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Abstract

Alterations in glycosylation are seen in many types of cancer, including colorectal cancer

(CRC). Glycans, the sugar moieties of glycoconjugates, are involved in many important

functions relevant to cancer and can be of value as biomarkers. In this study, we have used

mass spectrometry to analyze the N-glycan profiles of 35 CRC tissue samples and 10

healthy tissue samples from non-CRC patients who underwent operations for other reasons.

The tumor samples were divided into groups depending on tumor location (right or left

colon) and stage (II or III), while the healthy samples were divided into right or left colon. The

levels of neutral and acidic N-glycan compositions and glycan classes were analyzed in a

total of ten different groups. Surprisingly, there were no significant differences in glycan lev-

els when all right- and left-sided CRC samples were compared, and few differences (such

as in the abundance of the neutral N-glycan H3N5) were seen when the samples were

divided according to both location and stage. Multiple significant differences were found in

the levels of glycans and glycan classes when stage II and III samples were compared, and

these glycans could be of value as candidates for new markers of cancer progression. In

order to validate our findings, we analyzed healthy tissue samples from the right and left

colon and found no significant differences in the levels of any of the glycans analyzed, con-

firming that our findings when comparing CRC samples from the right and left colon are not

due to normal variations in the levels of glycans between the healthy right and left colon.

Additionally, the levels of the acidic glycans H4N3F1P1, H5N4F1P1, and S1H5N4F1 were

found to change in a cancer-specific but colon location-nonspecific manner, indicating that

CRC affects glycan levels in similar ways regardless of tumor location.

Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide and has increased to

become the second most common cause of death due to cancer, with over 1.8 million new
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cases and almost 900 000 deaths estimated to occur in 2018 [1]. While incidence and mortality

rates are declining in certain countries, something thought to be at least partially due to early

screening and prevention, the incidence of CRC is still predicted to increase by up to 60% by

2030 [1, 2]. 5-year survival rates for CRC can be as high as 60% in countries such as the United

States, but are as low as 28% in developing countries [3].

The expression of glycans changes during cancer, and glycans are therefore of value as bio-

markers and targets for new treatments [4]. Glycans are covalent assemblies of sugars that can

exist either in free form as signaling molecules or as part of glycoconjugates such as glycopro-

teins. Most glycans exist as membrane-bound glycoconjugates [5]. They are found on all

eukaryotic cell surfaces and are involved in many physiologically important functions such as

cell signaling and adhesion, differentiation, and growth. Their complexity allows glycans on

cell surfaces to function as signaling, recognition, and adhesion molecules [6, 7]. Malignant

transformation is associated with changes in glycosylation, which include under- and overex-

pression of certain glycans, as well as neo-expression of glycans normally only expressed in

embryonic tissues. The changes in glycosylation most often seen that are associated with can-

cer include sialylation, fucosylation, and N-linked glycan branching [4, 8]. Several previous

studies have compared the serum/plasma asparagine-linked glycome (N-glycome) between

CRC patients and healthy controls [9, 10]. The N-glycome of CRC tissues in comparison to

healthy colon tissue has also been investigated in several studies. A study by Balog et al. found

that structures with a bisecting N-acetylglucosamine were decreased in CRC, while sulfated

glycans, paucimannosidic glycans, and sialylated Lewis type epitope-containing glycans were

increased. This study also detected core-fucosylated mannose N-glycans in CRC samples [11].

We have also previously shown that sialylated N-glycans, paucimannose glycans, and small

high-mannose type glycans are more common in rectal carcinomas than adenomas [12].

Multiple studies have found that right-sided colon cancer is associated with a worse prog-

nosis than left-sided colon cancer [13, 14]. Differences between cancer in the right and left

colon are also seen at the molecular level, with CRC in the right and left colon appearing to

progress through different molecular pathways, with mutations in genes such as KRAS and

BRAF being more common in right-sided tumors [15, 16]. Additionally, right- and left-sided

CRC also have distinct mutational profiles [17]. Studies have also found significant differences

in protein expression and plasma metabolites between patients with tumors in the right or left

colon [18–23].

In this study, we have used matrix-assisted laser desorption/ionization time-of-flight

(MALDI-TOF) mass spectrometry to analyze the N-glycan profiles of 35 tumor tissue samples

from patients with CRC and 10 healthy colon tissue samples from patients who underwent

operation for other reasons. The tumor tissue samples were divided into groups according to

tumor location in the colon (right or left) and stage (II or III), while the healthy tissue samples

were divided into two groups, right and left colon. This study provides new insight into how

the levels of specific glycans and glycan classes differ depending on stage or location in the

colon, as well as between healthy tissue and tumor tissue samples.

Material and methods

Study design

In this study, the N-glycan profiles of formalin-fixed, paraffin-embedded (FFPE) tumor tissue

samples from 35 CRC patients and healthy colon tissue samples from 10 non-CRC patients

were analyzed using a previously developed workflow [12, 24–27]. CRC patients were chosen

according to the location and stage of their tumor. 18 patients had a tumor in the right colon

and 17 in the left colon, with the division being made at the splenic flexure. Besides comparing
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right- and left-sided CRC, the glycan profiles were also compared between patients with stage

II and III tumors.

Tissue samples

Tissue samples from 35 CRC patients were selected for glycomic profiling. Patients with deaths

due to reasons other than CRC were deliberately excluded from this study, as were patients

with a previous history of non-colorectal cancer, hereditary nonpolyposis colorectal cancer,

familial adenomatous polyposis, ulcerative colitis, Crohn’s disease, or celiac disease. In addi-

tion, 10 samples of healthy colon tissue from non-CRC patients were also selected. Five sam-

ples were from the right colon (caecum) and five from the left colon (sigma). These patients

had undergone operations due to different issues affecting the colon (see S1 Table for details).

The H&E slides of the tissue samples were confirmed by an experienced pathologist to be

either unaffected or lightly affected by the cause of operation, and to display either completely

or mostly normal histology. Patients with CRC were deliberately excluded when the healthy

tissue samples were chosen. Detailed patient characteristics can be found in S1 Table. All tissue

samples were routinely fixed and embedded in paraffin at the Department of Pathology, HUS-

LAB, Helsinki University Hospital, between 1996 and 2017. The Digital and Population Data

Services Agency provided the follow-up data, and Statistics Finland provided the cause of

death for all those deceased. This study was approved by the Surgical Ethics Committee of Hel-

sinki University Hospital (Dnro HUS 226/E6/06, extension TMK02 §66 17.4.2013) and was

carried out in accordance with the relevant guidelines and regulations. Written informed con-

sent was obtained from all participants prior to sample collection.

Glycan isolation

Glycans were isolated from FFPE tissue blocks as previously described [27]. To summarize, for

the tumor tissue samples from CRC patients, representative areas of carcinoma tissue were

marked on H&E slides and samples were punched from FFPE tissue blocks with a 3.0-mm

puncher. For the healthy colon tissue samples, 10 μm flakes were cut using a microtome. The

reason for using a microtome instead of a puncher for these samples was due to the better

yield of epithelial cells made possible by sectioning. Whereas the FFPE blocks for the tumor

tissue samples contained only tumor tissue, the samples from healthy colon tissue included

not only epithelial cells but also other layers of the colon.

All samples were deparaffinized with xylene and an ethanol-water series according to stan-

dard procedures. N-linked glycans were detached from cellular glycoproteins by N-glycosidase

F (PNGase F) digestion (Glyko; ProZyme Inc., Hayward, CA) and purified as previously

described [12]. Briefly, the detached glycans were passed in water through C18 silica, after

which they were absorbed to graphitized carbon material. Both of these steps were done in

96-well format. Next, the carbon wells were washed with water and neutral N-linked glycans

were eluted using 25% acetonitrile, while acidic N-linked glycans were eluted using 0.05% tri-

fluoroacetic acid in 25% acetonitrile in water. The acidic glycans were further purified through

hydrophilic interaction solid-phase extraction done in 96-well format. Both glycan fractions

were then passed in water through strong cation-exchange resin before MS analysis.

Mass spectrometry

Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry

was performed using a Bruker Ultraflex III TOF/TOF mass spectrometer (Bruker Daltonics

Inc, Bremen, Germany) as previously described [27]. Neutral N-glycans were detected in posi-

tive ion reflector mode as [M+Na]+ ions and acidic N-glycans in negative ion reflector mode
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as [M-H]- ions. Two examples of unprocessed MALDI-TOF mass spectra of neutral and acidic

N-glycans are given in S1 Fig (neutral N-glycans) and S2 Fig (acidic N-glycans). The relative

molar abundances of neutral and acidic glycan components were assigned based on their rela-

tive signal intensities in the mass spectra when analyzed separately as neutral and acidic N-gly-

can fractions. The mass spectrometric raw data was transformed into the present glycan

profiles as previously described [24, 25]. The resulting glycan signals in the glycan profiles

were normalized to 100% to allow comparison between the samples and were assigned to bio-

synthetic groups based on their proposed monosaccharide composition, also as previously

described [24, 25]. The mass spectrometry proteomics data have been deposited to the Proteo-

meXchange Consortium via the PRIDE [28, 29] partner repository with the dataset identifier

PXD018673.

Analysis of N-glycan profiles

For the tumor tissue samples, N-glycan data was analyzed in different groups according to the

location of the tumor and tumor stage. Additionally, healthy tissue samples from the right and

left colon were analyzed and the glycan profiles were compared both separately and together

with the tumor tissue samples. Glycan abundance was analyzed separately within ten different

groups, as seen in Table 1. Both specific monosaccharide compositions, and structural glycan

classes were analyzed in these groups. The neutral and acidic N-glycan profiles were stratified

by biosynthetic classification rules based on the amounts of hexose (H), N-acetylhexosamine

(N), deoxyhexose (F), sialic acid (S), and sulfate/phosphate ester (P) residues in the proposed

monosaccharide compositions. The classes were then shown as the proportion of major glycan

structural classes between the different subgroups of samples.

Statistical analysis

For statistical analyses, the Mann-Whitney U test was used to analyze the values of the relative

intensities of the N-glycan signals in order to compare the differences between the groups. P-

values of< 0.05 were considered to be statistically significant. The false discovery rate (FDR)

was controlled using the Benjamini-Hochberg method [30]. The Mann-Whitney U test and

FDR correction were performed using SPSS version 24.0 (IBM SPSS Statistics, IBM Corpora-

tion, Armonk, NY). Orthogonal Projections to Latent Structures Discriminant Analysis

Table 1. The ten groups within which N-glycan abundances were analyzed in this study.

Number Group Size

1 Right-sided CRC vs. left-sided CRC 18 vs. 17

2 Right-sided CRC vs. left-sided CRC, stage II samples only 9 vs. 9

3 Right-sided CRC vs. left-sided CRC, stage III samples only 9 vs. 8

4 Stage II vs. III CRC, all samples 18 vs. 17

5 Stage II vs. III CRC, right-sided samples only 9 vs. 9

6 Stage II vs. III CRC, left-sided samples only 9 vs. 8

7 Healthy colon tissue, right vs. left 5 vs. 5

8 Right colon, healthy tissue vs. CRC 5 vs. 18

9 Left colon, healthy tissue vs. CRC 5 vs. 17

10 Healthy colon tissue vs. CRC, all samples 10 vs. 35

For each group, relative N-glycan abundance was analyzed separately for both neutral and acidic N-glycans. N-glycan

abundance was analyzed for the proposed monosaccharide compositions and, separately, for the proposed structural

classes of glycans.

https://doi.org/10.1371/journal.pone.0234989.t001
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(OPLS-DA) modeling was performed using the ropls [31] R package. For OPLS-DA modeling,

both neutral and acidic proposed monosaccharide compositions with non-FDR corrected p-

values of less than 0.05 were used in the same model.

Results

Glycomic profiling of colon cancer tissue samples

Neutral N-linked glycan profiles. The neutral N-linked glycan profiles of 35 CRC sam-

ples were analyzed using MALDI-TOF mass spectrometry. The levels of specific neutral N-gly-

can signals (assigned to proposed monosaccharide compositions) as well as the proposed

structural classes of neutral glycan signals were compared separately within all seven groups of

CRC patients studied, which are listed in Table 1. The neutral N-glycans expressed in the

group comparing samples from patients with stage II cancer in the right or left colon are

shown as the relative abundance of the 50 most abundant proposed monosaccharide composi-

tions in Fig 1. The monosaccharide compositions H5N2, H6N2, H8N2, H7N2, and H9N2,

which were classified as high-mannose N-glycans, were the most abundant neutral N-glycan

compositions in all groups analyzed.

Differences in glycan levels between right- and left-sided CRC. When the levels of neutral

monosaccharide compositions were analyzed according to tumor location (right or left colon),

only the abundance of one glycan, with the proposed monosaccharide composition H3N5,

was significantly different (p = 0.010) between the groups studied (all samples, stage II samples

only, and stage III samples only). The relative abundance of H3N5 was significantly higher in

Fig 1. The relative abundance of the 50 most abundant neutral monosaccharide compositions in samples from patients with stage II

cancer in the right (RC, blue bars, n = 9) or left (LC, orange bars, n = 9) colon. The x-axis shows the proposed neutral N-glycan

monosaccharide composition, where fucosylated and multifucosylated N-glycans are highlighted with green or red lines, respectively. The

results are shown as means ± SEM. Several putative N-glycan structures are depicted using symbols, with green circles representing D-

mannose, blue squares representing N-acetyl-D-glucosamine, red triangles representing L-fucose, and yellow circles representing D-

galactose. Major structural subgroups are separated by a dotted line. H = hexose, N = N-acetylhexosamine, F = fucose. Schematic glycan

drawings are proposed based on known glycan structures detected in CRC tissues [11] and they were not validated by structural analyses in

the present study.

https://doi.org/10.1371/journal.pone.0234989.g001
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left-sided stage II CRC when compared to right-sided stage II CRC (S2 Table). The neutral N-

glycan profiles were also analyzed by grouping glycans with similar monosaccharide composi-

tions into structural classes and calculating their combined proportions, similarly to as previ-

ously described [12, 25]. When the levels of these different classes of neutral glycans were

compared between right- and left-sided CRC, no statistically significant differences were

found (S3 Table). The abundances of the glycan classes were analyzed between all right- and

left-sided CRC samples regardless of stage, as well as separately for stage II and stage III

samples.

Differences in glycan levels between stage II and III CRC. The levels of neutral monosaccha-

ride compositions were also compared between all stage II and III samples, in right-sided sam-

ples only, and in left-sided samples only in order to study changes in glycan levels during CRC

progression. There were no statistically significant differences in the levels of either neutral N-

glycans (S2 Table) or neutral N-glycan classes (S3 Table) when samples from patients with

stage II and III CRC were compared.

Acidic N-linked glycan profiles. The profiles of acidic N-linked glycans, which contain

acid esters (sulfate or phosphate) or sialic acid residues, were analyzed separately from the neu-

tral N-glycans. The levels of specific acidic N-glycan signals as well as proposed structural clas-

ses of acidic glycans were compared separately within all seven groups of CRC patients studied

(Table 1), as was done for neutral N-glycans. The levels of acidic N-glycans when compared

between the groups stage II vs. III CRC, right-sided samples only (Fig 2) and stage II vs. III

Fig 2. The relative abundance of the 50 most abundant acidic monosaccharide compositions in samples from patients with stage II

(n = 9) or stage III (n = 9) cancer in the right colon. The x-axis shows the proposed acidic N-glycan monosaccharide composition, where

sulfated/phosphorylated N-glycans are highlighted with a light blue line and N-glycans putatively containing a terminal N-acetylhexosamine

(N>H) are highlighted with a dark blue line. The results are shown as means ± SEM. Several putative N-glycan structures are depicted using

symbols, with green circles representing D-mannose, blue squares representing N-acetyl-D-glucosamine, red triangles representing L-fucose,

yellow circles representing D-galactose, purple diamonds representing sialic acid (N-acetylneuraminic acid), and open circles marked with

an “S” representing sulfate ester. Major structural subgroups are separated by a dotted line. H = hexose, N = N-acetylhexosamine, F = fucose,

S = sialic acid, P = acid ester. Schematic glycan drawings are proposed based on known glycan structures detected in CRC tissues [11] and

they were not validated by structural analyses in the present study.

https://doi.org/10.1371/journal.pone.0234989.g002
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CRC, left-sided samples only (Fig 3) are shown as the relative abundance of the 50 most abun-

dant proposed monosaccharide compositions. The monosaccharide compositions S1H5N4F1,

S1H5N4, S2H5N4, S1H6N5F1, and S1H6N5F1, which were identified as sialylated complex-

type N-glycans, were often found to be the most abundant glycan signals in the groups

analyzed.

Differences in glycan levels between right- and left-sided CRC. When the levels of acidic

monosaccharide compositions were analyzed according to tumor location, regardless of stage,

no statistically significant differences between the levels of acidic N-glycans were found. The

levels of acidic glycans were also analyzed between right- and left-sided CRC for stage II and

III CRC samples separately, but no statistically significant differences were observed (S4

Table). The acidic N-glycan profiles were also analyzed by grouping glycans with similar

monosaccharide compositions into structural classes and calculating their combined propor-

tions, as previously described [12, 25] and as was done for the neutral N-glycans. When com-

paring the levels of the structural classes of acidic N-glycans between all right- and left-sided

samples and, separately, stage II samples only, no statistically significant differences were seen

(S5 Table). However, several statistically significant differences were seen between the levels of

three classes of acidic glycans when compared between right- and left-sided stage III CRC. The

levels of overall sialylation and sialylated complex-type N-glycans were significantly higher

(Table 2) in left-sided than right-sided stage III CRC (S5 Table). On the other hand, the relative

proportions of N-glycans with a sulfate/phosphate residue were significantly lower in left-

sided stage III CRC when compared to right-sided stage III CRC (S5 Table). OPLS-DA

Fig 3. The relative abundance of the 50 most abundant acidic monosaccharide compositions in samples from patients with stage II

(n = 9) or stage III (n = 8) cancer in the left colon. The x-axis shows the proposed acidic N-glycan monosaccharide composition, where

sulfated/phosphorylated N-glycans are highlighted with a light blue line and N-glycans putatively containing a terminal N-acetylhexosamine

(N>H) are highlighted with a dark blue line. The results are shown as means ± SEM. Several putative N-glycan structures are depicted using

symbols, as specified in the legend of Fig 2. Major structural subgroups are separated by a dotted line. Schematic glycan drawings are

proposed based on known glycan structures detected in CRC tissues [11] and they were not validated by structural analyses in the present

study.

https://doi.org/10.1371/journal.pone.0234989.g003
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modeling showed a clear separation between samples from patients with stage III cancer in the

right or left colon (S3 Fig).

Differences in glycan levels between stage II and III CRC. When the levels of acidic monosac-

charide compositions were compared between all stage II and III samples, significant differ-

ences in the levels of four glycans were seen (Table 3). The relative abundance of the sulfate/

phosphate-containing and multifucosylated structure H4N5F3P1 was higher in stage III CRC,

while the relative levels of the sialylated and multifucosylated structures S1H6N6F2,

S1H6N7F3, and S1H7N7F4 were lower in stage III CRC when compared to stage II CRC

(S4 Table). Interestingly, while the relative abundance of S1H7N7F4 was 0,25 in samples from

stage II CRC patients, this composition was not detected at all in any samples from stage III

patients. When focusing on samples from tumors in the right colon, the abundance of four

monosaccharide compositions was significantly different between stage II and III CRC

(Table 3).

The sulfate/phosphate-containing glycans H5N4F3P1, H4N5F3P1, H6N5F4P1, and

H9N8P1 all displayed higher relative levels in stage III CRC, indicating that the relative abun-

dance of these glycans changes when CRC progresses from local to regionally advanced disease

(S4 Table). In samples from the left colon, no statistically significant differences in the relative

levels of any acidic glycans were found between stage II and III CRC (S4 Table). Overall, more

differences were observed between the groups analyzed for acidic N-glycans than neutral N-

glycans. The levels of multiple monosaccharide compositions were significantly different

Table 2. Significantly different N-glycan classes (p < 0.05) when tumor tissue samples from CRC patients were compared.

Glycan class Group Neutral or acidic Fold change FDR-adjusted p-value

Overall sialylation Stage II vs III CRC, right-sided samples only Acidic 1,65 0,044

Overall sialylation Right-sided CRC vs. left-sided CRC, stage III samples only Acidic 1,67 0,037

Sialylated complex N-glycans Stage II vs III CRC, right-sided samples only Acidic 1,66 0,045

Sialylated complex N-glycans Right-sided CRC vs. left-sided CRC, stage III samples only Acidic 1,67 0,037

Sulfate/phosphate Stage II vs III CRC, right-sided samples only Acidic 2,40 0,044

Sulfate/phosphate Right-sided CRC vs. left-sided CRC, stage III samples only Acidic 2,43 0,037

Additional details can be found in S4 Table. The subgroup within which the levels of a glycan class are higher are highlighted in bold.

https://doi.org/10.1371/journal.pone.0234989.t002

Table 3. Significantly different proposed monosaccharide compositions (p< 0.05) when tumor tissue samples from CRC patients were compared.

Composition Group Neutral or acidic Fold change FDR-adjusted p-value

H3N5 Right-sided CRC vs. left-sided CRC, stage II samples only Neutral 4,66 0,01

H5N4F3P1 Right-sided CRC, stage II vs. III Acidic 5,43 0,009

H4N5F3P1 Stage II vs III CRC, all samples Acidic 5,27 0,043

H4N5F3P1 Right-sided CRC, stage II vs. III Acidic 9,04 0,022

H6N5F4P1 Right-sided CRC, stage II vs. III Acidic 6,16 0,009

S1H6N6F2 Stage II vs III CRC, all samples Acidic 4,31 0,044

S1H6N7F3 Stage II vs III CRC, all samples Acidic 15,18 0,038

H9N8P1 Right-sided CRC, stage II vs. III Acidic 6,02 0,019

S1H7N7F4 Stage II vs III CRC, all samples Acidic N/A 0,038

Additional details can be found in S1 and S3 Tables. The subgroup within which the levels of a specific monosaccharide composition are higher are highlighted in bold.

The fold change for the composition S1H7N7F4 is not available, as the relative abundance was 0.25 in stage II samples, while S1H7N7F4 was not detected at all in any of

the stage III samples (with a relative abundance of 0.00).

https://doi.org/10.1371/journal.pone.0234989.t003
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within two groups, namely stage II vs. III, all samples, and stage II vs. III, right-sided samples

only (S4 Table). The overexpression of the sulfate/phosphate-containing and multifucosylated

structure H4N5F3P1 was significant in both of these groups.

When comparing the classes of acidic N-glycans between all stage II and III samples regard-

less of tumor location, no statistically significant differences in the levels of acidic glycans were

seen (S5 Table). When the classes of acidic N-glycans were compared between stage II and III

right-sided CRC, significant differences between the relative proportions of the same three gly-

can classes whose levels differed between right- and left-sided stage III CRC (overall sialylation,

sialylated complex N-glycans, and N-glycans with a sulfate/phosphate residue) were seen

(Table 2). The relative levels of overall sialylation and sialylated complex N-glycans were signif-

icantly decreased in stage III right-sided CRC (S5 Table). On the other hand, the relative levels

of N-glycans with a sulfate/phosphate residue were significantly increased in stage III right-

sided CRC (S5 Table). When the relative levels of acidic glycan classes were compared between

stage II and III samples from the left colon, no statistically significant differences were found

(S5 Table). These results indicate that at least in right-sided CRC, cancer progression from

stage II to III is associated with significant changes in the abundance of certain classes of acidic

glycans.

Glycomic profiling of healthy colon tissue samples

Neutral N-linked glycan profiles. Healthy colon tissue samples from 10 patients were

also analyzed and the levels of neutral N-glycan compositions and glycan classes were com-

pared between samples from the right colon (n = 5) and left colon (n = 5). None of the differ-

ences in the levels of glycans and glycan classes were statistically significant after FDR

correction (S2 and S3 Tables).

Acidic N-linked glycan profiles. When the levels of acidic N-glycan compositions and N-

glycan classes were analyzed in healthy tissue samples from the right and left colon, no statisti-

cally significant differences were observed (S4 and S5 Tables).

Comparison of glycan profiles between healthy and tumor tissue

Neutral N-linked glycan profiles. When healthy tissue samples from the right colon were

compared with tumor tissue samples from the right colon, no significant differences were seen

in the levels of any neutral N-glycan compositions (S2 Table). However, the levels of fucosyla-

tion were significantly higher in tumor tissue samples from the right colon when compared to

healthy colon tissue (S3 Table). When healthy tissue samples from the left colon were com-

pared with tumor tissue samples from the left colon, the levels of 20 out of 126 neutral N-gly-

can compositions were significantly different between the two groups (S2 Table), and the

levels of paucimannose type N-glycans were significantly higher in tumor tissue samples (S3

Table). All healthy colon tissue samples were also compared to all CRC tissue samples. The lev-

els of 21 neutral N-glycan compositions were significantly different between the groups (S2

Table). Additionally, the levels of both paucimannose type N-glycans and fucosylation were

significantly higher in CRC samples than healthy colon tissue samples (S3 Table).

Acidic N-linked glycan profiles. When healthy tissue samples from the right colon were

compared with tumor tissue samples from the right colon, differences in the levels of five out

of 113 acidic N-glycan compositions were significant (S4 Table). Healthy tissue samples from

the left colon were also compared to tumor tissue samples from the left colon and significant

differences in the levels of 12 acidic N-glycan compositions were found (S4 Table). When all

healthy tissue samples were compared to all CRC samples, the levels of 74 of 113 acidic N-gly-

can compositions had significantly different levels between the two groups (S4 Table).
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Significant differences were seen in the same 11 out of 14 N-glycan classes when their levels

were compared between healthy colon tissue and tumor tissue samples in only samples from

the right colon, only samples from the left colon, and in all samples combined (S5 Table). Dif-

ferences include levels of complex fucosylation and sulfate/phosphate-containing N-glycans

being significantly higher in CRC when compared to healthy colon tissue, with levels of bian-

tennary-size N-glycans and sialylation being significantly lower in tumor tissue samples.

Discussion

In this study, we used MALDI-TOF MS to analyze the N-linked glycan profiles of 35 CRC tis-

sue samples from patients with right- and left-sided CRC that were also divided into groups

based on tumor stage (II or III). Due to the large number of monosaccharide compositions

detected, we used false discovery rate (FDR) correction to control false positive results in statis-

tical analyses. Surprisingly, there were no significant differences between the levels of neutral

and acidic N-glycans or structural N-glycan classes expressed when all right- and left-sided

CRC samples were compared. Only one neutral N-glycan, H3N5, displayed significantly dif-

ferent levels (p = 0.010) between right- and left-sided stage II CRC. The levels of overall sialyla-

tion, sialylated complex acidic N-glycans, and sulfated/phosphorylated glycans differed

between right- and left-sided stage III CRC, and these subgroups could be clearly separated

using OPLS-DA modeling (S3 Fig). Interestingly, these differences were only seen when sam-

ples were stratified according to stage, with no significant differences in glycan levels seen

between overall right- and left-sided CRC.

We found significant differences in the relative levels of four acidic N-glycans (H4N5F3P1,

S1H6N6F2, S1H6N7F3, and S1H7N7F4) between all stage II and III samples and in the relative

levels of four acidic N-glycans (H5N4F3P1, H4N5F3P1, H6N5F4P1, and H9N8P1) between

stage II and III samples from the right colon (S4 Table). H4N5F3P1 displayed significantly

higher levels in stage III CRC in both of the above groups, indicating that it may be linked to

CRC progression and regional metastasis. In left-sided tumors, the abundance of H4N5F3P1

also increased from stage II to III, but the increase was not significant. H4N5F3P1 therefore

has the potential to function as a target for new therapies after further investigation into its

role in CRC progression. The proposed monosaccharide composition of this glycan signal

comprises several interesting features, namely sulfation/phosphorylation (P), multifucosyla-

tion (F>1), and potential terminal N-acetylhexosamine (N>H), all of which have been previ-

ously linked to CRC [11, 12, 25]. Structural analysis of this glycan is thus warranted for

example in order to identify potential epitopes for anti-glycan antibody targeting.

Three structural classes of acidic N-glycans, overall sialylation, sialylated complex glycans,

and sulfated/phosphorylated glycans, also displayed significantly altered levels between stage II

and III CRC in the right colon (Table 2), indicating that these changes may be linked to cancer

progression. Further studies are needed to elucidate if these glycans play a role in regional

metastasis and if patients could benefit from new therapies targeting these glycans. Interest-

ingly, there were no significant changes in the levels of either neutral (S3 Table) or acidic (S5

Table) glycan classes when all stage II and III samples were compared. These findings indicate

that there are no widespread changes in classes of glycans during overall CRC progression,

despite the changes seen as right-sided CRC progressed from stage II to III.

In order to validate our findings that the levels of H3N5 and three acidic glycan classes dif-

fered between right- and left-sided CRC (in stage II and stage III samples, respectively), we

also analyzed healthy tissue samples from the right and left colon. There were no significant

differences in any of the neutral (S2 and S3 Tables) or acidic (S4 and S5 Tables) glycans and

glycan classes analyzed when these samples were compared. It is thereby possible to confirm
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that our findings when comparing tumor tissue samples from the right and left colon are not

due to normal variations in the levels of glycans between the healthy right and left colon. Addi-

tionally, the levels of acidic glycans such as H4N3F1P1, H5N4F1P1, and S1H5N4F1 were sig-

nificantly different when healthy tissue samples from the right or left colon were compared

with tumor tissue samples from the corresponding location, as well as when all healthy tissue

samples were compared to all tumor tissue samples. The levels of these three glycans did not

differ significantly when compared between healthy tissue samples from the right and left

colon, or when compared between CRC tissue samples from the right and left colon. These

results indicate that the changes in the levels of H4N3F1P1, H5N4F1P1, and S1H5N4F1 are

cancer-specific, although not colon location-specific.

Our findings suggest that while the normal right and left colon differ physiologically [16],

these differences do not appear to the same extent at glycan level, as there were no significant

differences in the relative levels of glycans or glycan classes between mass spectrometric N-gly-

can profiles when healthy tissue samples from the right or left colon were compared (S2–S5

Tables). It appears that CRC affects N-glycan profiles in similar ways regardless of where in

the colon the tumor arises, as we found that the relative proportions of the same 11 acidic gly-

can classes were significantly different when healthy tissue samples were compared to tumor

tissue samples both separately according to location in the colon (right or left) and when all

healthy samples were compared to all cancer samples (S5 Table). Additionally, no significant

differences were seen when N-glycan profiles were compared between all right- and left-sided

CRC samples, which lends further support to this hypothesis. It is known that cancer directly

affects glycan expression, which can also be seen in the large overall changes in relative N-gly-

can levels between healthy colon tissue and tumor tissue observed here, especially among

acidic glycans and glycan classes (S4 and S5 Tables), but also among neutral glycan composi-

tions (S2 Table) and, to a lesser extent, neutral glycan classes (S3 Table). These N-glycans and

N-glycan classes, whose relative levels significantly differ between healthy colon tissue and

CRC tissue, could be of value as new diagnostic markers and new targets for anticancer thera-

pies after further validation.

We have previously shown that N-glycomic profiling can be used to separate rectal adeno-

mas from carcinomas [12]. In that study, differences were seen in glycosylation between stage

I-II and stage III carcinomas, as well as between stage I-II and stage III-IV carcinomas. The

inclusion of adenomas and focus on comparing adenomas and carcinomas in our previous

study made comparisons to our current study difficult. However, some similarities were seen

between the two studies. The high-mannose type glycans H5N2, H6N2, H7N2, H8N2, and

H9N2, which were the most abundant neutral glycans in both rectal adenomas and carcino-

mas, were also the most abundant in carcinoma samples from the right and left colon. In our

previous study, acidic N-glycans with five N-acetylhexosamine residues (compositions con-

taining N5, such as H4N5F1P1 and H4N5F2P1) were more abundant in stage III than stage

I-II rectal carcinomas. In this study, while no significant differences were found between stage

II and III CRC samples from the left colon, changes in the relative levels of two glycans con-

taining N5, namely H4N5F3P1 and H6N5F4P1, were seen when right-sided stage II and III

samples were compared. This further indicates that acidic glycans containing N5 may play

roles in the progression of CRC from local to regional disease.

Several previous studies have investigated altered glycosylation in CRC. A study by Sethi

et al. reported an overrepresentation of high-mannose and paucimannose N-glycans in CRC

as compared to adjacent normal colon tissue [32]. Increased levels of mannose-type N-glycans

have been suggested to be a key molecular feature of CRC [33]. High-mannose type glycans

were also the most abundant neutral N-glycans in our set of 35 CRC tissue samples. Increased

sialylation has previously been implicated in CRC metastasis, therapeutic resistance, and
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disease recurrence [34–36]. In our study, sialylation was the most abundant acidic N-glycan

modification in most of the samples, except in right-sided stage III tumors, where sulfate/phos-

phate esters dominated. As mentioned earlier, a study by Balog et al. discovered that structures

with a bisecting N-acetylglucosamine were decreased in CRC as compared to corresponding

control tissue samples, while paucimannose glycans and glycans that could potentially contain

sialylated Lewis-type epitopes (sialylated glycans with at least two fucose residues) were

increased in CRC. In our current study, we found that the composition H5N5, whose pro-

posed structure contains a bisecting N-acetylglucosamine, as well as H3N6F2 and H3N6F3,

whose proposed structures contain a terminal N-acetylhexosamine, all had significantly lower

relative levels in CRC when tumor tissue samples were compared to healthy tissue samples

(S2 Table). Additionally, the relative levels of the paucimannosidic compositions H2N2F1 and

H3N2F1 were significantly higher in tumor tissue samples when compared to healthy colon

tissue samples (S2 Table). We also identified multiple compositions that could potentially con-

tain sialylated Lewis-type structures, including S1H4N5F2, S1H5N4F3, S1H5N5F2,

S1H6N5F2, S1H5N6F2, S1H7N6F3, and S1H7N6F4. The relative levels of all of these glycans

were significantly higher in tumor tissue samples when compared to healthy tissue samples

(S4 Table). These findings are all in concordance with the findings of Balog et al., further indi-

cating the importance of these glycans in CRC.

Multiple previous studies of the CRC N-glycome have utilized cell lines or serum/plasma

samples from patients [37–40]. This study was strengthened by the use of tumor tissue sam-

ples, which made it possible to directly study tumor-derived glycans and CRC progression. It

also enabled the correlation of changes in glycan levels to clinical stage. Additional strengths of

this study were the relatively large number of samples analyzed and the FDR correction used

to control false positives in the statistical analyses. One limit of this study is that although the

glycans were detached from tumor-derived glycoproteins, with the methods used, it is not pos-

sible to determine which specific cell types (e.g. cancer or stromal/immune cells) they origi-

nally came from. This study identified multiple glycans whose levels differed between stage II

and III CRC, which could be of value as biomarkers to predict disease progression, although

further validation is needed. For example, by staining tumor tissue samples from patients with

stage II for glycans whose levels were increased in stage III CRC, the risk of disease progression

could be predicted. These high-risk stage II patients could therefore benefit from more aggres-

sive treatment for example through adjuvant therapy, which is currently controversial for

stage II patients [41]. Additional studies are also needed to elucidate why these changes in gly-

can abundance occur, which proteins these glycans are attached to, and the effects of altered

glycan expression in CRC. This study provides new insights into the biological differences at

glycan level between healthy colon and tumor tissue, as well as between right- and left-sided

colon cancer and local and regional disease.

Supporting information

S1 Fig. The unprocessed MALDI-TOF mass spectrum of neutral N-linked glycans isolated

from a tumor tissue sample from a patient with stage II cancer in the right colon.

(PDF)

S2 Fig. The unprocessed MALDI-TOF mass spectrum of acidic N-linked glycans isolated

from a tumor tissue sample from a patient with stage II cancer in the right colon (the same

patient as in S1 Fig).

(PDF)
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S3 Fig. OPLS-DA modeling showing the separation between samples from patients with

stage III cancer in the right or left colon. For this model, both significantly different

(p< 0.05, non-FDR corrected) neutral and acidic proposed monosaccharide compositions

were used. The ellipses represent the 95% of the multivariate normal distributions for each

class shown.

(PDF)

S1 Table. Information about the 35 CRC patients and 10 heathy tissue donors included in

this study.

(XLSX)

S2 Table. The relative abundance of the proposed neutral N-glycans detected in the CRC

and healthy colon tissue samples analyzed in the groups in this study. The relative abun-

dance of each proposed monosaccharide composition is shown as the average ± standard error

of the mean (SEM). The p-value for each proposed monosaccharide composition compared

within all ten groups is also given.

(XLSX)

S3 Table. The relative abundance of the neutral N-glycan classes detected in the CRC and

healthy colon tissue samples analyzed in the groups in this study. The relative abundance of

each N-glycan class is shown as the average ± SEM. The p-value for each N-glycan class com-

pared within all ten groups is also given.

(XLSX)

S4 Table. The relative abundance of the proposed acidic N-glycans detected in the CRC

and healthy colon tissue samples analyzed in the groups in this study. The relative abun-

dance of each proposed monosaccharide composition is shown as the average ± SEM. The p-

value for each proposed monosaccharide composition compared within all ten groups is also

given.

(XLSX)

S5 Table. The relative abundance of the acidic N-glycan classes detected in the CRC and

healthy colon tissue samples analyzed in the groups in this study. The relative abundance of

each N-glycan class is shown as the average ± SEM. The p-value for each N-glycan class com-

pared within all ten groups is also given.

(XLSX)
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