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Abstract

Background:  Little is known about whether off-the-shelf wearable sensor data can contribute to fall risk classification or
complement clinical assessment tools such as the Resident Assessment Instrument-Home Care (RAI-HC).
Objective:  This study aimed to (1) investigate the similarities and differences in physical activity (PA), heart rate, and night
sleep in a sample of community-dwelling older adults with varying fall histories using a smart wrist-worn device and (2) create
and evaluate fall risk classification models based on (i) wearable data, (ii) the RAI-HC, and (iii) the combination of wearable and
RAI-HC data.
Methods:  A prospective, observational study was conducted among 3 faller groups (G0, G1, G2+) based on the number of
previous falls (0, 1, ≥2 falls) in a sample of older community-dwelling adults. Each participant was requested to wear a smart
wristband for 7 consecutive days while carrying out day-to-day activities in their normal lives. The wearable and RAI-HC
assessment data were analyzed and utilized to create fall risk classification models, with 3 supervised machine learning algorithms:
logistic regression, decision tree, and random forest (RF).
Results:  Of 40 participants aged 65 to 93 years, 16 (40%) had no previous falls, whereas 8 (20%) and 16 (40%) had experienced
1 and multiple (≥2) falls, respectively. Level of PA as measured by average daily steps was significantly different between groups
(P=.04). In the 3 faller group classification, RF achieved the best accuracy of 83.8% using both wearable and RAI-HC data, which
is 13.5% higher than that of using the RAI-HC data only and 18.9% higher than that of using wearable data exclusively. In
discriminating between {G0+G1} and G2+, RF achieved the best area under the receiver operating characteristic curve of 0.894
(overall accuracy of 89.2%) based on wearable and RAI-HC data. Discrimination between G0 and {G1+G2+} did not result in
better classification performance than that between {G0+G1} and G2+.

Conclusions:  Both wearable data and the RAI-HC assessment can contribute to fall risk classification. All the classification
models revealed that RAI-HC outperforms wearable data, and the best performance was achieved with the combination of 2
datasets. Future studies in fall risk assessment should consider using wearable technologies to supplement resident assessment
instruments.

(JMIR Aging 2019;2(1):e12153)   doi:10.2196/12153
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Introduction

Background
By definition, a fall refers to “an event which results in a person
coming to rest inadvertently on the ground or floor or other
lower level” [1]. The high prevalence and negative impact of
falls in older people have become a serious public health issue
that affects the independence of older adults, distress in
caregivers, and health service utilization [2]. Due to the
multifactorial nature of risk factors for falls, current fall
prevention strategies are comprehensive and multifaceted [3,4].
An important goal for geriatrics and public health agencies is
to accurately identify fall risks and mitigate physical and
psychological harm caused by falls. In fact, falls have been used
as indicators of the quality of care in home care settings [5,6].

Heart rate (HR) and heart rate variability (HRV) are
hypothesized biomarkers of frailty, which implies a growing
susceptibility to stressors and functional decline [7,8]. These
two parameters mirror the adaptability of the heart to stressors.
The study by Ogliari et al (2015) [7] examined whether HR and
HRV are correlated with functional status in the aging
population. Participants with the highest resting HR had
increased risk of decline in performing basic activities on the
Activities of Daily Living (ADL) scale and Instrumental
Activities of Daily Living (IADL) tasks, with a nearly 80% and
a 35% increased risk, respectively [7]. Participants with the
lowest HRV had approximately a 25% increased risk of decline
in performing the ADL and IADL tasks [7]. The results have
shown that a higher resting HR and lower HRV in the target
population was associated with poorer functional performance
in daily life, as well as higher risk of functional decline [7].

Frail older people expose to great risk for serious health
problems, including falls, disability, hospitalization, and
mortality [9]. A functional decline and a higher level of frailty
caused by the muscular atrophy would escalate the risk for falls
in older population [8,10,11]. The occurrence of falls increases
with frailty level [4,11]. Frailty and HRV are not only indicators
of the decline in health condition [7,8,10] but also served as
independent predictors for incident falls in several studies
[10,11].

Various studies have shown that loss of sleep implicates a
decline in the sense of balance, associating with a number of
cognitive impairments such as poor concentration, memory loss,
low reaction, and impaired problem solving and cognition
[12-14]. It has suggested that insufficient sleep may result in
risk for falls [12-16]. Short sleep duration, which accounts for
habitual night sleep difficulties, is significantly associated with
falls [12-16].

Evidence-based fall risk assessment can lead to proper
interventions for people who are at risk for falls. To categorize
subjects into faller (high risk) and nonfaller (low risk) groups,
the 3 main criteria identified in the literature [17] for such
classification are as follows: (1) previous history of falls, (2)
prediction of future falls, and (3) clinical assessments. Several
studies have incorporated a variety of independent predictors
into prediction models based on clinical tests. For example, the

Berg Balance Test [18], clinical- and impairment-based tests
[19], neuromuscular or cognitive tests [20], the blood pressure
change on upright tilting [21], depressive symptoms [22], sleep
problems or urinary incontinence [16], and frailty [10,11] have
been utilized to predict falls in the aging population. These
clinical assessments often use assessment scores to categorize
older adults into a binary outcome, that is, fallers or nonfallers
[23]. However, this type of assessment oversimplifies the risk
of falling in older people, which is more accurately classified
by continuous fuzzy boundaries between multiple risk categories
rather than a hard boundary between only two groups [23].

Recent technological advances have incorporated wearable
sensor-based systems into the protocols of fall risk assessment
[17,23]. A wearable sensor system can continuously monitor
body movement during day-to-day activities, carried out
naturally in real-life environments [17,23]. In a review of fall
risk assessment in older adults with sensor-based systems,
Howcroft et al (2013) [17] evaluated inertial sensors, sensor
location, assessed activity, variables, and prediction models of
fall risk assessment [17]. The study revealed that variables
measured by sensors have the potential to predict individuals
who are at risk of falling and forecast the time-to-incident [17].
Marschollek et al (2011) [23] conducted a study to compare the
predictive performance between the conventional fall risk
assessment and sensor-based assessment in older adults [23].
The results demonstrated that accelerometer-based fall risk
model has almost the same performance as a conventional
assessment model [23]. Due to the multifactorial risk factors
for falls, sensor-based prediction models may provide important
information to conventional assessments and are possible to
perform within real-life environments at low cost [17,23].

The interRAI suite of assessment instruments [24,25] are
designed to provide standardized clinical data to support care
planning in a variety of clinical domains. For example, fall
assessments are used to guide care and service planning in a
wide range of settings, from independent residences through
nursing homes and palliative care [24,26]. The Resident
Assessment Instrument for Home Care (RAI-HC) is a baseline
geriatric assessment to evaluate older adults who utilize home
care services by assessing their needs and ability levels [5,27].
With a variety of assessment information, the RAI-HC system
is composed of two key components: the Minimum Data
Set-Home Care, which is the basal portion of the RAI-HC, and
the Clinical Assessment Protocols [27]. In addition, various
clinical scales and indices within each interRAI instrument can
also be used to evaluate each client’s current health conditions
(Scales: status and outcome measures). For instance, the
measurement of ADL, cognition, communication, pain,
behavior, and mood utilizes standardized scoring schema to
generate summary indicators [26].

The interRAI assessment system is not only a suite of
comprehensive and standardized assessment tools that are used
in different care settings but has been utilized in several
fall-related studies [18,27-44]. For example, Muir et al (2008)
[18] conducted 1 prospective cohort study using the Berg
Balance Scale to examine the predictive effectiveness for any
fall (≥1 fall), recurrent falls (≥2 falls), and injury-related falls
based on the interRAI Community Health Assessment (CHA)
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[18]. The CHA and RAI-HC assessments have been widely
used in studies investigating the risk factors for falls
[18,27,32,33], fear of falling [28-31], and the comparative
analyses of nonfallers versus fallers, nonfallers and one-time
fallers versus recurrent fallers [18,27,32,33].

Objectives
To our knowledge, no prior research has combined off-the-shelf
wearable sensor data with the RAI-HC assessment to examine
the characteristics of different faller groups in older adults living
in community, and, furthermore, to build classification models
for fall risk assessment using these two data sources. This study
aimed to (1) investigate the similarities and differences in
physical activity (PA), HR, and night sleep patterns, which are
risk factors associated with falls [7,12-14,45,46], among 3
independent older adult faller groups in community-based
settings, with continuous measurements from a smart wrist-worn
device and (2) create and evaluate fall risk classification models
based on (i) wearable data (Wearable), (ii) the RAI-HC, and
(iii) the combination of wearable and RAI-HC data (Wearable
+ RAI-HC). The number of previous falls was targeted as a
proxy for fall risk throughout this study [18,27,32,33,47,48].

Methods

Study Design
Using a smart wearable device, a prospective, observational
study was conducted to investigate the similarities and
differences among 3 independent faller groups, that is, nonfaller
(G0, people who have zero (0) falls in the last 90 days), single
faller (G1, people who have 1 fall in the last 90 days), and
recurrent faller (G2+, people who have ≥2 falls in the last 90
days) in community-based settings, in a sample of older adults
living in community settings, with continuous measurements
of PA, HR, and night sleep. The nonfaller, single faller, or
recurrent faller stratus is within 90 days to be consistent with
the standard interval of the reassessment of RAI-HC [49].

Each participant was requested to wear the Xiaomi Mi Band
Pulse 1S (hereinafter referred to as the Mi Band) on their wrist
for 7 consecutive days while carrying out day-to-day activities
in their normal lives. The Mi Band is a wearable activity tracker,
monitoring the activity of movements, tracing quality of sleep,
and HR. It is a low-cost band, weighted 5.5 g, and comes with
power-efficient accelerometer and photoelectric HR sensor [50].
Xiaomi Corporation, a Chinese electronics company
headquartered in Beijing, China is the manufacturer.

The battery capacity of the Mi Band is 45 mAh [50], with
approximately 30 days standby time. We tested the battery life
before data collection under normal wearing condition (ie,
wearing the Mi Band while carrying out day-to-day activities
naturally in real-life environments), which lasted more than 15
days. Before collecting data from each participant, the battery
was fully charged. To ensure that no running-out-of-battery
incident occurred during data collection, participants were given
instructions and demonstration on when and how to recharge
the battery by themselves before data collection commence. A

printout copy of the instruction was given to each participant
as part of the information kit during data collection period.

A Moto E mobile phone was paired with each Mi Band
wirelessly via Bluetooth to collect data, synchronize, and provide
health metrics to each individual. A total of two companion
apps, Mi Fit and Mi Band Tools, were installed on each mobile
phone to facilitate data collection. The wearable and RAI-HC
data were further analyzed to create fall risk classification
models and evaluate their classification performance.

Participant Recruitment
A sample of community-dwelling older people, who were active
clients of the Waterloo Wellington Community Care Access
Centre (WW CCAC) and were assessed with the RAI-HC
instrument within a 1-year time window, was recruited in the
Kitchener, Waterloo, Cambridge, and Guelph areas in Ontario,
Canada between August and December 2016.

The inclusion criteria were that the participants must have been
aged ≥65 years, living independently with or without family
members at-home or community-based settings (eg, retirement
home), and were able to walk without any assistive device.
Individuals who have been diagnosed with end-stage disease
or have been on medications of benzodiazepines,
antidepressants, cardiac medications, narcotics, and
anticonvulsants were excluded from participating in this study.

Informed written consent was obtained from all participants.
This study was granted research ethics clearance by a University
of Waterloo Research Ethics Committee. The study was also
approved by the institutional review board at WW CCAC.

Measurements

Number of Previous Falls
To assess the fall frequency, participants responded to the
following questions upon enrollment and at the end of the
wearable data collection phase: (1) “Have you fallen in the last
90 days?” (2) “How many times have you fallen in the last 90
days?” As the reassessment of RAI-HC at a standard interval
is 90 days [49], we complied with this time window for the
measurement of falls. Participants were categorized into G0,
G1, or G2+ based on their self-reported number of falls at the
end of the wearable data collection phase.

There was a time gap between the RAI-HC assessment and
wearable data collection (meangap 107.6 days, SD 18.1 days;
range –67.5-431 days). Some participants had new falls since
their last RAI-HC assessments, which resulted in discrepancies
between the self-reported fall frequency at wearable data
collection and the corresponding assessment on the RAI-HC
system. To be consistent, self-reported falls frequency at the
end of the wearable data collection phase was used when
analyzing wearable data only. The fall frequency on the RAI-HC
assessment was used for model-building based on the RAI-HC
data only as well as Wearable + RAI-HC data. In case some
participants self-reported fewer number of falls than what had
been reported by their primary caregivers, the higher number
of falls was used in this study.
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Table 1. Variable description of wearable data.

UnitDescriptionVariable

MeterDaily average distance on walking, jogging, or runningDaily distance

NumberDaily average steps on walking, jogging, or runningDaily steps

SecondDaily average time people spend on walking, jogging, or runningDaily activity time

BPMDaily average heart beats per minute (BPM) while at complete rest (sleeping)Daily resting heart rate (HR)

BPMDaily average heart beats per minute while at walkDaily walking HR

MinuteDaily average duration while at sleep at nightDaily sleep duration

MinuteDaily average duration while at deep sleep at nightDaily deep sleep time

MinuteDaily average duration while at light sleep at nightDaily light sleep time

MinuteDaily average duration while awake at nightDaily awake time

Wearable Data
Wearable sensor data collected from the Mi Band included
continuous monitoring of PA, HR, and night sleep. PA and night
sleep data were collected every minute, whereas HR was
monitored every 2 min. By default, the Mi Band and Mi Fit app
present no built-in function to extract data. A third-party script
allowed data extraction via Android backup [51]. Initial
wearable data were aggregated as daily averages for the analyses
in this study. A list of individual variables derived from the Mi
Band is presented in Table 1.

Resident Assessment Instrument-Home Care Data
All participants with informed written consent contributed 1
assessment each, with the latest one being selected. In this study,
we used 210 variables in the RAI-HC data for analyses,
including demographic information, assessment information
across all the screening domains (see Multimedia Appendix 1).

Statistical Data Analysis
Data analyses were performed using R (version 3.4.0), a free
statistical software for data analysis by the R Foundation for
Statistical Computing. Of the 38 variables, 40 cases and 1520
values in the wearable data, 55.3%, 65%, and 6.4% have at least
1 missing value, respectively, in terms of 1- (PA and sleep) and
2-min (HR) resolution. Of the 210 variables and 40 cases in the
RAI-HC dataset, 19.8% and 100% had at least 1 missing value,
respectively. Of the total of 8400 values corresponding to all
combinations of the 210 variables and 40 cases, 16.3% were
missing. The missing values in the RAI-HC dataset were
replaced by referring to previous assessments. The missing
values in the wearable data were imputed using the maximum
likelihood estimates with the expectation-maximization
algorithm (eg, [52]).

Descriptive statistics and simple statistical analyses were
conducted to examine the similarities and differences in
wearable data collected from the Mi Band from all participants.
All wearable parameters (continuous variables) extracted from
the Mi Band were tested for normality by using the Shapiro-Wilk
test. The one-way analysis of variance (ANOVA) and
Kruskal-Wallis H test were conducted to compare the means
and medians of the 3 independent groups (G0, G1, and G2+) for
normally distributed and skewed data, respectively. A two-way

repeated measures ANOVA test was performed to examine the
differences between groups with repeated measurements of PA,
HR, and night sleep, and hence, evaluate if there was an
interaction between the 7 days of measurement and groups. In
all statistical analyses, P values ≤.05 were considered significant.
However, in case of any main effect statistical significance
among all groups, pairwise comparisons between groups were
investigated with Bonferroni correction.

Fall Risk Classification
To build the classification models and evaluate the classification
performance of several models in classifying fall risks, a 2-step
approach was employed. First, the ordinal attribute of falls (0,
1, and ≥2) within the last 90 days was used as the outcome
variable, representing 3 faller groups (G0, G1, and G2+,
respectively), for building proportional odds models (POM).
Second, the 3-class fall risk was dichotomized in two different
ways: (1) grouping {G1+G2+} and comparing with G0 and (2)
grouping {G0+G1} and comparing with G2+. A total of 3
supervised machine learning algorithms were utilized: logistic
regression, decision tree (DT), and random forest (RF).

Given the large number of features in both datasets, there was
a good chance that many of them are collinear or redundant.
The multicollinearity test was conducted, and the collinear
variables with a high variance inflation factor (≥5) were omitted
for further analyses [53]. To identify discriminative independent
variables contributing to fall frequency and to create accurate
classification models, the recursive feature elimination algorithm
available in the Caret R package was employed to rank-order
each predictor’s importance to classification. As both the
wearable and RAI-HC datasets had many variables and relatively
few cases, the objective of this feature selection process was to
get a total number of best subset features of no more than 10%
of the sample size for the final classification models.

Classification models were trained based on (1) Wearable, (2)
RAI-HC, and (3) Wearable + RAI-HC. The growing method
for DT models was Classification and Regression Trees
algorithm, with pruning to avoid overfitting. Key parameters
included pruned, minimum child size=3, minimum parent
size=5, and Gini was applied as the impurity measure. Key
parameters for RF models included the number of trees
grown=100, minimum size of terminal nodes=5, and the number
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of variables sampled at each split randomly=3. Due to the small
size of training data in this study, each final model was evaluated
using leave-one-out cross-validation. For the 3-class outcome,
the classification accuracy, recall, precision, and F1 score were
calculated for each final model, and the area under the receiver
operating characteristic curve (AUC), accuracy, recall, precision,
and F1 score were calculated for the dichotomized fall risks. To
minimize the impact of different fall assessment at two study
elements on classification performance, individuals who had
an additional fall each in between the RAI-HC and wearable
sensor data collection within the last 90 days’ time window
were excluded for model building.

Results

Subject Characteristics
Of the 40 participants aged 65 to 93 years in this study, 22 (55%)
were males, and 18 (45%) were females. Table 2 shows the
basic characteristics of all participants in this study based on
their latest RAI-HC assessments.

Statistical Analysis
The results of the Shapiro-Wilk tests of normality showed that
only the daily activity time (G0: P=.67, G1: P=.30, G2+: P=.09)
was normally distributed in all 3 groups. Table 3 summarizes
the PA, HR, and night sleep measurements collected by the Mi
Band from different faller groups.

Table 2. Baseline characteristics of the participants.

TotalG2+
cG1

bG0
aCharacteristics

40 (100)16 (40.0)8 (20.0)16 (40.0)Partcipants, n (%)

76.0 (7.2)77.8 (7.4)74.0 (6.3)75.2 (7.5)Age (years), mean (SD)

74.8 (7.2)76.1 (6.5)71.9 (2.1)73.8 (9.8)Males

77.3 (7.2)82.9 (8.6)75.3 (7.9)76.2 (5.6)Females

Age group (years), n (%)

21 (52.5)6 (15.0)7 (17.5)8 (20.0)65-74

13 (32.5)7 (17.5)06 (15.0)75-84

6 (15.0)3 (7.5)1 (2.5)2 (5.0)85-94

Gender, n (%)

22 (55.0)12 (30.0)3 (7.5)7 (17.5)Males

18 (45.0)4 (10.0)5 (12.5)9 (22.5)Females

aG0 people who have zero (0) falls in the last 90 days.
bG1 people who have one (1) fall in the last 90 days.
cG2+ people who have two or more (≥2) falls in the last 90 days.

Table 3. The measurements of wearable components by group.

G2+
cG1

bG0
aMeasurements

490.8 (103.3-1551.2)908.7 (163.4-1575.1)2040.7 (571.1-2643.2)Daily distance (meters), median (IQRd)

768.1 (145.7-2408.6)1415.3 (238.1-2441.5)3094.1 (889.4-4029.5)Daily steps, median (IQR)

1732.4 (1670.7)1921.4 (1264.1)3160.2 (1725.2)Daily activity time (seconds), mean (SD)

77.7 (72.8-81.7)78.7 (74.6-84.7)69.6 (68.3-81.3)Daily resting heart rate, median (IQR)

103.5 (92.2-130.0)94.6 (91.6-105.3)96.4 (93.4-101.1)Daily walking heart rate, median (IQR)

134.3 (112.8-234.8)287.9 (144.8-428.0)282.7 (247.8-368.3)Daily sleep duration (min), median (IQR)

27.1 (11.4-53.2)69.1 (11.9-146.6)67.7 (27.3-102.0)Daily deep sleep time (min), median (IQR)

116.0 (90.4-184.7)200.0 (105.3-290.5)231.4 (146.2-273.3)Daily light sleep time (min), median (IQR)

6.1 (1.0-38.1)11.9 (2.9-39.1)21.0 (11.6-40.8)Daily awake time (min), median (IQR)

aG0 people who have zero (0) falls in the last 90 days.
bG1 people who have one (1) fall in the last 90 days.
cG2+ people who have two or more (≥2) falls in the last 90 days.
dIQR: interquartile range.
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Physical Activity Measurements
The one-way ANOVA test results showed that there was a
significant difference in daily activity time (P=.04). However,
the follow-up comparisons with the Games-Howell test indicated
that the actual pairwise differences were not significant.

The Kruskal-Wallis H test results revealed that there was a
significant difference in daily steps among the 3 faller groups
(P=.04), with a mean rank daily steps of 26.53 for G0, 18.00 for
G1, and 15.67 for G2+. The posthoc Mann-Whitney test results
showed that the daily steps were not significantly different
between any two comparison groups, with a Bonferroni
correction at a 0.05/3=0.0167 level of significance.

Similarly, a significant difference was found in daily distance
among 3 faller groups (P=.04), with a mean rank daily distance
of 26.53, 17.92, and 15.75 for G0, G1, and G2+, respectively.
The posthoc Mann-Whitney tests with Bonferroni correction
indicated that daily distance was not significantly different
between any two comparison groups.

The two-way repeated measures ANOVA test results revealed
that there was a significant main effect of steps by days between
groups (P=.02). The posthoc tests with Bonferroni correction
showed no significant pairwise differences among the 3 groups.
The main effect of day of measurement was insignificant,
indicating that there was no consistent difference in step counts
across different days, if the groups being measured were ignored.
No significant interaction effect between daily steps and the 3
faller groups was detected.

Heart Rate Measurements
The Kruskal-Wallis H test results indicated no significant
difference in daily resting HR or daily walking HR between
groups.

Furthermore, the mean, median, SD, and interquartile range
(IQR) of each participant’s daily average HR was examined for
differences across the groups. The results of the normality test

revealed that the SD of daily average HR was normally
distributed across all 3 groups. The mean, median, and IQR of
daily average HR were shown to be significantly non-normal
(P<.001, P<.001, and P=.007, respectively).

The one-way ANOVA test results showed that there was no
significant difference in the participants’ SD of daily average
HR. The Kruskal-Wallis H test results revealed no significant
difference in the mean, median, or IQR of daily average HR
between groups. The two-way repeated measures ANOVA test
results revealed an insignificant main effect of HR by days
between groups. The main effect of the days being measured
was nonsignificant, indicating that there was no consistent
difference in HR across different days, if the groups being
measured were ignored. No significant interaction effect between
daily average HR and the 3 faller groups was detected.

Night Sleep Measurements
The Kruskal-Wallis H test results revealed that there was no
statistically significant difference in daily sleep duration, daily
deep sleep time, daily light sleep time, or daily awake time
among 3 faller groups.

The two-way repeated measures ANOVA test results showed
an insignificant main effect of sleep duration by days between
groups. The main effect of the days being measured was
insignificant, indicating that there was no consistent difference
in sleep duration across different days, if the groups being
measured were ignored. No significant interaction effect between
daily sleep duration and the 3 faller groups was detected.

Three-Class Classification Models
Table 4 shows the 3-class classification results for POM, DT,
or RF on Wearable, RAI-HC, and Wearable+RAI-HC. In the 3
faller group classification, RF achieved the best accuracy of
0.838 (+/-0.199), recall of 0.775 (+/-0.233), precision of 0.730
(+/-0.259), and F1 score of 0.748 (+/-0.248) using both wearable
and RAI-HC data. The lowest accuracy occurred in POM using
wearable data.
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Table 4. Three-class classification results for proportional odds models, decision tree, and random forest on Wearable, Resident Assessment
Instrument-Home Care, and Wearable+Resident Assessment Instrument-Home Care.

F1PrecisionRecallAccuracyDataset and classifier

Wearable

0.286 (+/-0.151)0.267 (+/-0.147)0.351 (+/-0.177)0.378 (+/-0.198)POMa

0.443 (+/-0.184)0.389 (+/-0.186)0.559 (+/-0.156)0.595 (+/-0.184)DTb

0.568 (+/-0.223)0.550 (+/-0.242)0.622 (+/-0.215)0.649 (+/-0.166)RFc

RAI-HCd

0.449 (+/-0.229)0.417 (+/-0.238)0.509 (+/-0.216)0.568 (+/-0.211)POM

0.581 (+/-0.270)0.554 (+/-0.299)0.649 (+/-0.232)0.703 (+/-0.218)DT

0.634 (+/-0.314)0.649 (+/-0.321)0.662 (+/-0.299)0.703 (+/-0.288)RF

Wearable + RAI-HC

0.584 (+/-0.191)0.593 (+/-0.195)0.626 (+/-0.195)0.676 (+/-0.170)POM

0.662 (+/-0.266)0.643 (+/-0.275)0.703 (+/-0.254)0.757 (+/-0.221)DT

0.748 (+/-0.248)0.730 (+/-0.259)0.775 (+/-0.233)0.838 (+/-0.199)RF

aPOM: proportional odds model.
bDT: decision tree.
cRF: random forest.
dRAI-HC: Resident Assessment Instrument-Home Care.

Binary Classification Models for G0 Versus {G1+G2+}
and {G0+G1} Versus G2+

Table 5 tabulates the feature analysis results for all classification
models, listing various features that have been selected in the
3 datasets with 3-class classification and dichotomization in
two different ways. Table 6 and Table 7 list the binary
classification results for the POM, DT, or RF on Wearable,
RAI-HC, and Wearable+RAI-HC, utilizing two different ways
of dichotomizing the 3-class outcome. In terms of binary
classification models for {G0+G1} versus G2+, RF achieved the

best AUC of 0.894 (+/-0.155), overall accuracy of 0.892
(+/-0.160), recall of 0.908 (+/-0.135), precision of 0.928
(+/-0.106), and F1 score of 0.888 (+/-0.166) based on Wearable
+ RAI-HC. The AUCs of RF based on RAI-HC and Wearable
data exclusively were 0.836 (+/-0.206) and 0.795 (+/-0.247),
overall accuracies of 0.838 (+/-0.192) and 0.784 (+/-0.276),
respectively; whereas for G0 versus {G1+G2+}, RF achieved the
best AUC of 0.865 (+/-0.125), overall accuracy of 0.865
(+/-0.132) based on Wearable + RAI-HC dataset. The AUCs
of RF on RAI-HC and Wearable exclusively were 0.858
(+/-0.160) and 0.757 (+/-0.250), overall accuracies of 0.865
(+/-0.145) and 0.784 (+/-0.236), respectively.
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Table 5. Feature analyses for all classification models.

{G0+G1} versus G2+G0 versus {G1+G2+}Three-classDataset

No. of times being
selected in each
LOOCV iteration, n
(%)

Top 4 featuresNo. of times being
selected in each
LOOCV iteration, n
(%)

Top 4 featuresNo. of times being
selected in each
LOOCVa iteration,
n (%)

Top 4 features

37 (100)Daily walking HR37 (100)Daily steps37 (100)Daily walking HRbWearable

26 (70.3)Daily sleep duration37 (100)Daily walking HR36 (97.3)Daily steps

23 (62.2)Daily resting HR36 (97.3)Median of daily avg.
HR

27 (73)Daily sleep duration

23 (62.2)Daily light sleep17 (45.9)Daily resting HR14 (37.8)SD of daily avg. HR

37 (100)MAPLe37 (100)MAPLe36 (97.3)MAPLedRAI-HCc

35 (94.6)No. of ER Visits34 (91.9)IADLf-difficulty
prep meal

31 (83.8)No. of ERe Visits

27 (73.0)Short-term memory33 (89.2)Psychiatric diagnosis29 (80)IADL-difficulty prep
meal

10 (27.0)Oral-problem chew-
ing

27 (73.0)Overall change in
care needs

20 (57.5)Psychiatric diagnosis

35 (94.6)MAPLe36 (97.3)MAPLe34 (91.9)MAPLeWearable +
RAI-HC

32 (86.5)No. of ER visits32 (86.5)IADL-difficulty prep
meal

33 (89.2)No. of ER visits

32 (86.5)Daily walking HR25 (67.6)Overall change in
care needs

33 (89.2)IADL-difficulty prep
meal

22 (59.5)Short-term memory24 (64.9)Daily steps33 (89.2)Daily steps

aLOOCV: leave-one-out cross-validation.
bHR: heart rate.
cRAI-HC: Resident Assessment Instrument-Home Care.
dMAPLe: The Method for Assigning Priority Levels.
eER: emergency room.
fIADL: instrumental activities of daily living.
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Table 6. Classification results for binary classification models G0. versus {G1+G2+}.

F1PrecisionRecallAccuracyAUCaDataset and classifier

Wearable

0.552 (+/-0.250)0.553 (+/-0.289)0.604 (+/-0.222)0.622 (+/-0.215)0.680 (+/-0.323)LRb

0.670 (+/-0.230)0.676 (+/-0.278)0.725 (+/-0.183)0.757 (+/-0.139)0.725 (+/-0.183)DTc

0.720 (+/-0.294)0.729 (+/-0.325)0.757 (+/-0.250)0.784 (+/-0.236)0.757 (+/-0.250)RFd

RAI-HCe

0.648 (+/-0.276)0.644 (+/-0.304)0.689 (+/-0.249)0.730 (+/-0.213)0.840 (+/-0.236)LR

0.836 (+/-0.179)0.868 (+/-0.181)0.856 (+/-0.153)0.865 (+/-0.132)0.856 (+/-0.153)DT

0.836 (+/-0.189)0.870 (+/-0.186)0.858 (+/-0.160)0.865 (+/-0.145)0.858 (+/-0.160)RF

Wearable + RAI-HC

0.755 (+/-0.246)0.778 (+/-0.255)0.766 (+/-0.232)0.784 (+/-0.224)0.743 (+/-0.251)LR

0.849 (+/-0.214)0.886 (+/-0.202)0.851 (+/-0.213)0.865 (+/-0.192)0.842 (+/-0.229)DT

0.853 (+/-0.139)0.908 (+/-0.094)0.865 (+/-0.125)0.865 (+/-0.132)0.865 (+/-0.125)RF

aAUC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cDT: decision tree.
dRF: random forest.
eRAI-HC: Resident Assessment Instrument-Home Care.

Table 7. Classification results for binary classification models {G0+G1} versus G2+

F1PrecisionRecallAccuracyAUCaDataset and classifier

Wearable

0.551 (+/-0.275)0.518 (+/-0.294)0.599 (+/-0.252)0.730 (+/-0.185)0.599 (+/-0.306)LRb

0.678 (+/-0.238)0.682 (+/-0.262)0.750 (+/-0.210)0.730 (+/-0.184)0.768 (+/-0.209)DTc

0.742 (+/-0.307)0.732 (+/-0.325)0.795 (+/-0.247)0.784 (+/-0.276)0.795 (+/-0.247)RFd

RAI-HCe

0.524 (+/-0.214)0.514 (+/-0.264)0.610 (+/-0.174)0.649 (+/-0.156)0.842 (+/-0.306)LR

0.799 (+/-0.206)0.836 (+/-0.217)0.836 (+/-0.149)0.811 (+/-0.187)0.836 (+/-0.149)DT

0.836 (+/-0.195)0.869 (+/-0.165)0.858 (+/-0.175)0.838 (+/-0.192)0.836 (+/-0.206)RF

Wearable + RAI-HC

0.626 (+/-0.231)0.657 (+/-0.281)0.676 (+/-0.200)0.703 (+/-0.172)0.838 (+/-0.234)LR

0.829 (+/-0.218)0.851 (+/-0.226)0.869 (+/-0.154)0.838 (+/-0.200)0.858 (+/-0.160)DT

0.888 (+/-0.166)0.928 (+/-0.106)0.908 (+/-0.135)0.892 (+/-0.160)0.894 (+/-0.155)RF

aAUC: area under the receiver operating characteristic curve.
bLR: logistic regression.
cDT: decision tree.
dRF: random forest.
eRAI-HC: Resident Assessment Instrument-Home Care.

Discussion

General Discussions
To the best of our knowledge, no prior study has combined
off-the-shelf wearable sensor data with the interRAI assessment

system to examine the characteristics of different faller groups
in community-dwelling older people, or to build fall risk
classification models with the combination of wearable and
interRAI data. There was a gap in knowledge necessary to
understand the associations between PA, HR, and night sleep

JMIR Aging 2019 | vol. 2 | iss. 1 | e12153 | p.9http://aging.jmir.org/2019/1/e12153/
(page number not for citation purposes)

Yang et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and different fall frequencies in the target population. This pilot
study aimed to fill this gap.

It was hypothesized that there were differences in PA, HR, and
night sleep among the two faller groups in the target population.
The statistical test results revealed a significant difference of
PA, including daily steps, daily distance, and daily activity time
between groups. The findings are consistent with the literature
regarding PA and falls, that is, the decline in PA is associated
with increased occurrences of falls [45,54]. However, the small
sample size could have made it difficult to detect significant
associations. Although there were group differences, the
subsequent pairwise comparisons were not significant.

The findings in this study are in line with previous research that
examined risk factors for falls in community-dwelling older
adults [27,28,32,33,47,54]. For example, Gaßmann et al (2009)
[47] examined predictors for single and recurrent fallers in older
people living in community, and the results indicated poor health
status, lower physical functioning, and mobility were risk factors
for falls [47]. In our study, the top features (Table 5)
incorporated into model-building were associated with poor
health status, such as number of emergency room (ER) visits
and IADL from the RAI-HC data, which are major risk factors
for falls. As a baseline geriatric assessment to evaluate older
adults who utilize home care services, the RAI-HC data
represent a comprehensive assessment framework, which may
serve well as a fall risk screening method. Similarly, wearable
data contain discriminatory power in classifying fall risks. For
instance, daily resting HR derived from the wearable device
was associated with frailty, which was considered a risk factor
for falls [7].

In the 3 faller group classification, RF achieved the best
accuracy of using both wearable and RAI-HC data. It reveals
that to achieve the best accuracy for classifying an individual
into 1 of the 3 faller groups (G0, G1, or G2+), applying the RF
algorithm on both wearable and RAI-HC data outperforms all
the other methods (Table 4). Considering dichotomization of
the 3-class outcome, the combination of wearable and RAI-HC
data led to the best classification results as well (Table 6 and
Table 7). The 2 datasets represent distinct features associated
with fall risk. For example, the wearable data provide objective
information on motion, whereas the RAI-HC data represent a
comprehensive geriatric assessment, measuring IADL, cognition,
communication, pain, behavior, and mood utilizing standardized
scoring schema to generate summary indicators [26]. The
merging of these 2 datasets seems to bring in added value while
conducting automatic feature selection with the recursive feature
elimination algorithm.

Although dichotomizing to binary classification models, the RF
algorithm with both wearable, and RAI-HC data led to a strong
discrimination with the AUC of 0.894, whereas classifying an
individual into nonfallers and single-fallers {G0+G1} or recurrent
fallers G2+. It is recommended to use both datasets as Table 7
suggests, and the best features are the method for assigning
priority levels (MAPLe), number of ER visits, daily walking
HR, and short-term memory as tabulated in Table 5. Similarly,
comparing with all the methods and models that classify an
individual into nonfallers G0 and fallers {G1+G2+}, the RF

algorithm with both wearable, and RAI-HC data gave a strong
discrimination with the AUC of 0.865 (Table 6). Again, it is
recommended to use the combination of wearable and RAI-HC
data; the best features are MAPLe, IADL-difficulty prep meal,
overall change in care needs, and daily steps as tabulated in
Table 5.

Comparing the two different ways of dichotomization, that is, G0
versus {G1+G2+} and {G0+G1} versus G2+, the classification
models distinguishing {G0+G1} and G2+ had better performance.
However, the binary classification results of this study did not
show any consistent trend as to whether G1 is more similar to
G0 or G2+. There seems to be no clear and hard boundary
between any two adjacent groups. Intuitively, because of the
multifactorial nature of risk factors for falls, the boundaries on
both sides of G1 are expected to be fuzzy.

Limitations
The main limitation of this study is the relatively small sample
size, which is not robust to analyze the binary and accidental
data of falls, especially in a machine learning context. The small
number of participants compromise the accuracy and, therefore,
the validity of this study findings. Although it may be difficult
to generalize or draw conclusions relying on a small dataset,
the leave-one-out cross validation method helps address the
limitation of small dataset size. The gap between the wearable
and RAI-HC data collection and the subsequent decision of
using the fall frequency on the RAI-HC assessment for
model-building on Wearable + RAI-HC data may have limited
the true ability to compare various classifier performance
between the groups. In particular, the wearable component may
have been disadvantaged by correlating with outdated number
of falls. Evidence suggested a response bias, in particular, social
desirability bias may be introduced into this study, as some
participants underreported their fall frequencies while compared
with the responses from their primary caregivers. We used cross
sectional data instead of longitudinal outcomes, which is another
major limitation that has to be addressed in future work. The
findings from this study suffer from limited generalizability
because of the homogenous and small sample from
community-based settings within a particular geographic area.
Using retrospective fall occurrence and lack of follow-up
observation accounts for another limitation. In addition, although
the selected wearable device is capable of monitoring sleep
patterns at night with auto sleep detection, it cannot reliably
detect relatively short periods of sleep or fragmented sleep. As
such, the Mi Band in this study did not properly identify daytime
napping.

Conclusions
This study provides a knowledge base that future research in
fall risk assessment can leverage. By obtaining a better and
fuller understanding of fall risk and varying characteristics of
older people with different fall histories, more suggestions that
are informed can be made for individuals in this population.
Both wearable data and the RAI-HC assessment can contribute
to fall risk classification. All the classification models revealed
that RAI-HC outperforms wearable data and the best
performance was achieved with the combination of 2 datasets.

JMIR Aging 2019 | vol. 2 | iss. 1 | e12153 | p.10http://aging.jmir.org/2019/1/e12153/
(page number not for citation purposes)

Yang et alJMIR AGING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Future studies in fall risk assessment should consider using
wearable technologies to supplement resident assessment
instruments. Future studies are needed to work around the
limitations of this study. For instance, larger sample sizes,
reduced gap between the RAI-HC and wearable sensor

collection, longer study periods, and possibly fuller use of the
collected longitudinal data may be helpful in better estimating
fall risk classification performance. Studies on different older
adult populations are warranted, including clinical inpatients,
long-term care, or other institutional residents.
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