amplification in emerging applications. The establish-
ment of the LG system can trace its root back to the proof-of-concept 
LAMP-XO [16] that provides an unequivocal contrast between positive 
and negative results relative to other common dyes, e.g. phenol red and 
HNB. Since then, the assay has served as a springboard for various other 
assays that address the diagnostic needs in a wide range of emerging 
point-of-need applications, predominantly those in aquaculture [17,36] 
where demand for simple, robust one-step test kits is high. 

Compared to other existing techniques, our assay is superior to other 

recently reported COVID-19 colorimetric platforms that leveraged 
lateral flow chromatographic CRISPR [9,37] and DNA-functionalized 
gold nanoparticles-dependent RT-LAMP [38] with respect to the ease 
of use as our technique abrogates the need for post-amplification 
workflow associated with hybridization and readout development. 
While the uniqueness of our method is attributed to colorimetry that 
offers high contrast between positive and negative outcomes, we further 
improved its efficiency by integrating it with a powerful AI model 
(RT-LAMP-DETR) for high-throughput analysis without requiring 
complicated data acquisition setups. This feature, together with the 
advent of LG dye, has set our platform unique from the current research 
that goes beyond its own colorimetric RT-LAMP modality, such as the 
CRISPR-Cas technology and rapid antigen/antibody testing (Table S5). 
The prospect of having a fully integrated automated system to effort-
lessly sweep across the test outcomes with high accuracy will also 
minimize interpersonal bias in result interpretation that involves a large 
volume of samples. Thus, our study also serves to showcase the utility of 
AI-based object detection that has recently gained traction in clinical 
diagnosis, and needless to say, the implication of our platform in 
providing an accessible mass screening in the future pandemics. 

Specifically, our work features an implementation of a deep learning 
model, which has been shown to revolutionize how images are analyzed 
[28,39–42]. While using convolution as the main building block is 
doubtlessly effective and still the norm, the self-attention mechanism 
has attracted more interest in recent years for its ability to provide data 
representation based on the global information in the data [22,43–46]. 
In this work, we use the self-attention mechanism to complement 
convolution, equipping the proposed RT-LAMP-DETR model with the 
ability to effectively capture both local and global dependencies be-
tween the pixels in the intermediate image features. The dependencies 
captured by the model can be investigated through the visualization of 
the encoder and decoder attention maps. As shown in Fig. S8, the 
decoder attention maps show sharper localization than the encoder 
attention maps as expected. With the self-attention mechanism, the 
model learns to pay attention to each of the reaction tubes and provide 
its corresponding category based on the pixels within the same tube. We 
have demonstrated the potential of RT-LAMP-DETR in the 
high-throughput colorimetric analysis that needs to associate two re-
action tubes from the same RNA sample to form the final prediction. In 
future applications, RT-LAMP-DETR can be easily extended to provide 
high-throughput analysis of any colorimetric assays that may require 
multiple reaction tubes to be associated by the model to form the 

Fig. 4. Development of the composite lavender green (LG) pH-sensitive indicator for IC-RT-LAMP-LG. A The lavender green indicator is a combination of two 
pH-sensitive indicators, XO (XO) and malachite green (MG). The determination of the optimal balance between the two dye components was performed through the 
iteration of xylenol orange concentration while the working concentration of MG was fixed at 0.02 mM in the RT-LAMP reaction that targets human 18 S rRNA. The 
stoichiometric ratio of dyes at 0.02 mM MG: 0.12 mM XO offers the clearest visual contrast between positive and negative results and the highest limit of detection 
(LoD) at 10 pg total RNA by which the incorporation of XO did not affect the assay’s intrinsic LoD. B Corresponding AGE confirmation of the colorimetric results. C 
UV–Vis analysis of the positive and negative IC-RT-LAMP-LG reactions across stoichiometric variations of MG and XO where the positive reaction is characterized by 
the presence of the absorption peak at 620 nm that corresponds to the blue shade of MG in sub-neutral pH environment. Each line represents the average absorption 
of samples within the positive and negative groups. Lanes 1, 2, 3, 4, 5, 6, M and N: 100 ng, 10 ng, 1 ng, 100 pg, 10 pg, 1 pg, molecular marker and negative control 
(template-free reaction), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Clinical validation of the COVID-19-RT-LAMP-XO by visual observation and RT- 
LAMP-DETR against RT-qPCR on ORF1ab gene.   

Result Ct value (ORF1ab 
gene) 

RT-LAMP-XO by visual 
observation/RT-LAMP-DETR 

Positive Negative Sum 
(N) 

RT- 
qPCR 

Positive 0–25.0 34/34 0/0 34 
25.1–30.0 19/19 0/0 19 
30.1–35.0 19/19 0/0 19 
35.1–40.0 16/16 0/0 16 

Negative >40/Undetectable 0/0 125/125 125  
Total 88/88 125/125 213  

% Concordance with respect to RT- 
qPCR result 

100 100  

N denotes sample size. 
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prediction in an end-to-end manner. 
Regarding the limitation of our assay, fundamentally, the introduc-

tion of LAMP-XO has served as a basis for the advent of the LG indicator 
that offers a different end result color from its parent dyes. Under a 
certain condition, though, the color development of the lavender green 
system is adversely affected by the presence of mineral oil often added 
into the LAMP reaction to prevent its content from evaporating when the 
choice of heat source is not itemized with a heated lid control [47–51]. 
Thus, the chemical nature of this composite indicator still needs to be 
investigated in order to utilize it to the fullest potential. We speculate 
that MG can be reduced to its more lipophilic analog, leucomalachite 
green [52], in an excess of protons in the positive LAMP reaction, and 
eventually loses its desired optical property after becoming soluble in 
oil. Until a better solution has been proposed, the total exclusion of 
mineral oil is highly suggested for any LAMP reactions that contain LG. 
RNA samples must also be eluted in DNase-, RNase-free water only. Any 
other non-low buffer solution, e.g. Tris-EDTA (TE), will interfere with 
the color development of the RT-LAMP assay [10,53]. We acknowledge 
that the current protocol still employs a standard RNA extraction tech-
nique to prepare the test samples. Nevertheless, rapid nucleic acid ex-
tractions have been shown to be compatible with colorimetric 
isothermal amplification reactions [17,54,55]. We highly recommend 
readers who are interested in implementing this protocol at their own 
laboratories to further evaluate a suitable rapid sample preparation 
technique that coherently yields reasonable amounts of RNA. 

5. Conclusions 

Our test has been validated with 213 patient samples, offering a 
100% accuracy, and additional ease of analysis that makes high volume 
testing feasible in low-resource settings. With the cost per assay of 
approximately $8 for each reaction and the turnaround time of 75 min 
with a convenient result readout, the effectiveness of COVID-19 
screening in the population can be considerably improved as testing 
can be done more frequently and widespread. We hope that the test 

platform established in this research will serve as a toolkit that will 
expedite the developmental pipeline of new diagnostics for emerging 
pathogens. 
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Fig. 5. Clinical validation of the colori-
metric COVID-19 assays by visual detec-
tion and RT-LAMP-DETR. The total of 213 
total RNA extracted from samples collected 
by nasopharyngeal swab were subject to 
COVID-19-RT-LAMP-XO and IC-RT-LAMP- 
LG assays. The colorimetric results were 
determined by two modes of analysis: (A) 
naked-eye observation and (B) automated 
RT-LAMP-DETR. A Distribution of colori-
metric results of the combined COVID-19- 
RT-LAMP-XO and IC-RT-LAMP-LG assays 
with respect to the Ct values of RT-qPCR 
performed on the ORF1ab gene and N 
gene. All test samples were determined pos-
itive by the IC-RT-LAMP-LG assay. B Distri-
bution of automated predictions of the RT- 
LAMP-DETR model with respect to the Ct 
values. C Confusion matrix of automated 
results generated by RT-LAMP-DETR, which 
simultaneously analyzes the colorimetric 
outcomes of both COVID-19-RT-LAMP-XO 
and IC-RT-LAMP-LG assays, and categorizes 
the test results according to the detected 
colors of reaction tubes of individual sam-
ples. Diagnostic outcomes were compared 
with RT-qPCR results (Ct value), and the 
concordance of test results is summarized in 
Table 1. (For interpretation of the references 
to color in this figure legend, the reader is 
referred to the Web version of this article.)   
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[18] C.O. Nzelu, A.G. Cáceres, S. Guerrero-Quincho, E. Tineo-Villafuerte, L. Rodriquez- 
Delfin, T. Mimori, et al., A rapid molecular diagnosis of cutaneous leishmaniasis by 
colorimetric malachite green-loop-mediated isothermal amplification (LAMP) 
combined with an FTA card as a direct sampling tool, Acta Trop. 153 (2016) 
116–119, https://doi.org/10.1016/j.actatropica.2015.10.013. 

[19] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, S. Zagoruyko, End-to-End 
object detection with transformers, in: A. Vedaldi, H. Bischof, T. Brox, J.-M. Frahm 
(Eds.), Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, 
August 23–28, 2020, Proceedings, Part I, Springer International Publishing, Cham, 
2020, pp. 213–229, https://doi.org/10.1007/978-3-030-58452-8_13. 

[20] S. Ren, K. He, R. Girshick, J. Sun, R.-C.N.N. Faster, Towards real-time object 
detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 
(2017) 1137–1149, https://doi.org/10.1109/TPAMI.2016.2577031. 

[21] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollar, RetinaNet - focal loss for dense 
object detection, in: 2017 IEEE International Conference on Computer Vision 
(ICCV), IEEE, 2017, pp. 2999–3007, https://doi.org/10.1109/ICCV.2017.324. 

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, et al., 
Attention is all you need, 2017. ArXiv Preprint ArXiv:1706.03762. 

[23] L. Yu, S. Wu, X. Hao, X. Dong, L. Mao, V. Pelechano, et al., Rapid detection of 
COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal 
amplification (RT-LAMP) diagnostic platform, Clin. Chem. 66 (2020) 975–977, 
https://doi.org/10.1093/clinchem/hvaa102. 

[24] G.-S. Park, K. Ku, S.-H. Baek, S.-J. Kim, S.I. Kim, B.-T. Kim, et al., Development of 
reverse transcription loop-mediated isothermal amplification assays targeting 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), J. Mol. Diagn. 22 
(2020) 729–735, https://doi.org/10.1016/j.jmoldx.2020.03.006. 

[25] K. Nagamine, T. Hase, T. Notomi, Accelerated reaction by loop-mediated 
isothermal amplification using loop primers, Mol. Cell. Probes 16 (2002) 223–229, 
https://doi.org/10.1006/mcpr.2002.0415. 

[26] N. Arunrut, J. Kampeera, A. Sappat, A. Tuantranont, Y. Avihingsanon, 
T. Benjachat, et al., Primers and A Screening and Quantification Method for Urine 
IP-10 mRNA Biomarker of Lupus Nephritis, 2003000051 (Application Number), 
2021. 

[27] Department of Medical Sciences, Ministry of Public Health, Thailand, Diagnostic 
Detection of Novel Coronavirus 2019 by Real-Time RT-PCR, WHO, 2020. 

[28] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2016, 
pp. 770–778, https://doi.org/10.1109/CVPR.2016.90. 

[29] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, S. Savarese, Generalized 
intersection over union: a metric and a loss for bounding box regression, in: 2019 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 
2019, pp. 658–666, https://doi.org/10.1109/CVPR.2019.00075. 

[30] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level 
performance on ImageNet classification, in: 2015 IEEE International Conference on 
Computer Vision (ICCV), IEEE, 2015, pp. 1026–1034, https://doi.org/10.1109/ 
ICCV.2015.123. 

[31] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, 2017. ArXiv 
Preprint ArXiv:1711.05101. 

[32] R. Al-Rfou, D. Choe, N. Constant, M. Guo, L. Jones, Character-level language 
modeling with deeper self-attention, AAAI 33 (2019) 3159–3166, https://doi.org/ 
10.1609/aaai.v33i01.33013159. 

[33] B. de Oliveira Coelho, H.B.S. Sanchuki, D.L. Zanette, J.M. Nardin, H.M.P. Morales, 
B. Fornazari, et al., Essential properties and pitfalls of colorimetric Reverse 
Transcription Loop-mediated Isothermal Amplification as a point-of-care test for 
SARS-CoV-2 diagnosis, Mol. Med. 27 (2021) 30, https://doi.org/10.1186/s10020- 
021-00289-0. 
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