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Abstract

Domain architectures and catalytic functions of enzymes constitute the centerpieces of a metabolic network. These types of infor-

mation are formulated as a two-layered network consisting of domains, proteins, and reactions—a domain–protein–reaction (DPR)

network.Weproposeanalgorithmto reconstruct theevolutionaryhistoryofDPRnetworksacrossmultiple speciesandcategorize the

mechanisms of metabolic systems evolution in terms of network changes. The reconstructed history reveals distinct patterns of

evolutionary mechanisms between prokaryotic and eukaryotic networks. Although the evolutionary mechanisms in early ancestors

of prokaryotes and eukaryotes are quite similar, more novel and duplicated domain compositions with identical catalytic functions

arise along the eukaryotic lineage. In contrast, prokaryotic enzymes become more versatile by catalyzing multiple reactions with

similar chemical operations. Moreover, different metabolic pathways are enriched with distinct network evolution mechanisms. For

instance,althoughthepathwaysofsteroidbiosynthesis,proteinkinases,andglycosaminoglycanbiosynthesisall constituteprominent

featuresofanimal-specificphysiology, theirevolutionofdomainarchitecturesandcatalytic functions followsdistinctpatterns.Steroid

biosynthesis is enriched with reaction creations but retains a relatively conserved repertoire of domain compositions and proteins.

Proteinkinases retain conserved reactions but possess many novel domainsand proteins. In contrast, glycosaminoglycan biosynthesis

has high rates of reaction/protein creations and domain recruitments. Finally, we elicit and validate two general principles underlying

the evolution of DPR networks: 1) duplicated enzyme proteins possess similar catalytic functions and 2) the majority of novel domains

arise to catalyze novel reactions. These results shed new lights on the evolution of metabolic systems.
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Introduction

Metabolic systems are one of the most ancient and essential

systems of living organisms. Their importance to life, univer-

sality, and complexity are unequivocal. On the one hand, the

metabolism of many essential nutrients is highly conserved

across all life forms on earth. On the other hand, diverse sys-

tems have been tailored to meet the differential metabolic

demands in organisms living in distinct environments. These

phenomena have amazed generations of scientists and

inspired a great number of research endeavors in modern

biology.

The term “metabolic network” is overloaded as it encom-

passes at least three types of relations. First, one can focus on

the metabolites (substrates) of reactions and construct a

“metabolite-centric” network. Second, alternatively one can

focus on the catalytic functions of enzymes and construct an

“enzyme-centric” network. Third, most enzyme proteins are

composed of polypeptide subunits called domains. Each

domain possesses a distinct structural and functional charac-

teristic, and novel proteins can be formed by recombinations

of limited domains. Thus, one can focus on the domain archi-

tectures of enzymes and construct a “domain-centric” net-

work. In cellular organisms, the evolution of metabolic systems

is driven by the evolution of enzyme proteins. Furthermore,

the phylogenetic relations of enzymes are revealed by their

protein sequences. To study the evolution of metabolic

systems, we construct a network of domains, proteins, and

reactions to simultaneously characterize the domain architec-

tures and catalytic functions of enzyme proteins. We term this

network a “domain-protein-reaction network.”
The evolution of domain architectures and catalytic func-

tions of proteins in metabolic systems has been investigated

in many previous studies. By comparing the domain
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architectures from a wide range of species, generic patterns of

domain evolution have been uncovered. For instance, Chothia

et al. (2003) showed the majority of protein domains ap-

peared before the prokaryote–eukaryote split. Wuchty

(2001) demonstrated a power-law distribution on the

co-occurrence of protein domains. Apic et al. (2001) observed

prevalent domain recombinations across all three kingdoms of

life. Teichmann et al. (2001) indicated frequent turnover of

substrate binding domains and stability of catalytic domains in

enzymes. Vogel et al. (2005) demonstrated the conservation

of domain architectures in specific orders. Schmidt et al.

(2007) reviewed the molecular mechanisms originating

novel domains, and Kaessmann et al. (2002) demonstrated

signatures of domain shuffling in human genomes. Behzadi

and Vingron (2006) proposed an optimization algorithm to

reconstruct the domain architectures of ancestral proteins

from those of the extant species. Wiedenhoeft et al. (2011)

proposed an algorithm to construct a novel network-like struc-

ture representing domain architectures. Bjorklund et al. (2005)

calculated the differences of domain architectures between

homologous proteins and observed that the evolution of

most multidomain proteins could be explained by stepwise

insertions of single domains and tandem duplications of do-

mains. Recurrence of domain architectures in evolution was

investigated by multiple authors (e.g., Gough 2005; Przytycka

et al. 2006; Forslund et al. 2007), whereas disparate conclu-

sions were reached from those studies. Primary mechanisms

of altering the repertoire of domain architectures—including

protein duplications (Ohno 1970), domain recruitments

(Teichmann et al. 2001), gene loss (Kunin and Ouzounis

2003), and horizontal gene transfers (HGTs; Pal et al.

2005)—have also been investigated and reviewed in

(Bornberg-Bauer et al. 2005).

Tracing the history of enzymes belonging to specific func-

tional classes or pathways also leads to important discoveries.

For instance, Morowitz (1999) and Peregrin-Alves et al. (2003)

identified a conserved central core of metabolic reactions

shared by all cellular organisms. This core set consists of path-

ways involved in metabolism of carbohydrates, nucleotides,

and amino acids. Freilich et al. (2005) found that eukaryotes

expanded metabolic networks by increasing functional redun-

dancy, whereas prokaryotes’ evolution was dominated by

broadening the reaction repertoire. In particular, mammals

revealed a massive expansion of enzymes involved in signaling

and degradation. Pfeiffer et al. (2005) observed from simula-

tion studies that specialized metabolic systems could be

derived from a small multifunctional subsystem. Borenstein

et al. (2008) identified a metabolic network’s “seed set,”
the set of compounds that are exogenously acquired, and

inferred the environmental conditions of organisms from

their seed sets. Freilich et al. (2008) classified metabolic path-

ways by their emerging times along the lineage from the

common ancestor of cellular organisms to human. Mithani

et al. proposed a stochastic model for metabolic network

evolution by treating metabolites as nodes and reactions as

hyperedges in hypergraphs. The rates of adding or deleting

the reaction hyperedges could be independent, neighbor-

dependent (Mithani et al. 2009), or the hybrid of the two

models (Mithani et al. 2010).

Simultaneous characterization of domain architectures and

catalytic functions of enzymes can shed more light on the

evolution of metabolic systems. Two remarkable examples

are validation of the patchwork model for metabolic system

evolution and reconstruction of the phylogenetic relations of

metabolic pathways. By examining the pathways containing

homologs of newly recruited domains, it is discovered that a

novel metabolic pathway tends to recruit domains from

diverse existing pathways rather than inheriting from a

single source (Schmidt et al. 2003). Furthermore, by compar-

ing the functional annotations of enzymes containing each

domain family, Caetano-Anolles et al. attempted to recon-

struct the phylogenetic relations of metabolic pathways

(Caetano-Anolles and Caetano-Anolles 2003; Caetano-

Anolles et al. 2009). In addition, previously we examined

process-specific evolutionary patterns of domain compositions

and metabolic reactions between human and Escherichia coli

(Yeang and Baas 2009).

Despite the values of these studies, a principled approach

to reconstruct the history of metabolic network evolution

and a comprehensive categorization of its underlying

mechanisms are yet to be established. Given the domain archi-

tectures and catalytic functions of enzymes—domain–pro-

tein–reaction (DPR) networks—in a number of extant

species, our goals are to 1) reconstruct the evolutionary history

of these networks, 2) categorize the mechanisms of metabolic

system evolution in terms of network operations, and 3)

detect the enriched types of evolutionary mechanisms for

each pathway and relate the enriched evolutionary patterns

with the functions of pathways. To fulfill these goals, we pro-

pose an algorithm to reconstruct the DPR networks of ances-

tral species from observed data that minimize the total

number of network alterations along all lineages in the phyl-

ogeny. We confirm the accuracy of the reconstruction algo-

rithm by simulation studies and cross validations on the real

data sets. By applying the inference algorithm to the DPR

networks of 13 selected species, we find that prokaryotes

and eukaryotes share dominant evolutionary mechanisms in

the early stage but diverge substantially along each clade.

Refined analysis indicates heterogeneous patterns of evolu-

tionary mechanisms for distinct metabolic pathways. For in-

stance, although the pathways of steroid biosynthesis, protein

kinases, and glycosaminoglycan biosynthesis all contribute

critically to opisthokonta-specific physiology, their evolution

of domain architectures and catalytic functions follows distinct

patterns. Steroid biosynthesis is enriched with reaction cre-

ations but retains a relatively conserved repertoire of proteins

and domain architectures. Protein kinases retain conserved

reactions but possess many novel domains and proteins.
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In contrast, glycosaminoglycan biosynthesis has high rates of

reaction/protein creations and domain recruitments. Finally,

we elicit and validate two general principles underlying the

evolution of DPR networks: 1) duplicated enzyme proteins

possess similar catalytic functions and 2) the majority of

novel domains arise to catalyze novel reactions. The results

shed new lights on the evolution of metabolic networks.

Materials and Methods

Evolutionary History of DPR Networks

We define a DPR network as a two-layered graph

G ¼ ðVD [ VP [ VR, EDP [ EPRÞ consisting of three types of

nodes—domain families VD, proteins VP, and reactions

VR—and two types of edges—domain-protein edges EDP

and protein-reaction edges EPR. For conciseness, we will use

the term “domains” to denote both domain families and

members of the family that appear in specific proteins. A

domain-protein pair ðd, pÞ 2 EDP is adjacent in G if domain

d appears in protein p. A protein-reaction pair ðp, rÞ 2 EPR is

adjacent in G if protein p catalyzes reaction r. Therefore, G

simultaneously characterizes domain architectures and cataly-

tic functions of enzymes in a metabolic system. Notice that a

DPR network may include nonmetabolic enzyme proteins

such as protein kinases and protein glycosylation enzymes.

Given a collection of extant species S and their phyloge-

netic tree TS, each species (extant or ancestral) in TS possesses

a DPR network. The DPR network of an extant species can be

extracted from the data of domain architectures and enzy-

matic functions. However, the DPR networks of ancestral spe-

cies and their inheritance relations to the extant DPR networks

cannot be observed. An objective of this work is to reconstruct

the evolutionary history of the DPR networks in multiple

species.

We define an evolutionary history over a phylogeny TS as

a tuple H ¼ fG, Pag. G � fs 2 TS jGsg denotes the collection

of the DPR networks for all species in TS, where Gs is

the DPR network of species s. Pa � ð
S

s2TS
VPðGsÞÞ�

ð
S

s2TS
VPðGsÞ [ �Þ maps each protein p to its parent PaðpÞ.

PaðpÞ ¼ � if p is newly created and has no parent. A toy

example of the evolutionary history of DPR networks is illu-

strated in the left part of figure 1. A reconstruction algorithm

takes species phylogeny TS and extant DPR networks

fs 2 S jGsg as inputs and returns an evolutionary history H.

The following missing information has to be imputed:

1) domains, proteins, and reactions of each ancestral species,

2) domain-protein and protein-reaction edges in the ancestral

species, and 3) the parents of all proteins in each species.

Similar to other reconstruction algorithms (e.g., Hein 1990;

Fong et al. 2007; Pinney et al. 2007; Ma et al. 2008), we

employ a parsimonious assumption to infer the evolutionary

history of DPR networks. Parsimony demands the number

of changes over an evolutionary history to be minimized.
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There are 11 types of changes between two DPR networks

belonging to a parent–child species pair. They are listed as

follows and illustrated in the right part of figure 1.

1. Domain creation: A domain node appears in the child
species but not in the parent species.

2. Domain deletion: A domain node appears in the parent
species but not in the child species.

3. Protein duplication: A protein in the parent species has
multiple children in the child species.

4. Protein creation: A protein in the child species has no
parent.

5. Protein deletion: A protein in the parent species has no
child in the child species.

6. Reaction creation: A reaction node appears in the child
species but not in the parent species.

7. Reaction deletion: A reaction node appears in the parent
species but not in the child species.

8. Domain-protein edge addition: A domain-protein edge is
absent in the parent species and present in the child
species.

9. Domain-protein edge deletion: A domain-protein edge is
present in the parent species and absent in the child
species.

10.Protein-reaction edge addition: Similar to domain-protein
edge addition.

11.Protein-reaction edge deletion: Similar to domain-protein
edge deletion.

Casting Parsimonious Reconstruction of the Evolutionary
History of DPR Networks as Statistical Inference

A parsimonious solution minimizes the total number of net-

work changes between each parent–child species pair in the

phylogeny. For each species, we define discrete variables per-

taining to the following features of the evolutionary history H:

the parent label of each protein, binary variables indicating

whether each protein is valid, whether each protein is newly

created, whether each domain-protein or protein-reaction

edge is present or absent. Formally, for each species s 2 TS

we define the following variables:

– lspj
: distinct label of protein pj. In this work, we fixed lspj

¼ j.

– as
pj

: parent label of protein pj. as
pj
¼ 0 if pj has no parent.

– �s
di , pj

: a binary variable indicating the presence of a
domain-protein edge ðdi , pjÞ.

– �s
pj , rk

: a binary variable indicating the presence of a protein-
reaction edge ðpj , rkÞ.

– vs
pj

: a binary variable indicating that pj is newly created in s.

– �s
pj

: a binary variable indicating that pj is a valid protein in s.

An instantiation of values of all these variables specifies an

evolutionary history of DPR networks over a species tree T .

The cost function of an evolutionay history is the total number

of network changes (node creations/duplications/deletions

and edge additions/deletions) summed over all consecutive

species pairs in phylogeny TS:

C ¼
X
ðs1, s2Þ2T

X
j12s1

���� X
j22s2

�� ls1
pj1

, as2
pj2

� �
�s2

pj2
� 1

�����s1
pj1

"

+
X
j22s2

vs2
pj2
�s2

pj2
+
X
j22s2

vs2
pj2
�s2

pj2

X
i

�s2

di , pj2

+
X

k

�s2
pj2

, rk

 !

+
X
i, j1, j2

�� ls1
pj1

, as2
pj2

� �
� �s1

di , pj1

,�s2

di , pj2

� �
�s1

pj1
�s2

pj2

+
X

j1, j2, k

�� ls1
pj1

, as2
pj2

� �
� �s1

pj1
, rk

,�s2
pj2

, rk

� �
�s1

pj1
�s2

pj2

3
5:

ð1Þ

where ��ða, bÞ ¼ 1 if a ¼ b and 0 otherwise, and

�ða, bÞ ¼ 1� ��ða, bÞ. The six terms in equation (1) correspond

to the costs of protein duplications/deletions (term 1), protein

creations (term 2), domain-protein and protein-reaction edge

additions to new proteins (terms 3 and 4), and domain-protein

and protein-reaction edge additions or deletions on inherited

proteins (terms 5 and 6).

Three additional constraints are introduced to specify the

relations of variables:

vs2
pj2
¼
Y
j12s1

� ls1
pj1

, as2
pj2

� �
�s1

pj1
+1� �s1

pj1

h i
:

if �s1
pj
¼ 0 then none of the parent labels is lj :

if vs2
pj
¼ 1 then as2

pj
¼ 0:

ð2Þ

The first constraint stipulates that an inherited protein in s2

has a valid parent protein in s1. The second constraint stipu-

lates that only valid proteins can be parents. The third con-

straint states a tautology that a newly created protein has no

parent.Aparsimoniousevolutionary historyminimizes thecost func-

tion in equation (1) subjected to the constraints in equation (2).

Constrained optimization of a complex cost function of

integer variables is generally NP hard. Therefore, we translate

the cost function and constraints into a joint likelihood func-

tion of a probabilistic graphical model and apply a belief

propagation algorithm to find a (approximate) maximum-like-

lihood solution of the model. This approach has the merits of

simplicity—belief propagation essentially performs summa-

tions/maximizations and multiplications—and flexibility—arbi-

trary objective functions and constraints can be incorporated

in the model. In practice, it has been successfully applied to

large-scale problems of deciphering error-correction codes

(Kschischang et al. 2001), inferring the functions of protein–

DNA and protein–protein interactions (Yeang et al. 2004), and

determining the causal orders of genes in the regulatory net-

work (Vaske et al. 2009).

We convert the combinatoiral optimization problem into a

statistical inference problem by building a multiplicative like-

lihood function from the exponentiated cost and constraints.
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L ¼
Y

ðs1, s2Þ2T

Y
i, j1, j2, k

Y10

m¼1

f ðs1, s2Þ
m :

f ðs1, s2Þ

1 ls1
pj1

, as2
pj2

,�s2
pj2

, �j1, j2

� �
¼

1 if�j1, j2 ¼
�� ls1

pj1
, as2

pj2

� �
�s2

pj2
:

0 otherwise:

(

f ðs1, s2Þ

2 �j1, 1, � � � , �j1, M,�s1
pj1

� �
¼ e

�
P

j2

�j1 , j2

 !
�1

�����
������s1

pj1

:

f ðs1, s2Þ

3 vs2
pj2

,�s2
pj2

� �
¼ e

�v
s2
pj2
�

s2
pj2 :

f ðs1, s2Þ

4 vs2
pj2

,�s2

di , pj2

,�s2
pj2

� �
¼ e

�v
s2
pj2
�

s2
di , pj2

�
s2
pj2 :

f ðs1, s2Þ

5 vs2
pj2

,�s2
pj2

, rk
,�s2

pj2

� �
¼ e

�v
s2
pj2
�

s2
pj2

, rk
�

s2
pj2 :

f ðs1, s2Þ

6 ls1
pj1

, as2
pj2

,�s1

di , pj1

,�s2

di , pj2

,�s1
pj1

,�s2
pj2

� �
¼ e

� �� l
s1
pj1

, l
s2
pj2

� �
� �

s1
di , pj1

,�
s2
di , pj2

� �
�

s1
pj1
�

s2
pj2 :

f ðs1, s2Þ

7 ls1
pj1

, as2
pj2

,�s1
pj1

, rk
,�s2

pj2
, rk

,�s1
pj1

,�s2
pj2

� �
¼ e

� �� l
s1
pj1

, l
s2
pj2

� �
� �

s1
pj1

, rk
,�

s2
pj2

, rk

� �
�

s1
pj1
�

s2
pj2 :

f ðs1, s2Þ

8 vs2
pj2

, as2
pj2

, ls1
p1

, � � � , ls1
pM

,�s1
p1

, � � � ,�s1
pM

� �
¼

1 if vs2
pj2
¼
Q

j12s1

� ls1
pj1

, as2
pj2

� �
�s1

pj1
+1� �s1

pj1

h i
:

0 other wise:

8<
:

f ðs1, s2Þ

9 ls1
pj

,�s1
pj

, as2
p1

, � � � , as2
pM

� �
¼

1 if �s1
pj
¼ 1

� �
_ �s1

pj
¼ 0Þ ^ ls1

pj
6¼ as2

p1

� �
^ � � � ^ ðls1

pj
6¼ as2

pM

� �h i
:

0 other wise:

(

f ðs1, s2Þ

10 vs2
pj

, as2
pj

� �
¼

1 if as2
pj
¼ 0

� �
^ vs2

pj
¼ 1

� �
:

1 if as2
pj
> 0

� �
^ vs2

pj
¼ 0

� �
:

0 other wise:

8>>><
>>>:

ð3Þ

Multiplication is taken over the indices of adjacent species

pairs ðs1, s2Þ in the phylogeny, domains (i), parent–child pro-

tein pairs (j1 and j2), reactions (k), and factor types (m). Factors

f ðs1, s2Þ

1 � f ðs1, s2Þ

7 correspond to the terms in the cost function in

equation (1), and factors f s1, s2ð Þ

8 � f s1, s2ð Þ

10 correspond to the

constraints in equation (2).

Equation (3) is the joint likelihood function of a factor graph

model (Kschischang et al. 2001). The model can be visualized

as a bipartite graph. Nodes of the graph correspond to vari-

ables and factors in the likelihood function. An edge ðx, f Þ

between a variable x and a factor f denotes that x is an

argument of f .

The max-product algorithm is employed to find an approx-

imate solution of maximum likelihood variable configurations

of equation (3) (Kschischang et al. 2001). In brief, message

functions are defined over edges in the factor graph. In each

iteration, messages are updated according to the messages

incident from neighbors. A variable! factor message is the

product of other messages incident to the variable. A

factor! variable message is the max marginalization of the

product of the factor and other messages incident to the

factor. Message updates continue until all variables converge.

The belief function of a variable is the product of all messages

incident to the variable. An optimal configuration is obtained

by iteratively fixing variables according to belief functions.

Detailed operations are explained in Kschischang et al.

(2001) and the supplementary text, Supplementary Material

online.

Simultaneous optimization of all variables with max pro-

duct may give a poor solution due to the highly

underconstrained nature of the problem. There exist a large

number of optimal/suboptimal configurations, and most of

them are likely unrealistic. To alleviate this problem, we parti-

tion the variables into two sets—protein parent labels and

edge presence—and iteratively fix one set of variables and

infer the other until both converge. The initial values of protein

parent labels are obtained from the template phylogenetic

relations of observed proteins (gene trees) according to their

sequences and domain compositions.

Constructing the Initial Protein Trees

The initial protein trees are inferred from the domain compo-

sitions and sequences of all enzyme proteins in the extant

species. First, we extract unique domain compositions from
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all proteins and identify the (ancestral or extant) species where

each domain composition first appears. Second, we employ a

heuristic to build phylogenetic trees of domain compositions.

It incrementally merges similar domain compositions with the

constraint that younger domain compositions (domain com-

positions that first appear in more recent nodes in the species

tree) should be placed under older domain compositions in

the phylogenetic trees. In brief, traversing from the root of the

species tree, it undertakes three types of merging operations

sequentially in each species: incorporating the domain com-

positions containing inherited domains (the domains arising

before the current species) with the existing phylogenetic

trees, incorporating the domain compositions containing

both inherited and novel domains (the domains arising

in the current species), and incorporating the domain compo-

sitions containing novel domains alone. Each merging

operation places a younger subtree of domain compositions

under a descendant node of an older subtree. The outputs of

this step are a collection of phylogenetic trees for domain

compositions.

Fourth, we collect protein sequences with each unique

domain composition and construct their phylogenetic tree

using the MUSCLE program (Edgar 2004). MUSCLE automa-

tically aligns the protein sequences and returns a nearest-

neighbor tree derived from the aligned sequences. The protein

tree associated with a domain composition is attached under

its corresponding node in the domain composition trees. The

results are merged phylogenetic trees of domain compositions

and proteins.

To verify the robustness of the reconstructed networks

against the choice of phylogenetic tree inference algorithms,

we also construct the initial phylogenetic trees of protein

sequences with each unique domain composition using the

PhyloBayes 3.3 program (Lartillo et al. 2009). PhyloBayes

applies the Monte Carlo Markov Chain (MCMC) sampling

on phylogenetic tree structures and reports the consensus

phylogenetic tree. The protein tree associated with a

domain composition is attached under its corresponding

node in the domain composition trees.

Fifth, the merged phylogenetic trees of domain composi-

tions and protein sequences are reconciled with the species

tree. A reconciliation algorithm (Zmasek and Eddy 2001) is

employed to label the gene tree nodes with duplication and

speciation events as well as the species nodes where they are

located. The reconciled proteins trees may contain deep sub-

trees within each species. The factor graph model of the pro-

tein trees with intraspecies subtrees is very complicated and

prone to overfitting, as the number of variable configurations

grows exponentially with the intraspecies subtree depth.

Because alterations of domain architectures and catalytic func-

tions of proteins are relatively rare, with a sufficient coverage

of sampled species, the intraspecies alteration events can be

discarded. Therefore, we convert subtrees within a species

into flat structures. In flattened structures, the species of a

parent–child pair in the protein trees are also a parent–child

pair in the species tree. The reconciled protein trees use the

information of the species phylogeny and the most recent

common ancestors of each domain composition. Thus, they

are rooted trees.

A Reconstruction Algorithm of the Evolutionary History
of DPR Networks

Figure 2 illustrates the algorithm of reconstructing the DPR

network evolutionary history. The inputs of the reconstruction

algorithm are the sequences, domain compositions, and cat-

alytic functions of enzyme proteins in a number of extant

species, and the phylogenetic tree of these species. The out-

puts are the inferred evolutionary history of DPR networks

over the species tree. The initial protein trees are inferred

from protein domain compositions and sequences using the

aforementioned heuristic. The factor graph model described

in equation (3) is then constructed. The initial values of protein

parent labels are set according to the initial protein trees,

whereas the binary variables of domain-protein and protein-

reaction edge presence of extant species are fixed according

to the observed DPR networks. Hidden variables are divided

into two groups: 1) parent labels of proteins in all species and

2) domain-protein and protein-reaction edge presence of

ancestral species. The max-product algorithm is invoked itera-

tively to impute the hidden variable values. In each iteration,

we first fix the values of parent labels and infer the values of

edge presence, then fix the values of edge presence and infer

the values of parent labels. Iterations continue until all vari-

ables converge to fixed values. The converged variable con-

figurations are transformed into an evolutionary history of

DPR networks.

Data Sources

We extracted the DPR networks of 13 species from the data-

bases of domain compositions and metabolic reactions (Pfam,

Bateman et al. 2002; Uniprot, The UniProt Consortium 2011;

BioCyc, Krummenacker et al. 2005). Supplementary table S1,

Supplementary Material online, reports the summary informa-

tion of the DPR networks of the 13 extant species. The taxo-

nomic hierarchies of the 13 selected species were extracted

from the National Center for Biotechnology Information Tax-

onomy Database (http://www.ncbi.nlm.nih.gov/Taxonomy/).

Intermediate nodes with only one child in the hierarchies

were collapsed. The collapsed species tree consists of 13 term-

inal (extant) nodes and 10 ancestral nodes and is shown in

figure 3.

These species were chosen for their relatively rich informa-

tion about domain architectures and metabolic reactions.

Seven species are prokaryotes, and six species are eukaryotes.

All prokaryotes are well-known pathogens: E. coli, Bacillus

anthracis, Helicobacter pylori, Mycobacterium tuberculosis,

Shigella flexneri, and Vibrio cholerae. Eukaryotes include
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three mammals—human (Homo sapiens), mouse (Mus

musculus), and cow (Bos taurus), fruit fly (Drosophila melano-

gaster), budding yeast (Saccharomyces cerevisiae), and

Plasmodium falciparum (malaria parasites). Along the prokar-

yotic lineage, B. anthracis is a firmicute, M. tuberculosis is an

actinobacteria, whereas the remaining five species are all pro-

teobacteria. Along the eukaryotic lineage, mammals and fruit

flies belong to coelomata; budding yeasts and animals belong

to opisthokonta; and P. falciparum is a protist. The network

sizes (total numbers of nodes and edges) of these species are

positively correlated with their total numbers of genes

(R2 ¼ 0:7732, supplementary fig. S1, Supplementary

Material online). Human and mouse have considerably

larger networks and proteomes than all the other species.

Furthermore, E. coli has a disproportionally large network

but comparable proteome size with other microbes. For

instance, the network size and gene number of E. coli are

8,105 and 4,200, whereas those of V. cholerae are 5,632

and 3,828, respectively. Because gene function annotations

in most species are far from complete, the disparity of network

FIG. 2.—Schematic of the DPR network reconstruction algorithm. A collection of protein trees is inferred from their domain compositions and sequences

alone. These protein trees set the initial values of protein lineage variables. With observed DPR networks in the contemporary species as inputs, the max-

product algorithm is iteratively applied to infer the values of one set of variables (e.g., domain-protein and protein-reaction edges) by fixing the values of the

other set of variables (e.g., protein lineages). Iteration continues until all variable values converge. The converged variable configuration is postprocessed to

generate the inferred evolutionary history.
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sizes is likely due to paucity of information on other microbes

rather than expansion of E. coli networks during evolution.

A total of 386 metabolic pathways were downloaded from

the KEGG database (Kanehisa and Goto 2000), and 750

metabolic pathways were extracted from BioCyc. In addition,

reactions belonging to EC subclasses 2.7.10, 2.7.11, 2.7.12,

2.7.14, and 2.7.99 were labeled as the protein kinase

pathway.

Results

Validation of the Reconstruction Algorithm

We validated the accuracy of the reconstruction algorithm

using both simulation studies and cross validations on the

data sets of 13 selected species. The purpose of simulation

studies is to demonstrate that simultaneous reconstruction of

all types of DPR network features (protein phylogenies,

domain-protein, and protein-reaction edges) outperforms

separate reconstructions of protein phylogenies and edge pre-

sences. A benchmark algorithm is to first reconstruct the pro-

tein phylogenies from sequences alone, then fixes the protein

parent labels with reconstructed phylogenies and inferred the

edge presences with dynamic programming. Sequence-based

reconstruction algorithms (such as neighbor-joining and max-

imum likelihood methods) are error prone, as sequence evolu-

tion may not follow the models underlying the reconstruction

algorithms. We expect to recover the DPR network evolution-

ary history in presence of these errors by incorporating the

information of domain compositions and enzymatic functions

of proteins in the model. Because our goal is not to evaluate

particular sequence-based reconstruction algorithms but to

demonstrate the merits of joint optimization, we skipped

the steps of simulating sequence evolution and reconstructing

phylogenies from simulated sequences. Instead, we explicitly

perturbed the simulated protein phylogenies and treated the

perturbed phylogenies as the outputs generated by a

sequence-based reconstruction algorithm.

In simulation studies, a species tree of 5–20 nodes and a

DPR network in the root species were randomly generated.

We then sampled network change operations—additions and

deletions of nodes and edges as well as duplications of protein

nodes—sequentially to simulate the evolution of the DPR net-

works. The sampled protein trees were perturbed by reassign-

ing parents to randomly selected nodes. The perturbed gene

trees were treated as the phylogenies obtained from a

sequence-based reconstruction algorithm and determined

the initial values of protein parent labels for the max-product

FIG. 3.—Phylogenetic tree of 13 selected species according to the National Center for Biotechnology Information (NCBI) taxonomy database. Branch

lengths are not scaled to the evolutionary distances between genomes.
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algorithm. Three parameters were varied: the total DPR net-

work size, the rate of network evolution events, and the rate

of perturbations to the initial gene trees. A total of 100 trials

were performed for each parameter setting. The DPR net-

works of extant species and the perturbed gene trees were

revealed to the inference algorithm. Error rates were mea-

sured by the difference between simulated and inferred net-

works normalized by the simulated network size. Error rates of

our reconstruction algorithm and the benchmark method

were reported. The experimental procedures of simulations

are elaborated in section Materials and Methods and supple-

mentary text, Supplementary Material online.

The top part of figure 4 shows the distributions of error

rates with varying perturbation rates on gene trees. Error rates

remain low (the mean value � 0:1) for both methods when

perturbation rates � 0:01. Higher perturbation rates shift the

error rate distributions to the right. However, the mean error

rate was< 0:2 even when half of the proteins are assigned to

wrong parents in the initial gene trees. The max-product algo-

rithm significantly outperforms dynamic programming at high

perturbation rates. This is expected because the benchmark

method takes the perturbed gene trees as given and thus is

sensitive to perturbation rates. In contrast, the max-product

algorithm incorporates extant DPR networks to correct the

phylogenetic relations of proteins and thus is more robust

against gene tree errors. Error rates are robust against net-

work sizes and increase with the rate of network change

events (supplementary figs. S2 and S3, Supplementary

Material online). The two methods exhibit similar error rates

with varying network sizes and network evolution rates.

To further validate the reconstruction algorithm on real

data sets, we hid features on selected domain-protein and

protein-reaction pairs of extant species in the test set and

predicted these features from the remaining training set.

We extracted the DPR networks of 13 extant species. In

each trial, we randomly included four types of pairs to the

test set: 1) domain-protein edges, 2) domain-protein pairs

that were not edges, 3) protein-reaction edges, and 4) pro-

tein-reaction pairs that were not edges. The presence/absence

of these pairs was treated as hidden variables and were

imputed by the reconstruction algorithm. The imputed

values of the leave-out pairs were then compared with their

true values. Error rates were measured by the ratios of the

numbers of discrepant pairs and the test set sizes. The ratio of

the test set size relative to the training set size + the test set

size varied from 0.1 to 0.6, and 100 random trials were under-

taken for each test set size. Separate inferences of protein

phylogenies and edge presences were again used as the

benchmark. The experimental procedures of cross validations

are elaborated in section Materials and Methods and supple-

mentary text, Supplementary Material online.

The bottom part of figure 4 shows the mean error rates for

four types of pairs and the aggregate error rates with varying

sizes of test sets. Intriguingly, max product and benchmark

exhibit opposite patterns of mean error rates. Max product

achieves 92–96% sensitivity (accuracy on edges) and 75–85%

specificity (accuracy on nonedges) on domain-protein pairs,

and 66–77% sensitivity and 83–87% specificity on protein-

reaction pairs. In contrast, the benchmark algorithm achieves

80–92% sensitivity and 87–92% specificity on domain-pro-

tein pairs, and 25–55% sensitivity and 94–98% specificity in

protein-reaction pairs. Overall, max product has higher sensi-

tivity but lower specificity than the benchmark. However, max

product has less mistakes on negative instances than the

benchmark on positive instances, resulting in superior overall

accuracy rates (82–85% vs. 75–82%). Furthermore, protein-

reaction pairs yield substantially worse error rates than

domain-protein pairs. The error rates of both methods are

relatively robust against the test set sizes.

Evolutionary History of DPR Networks

We applied the reconstruction algorithm to infer the

evolutionary history of the DPR networks of selected species.

Figure 5 and supplementary table S2, Supplementary Material

online, summarize the information of the evolution of the

entire networks. The total numbers of network changes

along each branch of the species tree and their contributions

among distinct types of changes provide the following insights

regarding the evolution of metabolic networks.

First, the common ancestor of cellular organisms (taxid

131,567) possesses a smaller network (network size 4,167)

than human (network size 15,671), E. coli (network size

8,105), and most other extant species. This is sensible since

the network of the eukaryote–prokaryote common ancestor

constitutes the conserved core of metabolic systems

(Morowitz 1999; Peregrin-Alves et al. 2003) and thus should

be smaller than its derived descendants. Moreover, in spite of

the disparate gaps of total network sizes, the majority of

domains and reactions in eukaryotes and prokaryotes already

appear in their common ancestor. The cellular organism

common ancestor contains 888 domains and 1,307 reactions,

whereas human has 1,488 domains and 1,784 reactions, and

E. coli has 1,054 domains and 1,512 reactions. The network

size differences are primarily attributed to proteins, domain-

protein, and protein-reaction edges. Concordant with the

findings in Chothia et al. (2003), the results suggest that

most elementary components of metabolic systems (reactions

and domains fulfilling certain catalytic functions) arise before

the eukaryote/prokaryote split. Complexity of the systems

accrues by protein duplications, recombinations of domain

compositions, and reassignments of catalytic functions to

orthologous and paralogous proteins.

Second, network sizes drop along many branches of the

species tree. For instance, there is a significant decrease of

network sizes from the common ancestor of opisthokonta

(fungus/animal group, taxid 33,154, network size 7,920) to

S. cerevisiae (network size 4,025) and from the common
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ancestor of eukaryotes (taxid 2,759, network size 7,058) to

P. falciparum (network size 3,381). Since the networks of

human and E. coli are thoroughly annotated, their common

ancestor (the common ancestor of cellular organisms) should

retain a relatively complete conserved network. Consequently,

we suspect that the majority of node and edge deletions in the

DPR networks reflect missing information rather than real

evolutionary processes. In contrast, additions and duplications

of nodes and edges are more likely to reflect lineage-specific

evolutionary processes.

Third, protein duplications are the dominant events of net-

work evolution besides node and edge deletions. They com-

prise approximately 20% of the total network change events

(10,808 of 52,669, supplementary table S2, Supplementary

Material online). Frequent protein duplications indicate the

prevalence of paralogous proteins with similar or identical

domain architectures. These duplicated proteins may catalyze

identical (isozymes) or distinct reactions (neofunctionizations

or subfunctionizations). Functional analysis of some duplicated

proteins are discussed later.

Fourth, the branches from the root to eukaryote and pro-

karyote ancestors possess strikingly similar contributions of

network change mechanisms: protein duplications (51%

along the eukaryotic branch and 44% along the prokaryotic

branch), domain-protein edge additions (14% and 10%),

domain creations (13% and 10%), protein-reaction edge

additions (9% and 12%), reaction creations (7% and 5%),

and protein creations (4% and 6%). Similarity of network

sizes and relative contributions of network change mechan-

isms between eukaryote and prokaryote ancestors indicates

similar evolutionary history of metabolic networks in the early

stage of life. Furthermore, these early branches have higher

fractions of domain, protein, and reaction creations than

most other branches, suggesting that “innovation events,”

FIG. 4.—Validations of the reconstruction algorithm. Top: Distribution of error rates on simulated data, with varying perturbation rates on the initial

protein trees. From top-left to bottom-right, the perturbation rate varies from 0 to 0.5. The error rate distributions of the max-product algorithm (solid blue)

and dynamic programming (dashed red) are plotted. Bottom: Sensitivities, specificities, and overal error rates of cross-validation predictions on real data sets,

with varying ratios of test set sizes and training set sizes. Crosses: sensitivities of domain-protein edges. Circles: specificities of domain-protein edges. Plus

signs: sensitivities of protein-reaction edges. Asterisks: specificities of protein-reaction edges. Squares: overall rates. Blue symbols: max-product prediction

outcomes. Red symbols: dynamic programming prediction outcomes.
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creations of new domain compositions and reactions, play

more important roles in the early stage of metabolic network

evolution.

Fifth, after the eukaryote–prokaryote split metabolic net-

work evolution follows divergent paths. Along the eukaryotic

lineage, protein duplications remain prominent throughout

most branches except the branch of opisthokonta (the ani-

mal–fungus group, taxid 33,154)-coelomata (the common

group of mammals and insects, taxid 33,316) (7%). In the

branch of eutheria (placental mammals, taxid 9,347)–euarch-

ontoglires (the common group of primates and rodents, taxid

314,146), protein duplications even comprise 63% of net-

work changes. Reaction creations expand substantially in the

branch of opisthokonta–coelomata (26%) and remain mar-

ginal along other branches. Domain-protein edge additions

constitute a moderate but stable fraction of network

change mechanisms along most branches of the eukaryotic

lineage. Intriguingly, from euarchontoglires to human and

mouse, there are considerable numbers of protein duplica-

tions (26% in human and 24% in mouse) and protein-reac-

tion edge additions (26% in human and 30% in mouse), but

very few creations of novel domains (0.05% in both human

and mouse), proteins (0.02% in human and 0% in mouse), or

reactions (6% in human and 3% in mouse) in these two

branches. Along the prokaryotic lineage, protein duplications

are dominant only in the branch of prokaryotes–proteobac-

teria (taxid 1,224) (37%) and remain moderate or low

throughout other branches. Protein-reaction edge additions

are prominent in the branches of enterobacteriacea

(taxid 543)–E. coli (taxid 83,333) (39%), enterobacteriacea–

S. flexneri (taxid 198,215) (22%), gammaproteobacteria (taxid

1,236)–V. cholera (taxid 243,277) (17%), gammaproteoba-

cteria–enterobacteriacea (18%), proteobacteria–gammapro-

teobacteria (13%), and prokaryote–proteobacteria (11%).

Reaction creations concentrate primarily in the branches of

enterobacteriacea–E. coli (16%) and proteobacteria–gamma-

proteobcteria (10%). Intriguingly, domain, protein creations,

and domain-protein edge additions have consistently lower

contributions along the prokaryotic lineage compared with

the eukaryotic counterparts. The distinct patterns of network

changes imply that eukaryotes and prokaryotes expand their

metabolic networks with different mechanisms. Although

both species acquire novel reactions and encounter frequent

protein duplications along their lineages, eukaryotes expand

their catalytic repertoire by creating new proteins and incor-

porating new or old domains to duplicated proteins. In con-

trast, prokaryotes tend to reassign novel catalytic functions to

inherited or duplicated proteins with fewer alterations on their

domain architectures. A similar observation was reported by

Freilich et al. (2005). Furthermore, diverse patterns of network

FIG. 5.—Summary of metabolic network evolution of 13 species. The topology of the phylogenetic tree (shown by blue lines) is extracted from the

National Center for Biotechnology Information (NCBI) taxonomy. Each node represents a contemporary or ancestral species marked with its taxonomy name

and ID. Vertical positions of nodes denote the total sizes of their DPR networks (node number + edge number). Horizontal distances between two adjacent

nodes denote the total numbers of network change events between the adjacent species pairs. The compositions (contributions) of network change types

between each pair of adjacent species nodes are visualized as pie charts and placed along their edges. Prominent network change mechanisms include

protein duplications (medium blue), protein deletions (light blue), protein-reaction edge additions (red), domain-protein edge additions (orange), reaction

creations (light green), and domain creations (dark blue).
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changes are also present along the eukaryotic lineage. The

majority of novel domains and reactions arise in the common

ancestors of the animal–fungus group (opisthokonta) or ani-

mals with body cavity (coelomata). Additions of domain-pro-

tein edges are frequent throughout the lineage from the

cellular organisms to the primate–rodent group. Within the

primate–rodent group, DPR networks are altered primarily by

protein duplications and protein-reaction edge additions.

The initial protein trees generated by a phylogeny inference

algorithm can in principle affect the exact wirings of the

reconstructed DPR network evolutionary history but probably

do not alter the aforementioned generic trends of network

evolution. To verify this assumption, we compared the recon-

structed network evolutionary histories using two phylogeny

inference programs to generate the initial protein trees:

MUSCLE (applies multiple sequence alignment and the neigh-

bor-joining method to build the gene trees) and PhyloBayes

3.3 (applies MCMC to sample trees from aligned amino acid

sequences and reports the consensus trees). Figure 5 and

supplementary table S2, Supplementary Material online, sum-

marize the reconstructed network evolutionary history using

MUSCLE, and supplementary figure S4 and table S3, Supple-

mentary Material online, summarize the reconstructed net-

work evolutionary history using PhyloBayes 3.3. Despite the

differences on the numbers of each type of network changes,

their relative contributions along each branch (pie charts in

figure 5 and supplementary figure S4, Supplementary

Material online) are strikingly close. The largest difference of

their relative contributions is 9.3%. Furthermore, all the five

observations regarding the generic trends of DPR network

evolution still sustain in the reconstructed network evolution-

ary history using PhyloBayes 3.3. These results indicate the

robustness of the reconstructed network evolutionary history

relative to the initial protein trees.

Mechanisms of Network Evolution in Distinct Metabolic
Processes

In addition to the global summary on the evolutionary history

of the entire metabolic networks, it is also important to under-

stand the evolution of the DPR networks of individual meta-

bolic pathways. We are interested in finding the enriched

types of network change mechanisms for individual pathways,

conditioned on the global trend from the entire networks. To

fulfill this goal, we developed two methods to quantify the

significance of evolutionary mechanism enrichments on spe-

cific pathways. The first method evaluates the contribution of

each type of network change mechanisms. By assuming each

event is sampled from a multinomial distribution, we calculate

the probability of each type of network changes that max-

imizes the likelihood over the species tree. The second method

calculates the reweighting factors relative to the contributions

derived from the entire metabolic networks. The multinomial

probability for each type of network change mechanisms is

the product of the global contribution and the pathway-spe-

cific reweighting factor. The P values are calculated by com-

paring the contributions or reweighting factors of the

empirical data with the results generated by randomly

sampled reactions. The consensus of enriched network

change mechanisms obtained by both methods are reported.

Quantification of evolutionary mechanism enrichment is

described in the supplementary text, Supplementary Material

online.

A total of 386 and 750 metabolic pathways were down-

loaded from KEGG (Kanehisa and Goto 2000) and BioCyc

(Krummenacker et al. 2005) databases, respectively, and

their DPR subnetworks on the species tree were extracted.

We identified the enriched evolutionary mechanisms for

each pathway and categorized them into four disjoint classes:

1. Protein duplication: Protein duplications are enriched, and
protein-reaction edge additions are possibly enriched.
Other expansion mechanisms—domain creations, protein
and reaction creations, and domain-protein edge
additions—are not enriched.

2. Reaction creation: Reaction creations are enriched, and
protein-reaction edge additions are possibly enriched.
Other expansion mechanisms (including protein duplica-
tions) are not enriched.

3. Novel domain or protein generation: Domain creations,
protein creations, or domain-protein edge additions are
enriched. Reaction creations are not enriched.

4. Novel domain or protein generation and reaction creation:
Domain creations, protein creations, or domain-protein
edge additions are enriched. Reaction creations are
enriched.

This categorization reflects a decreasing level of conserva-

tion in metabolic pathway evolution. In class 1, the rates of

increasing the repertoire of domain combinations and reac-

tions do not exceed the background values of the entire net-

works. In class 2, reaction creations are accelerated relative to

the background values, but the expansion of proteins is not. In

class 3, there is an increasing rate of generating novel domain

compositions, but the rate of reaction creations does not

exceed the background values. In class 4, generations of

novel domain compositions and reactions both exceed the

background rates.

Table 1 reports the summarized pathways belonging to

each category. Complete information about the network

change patterns and classes of metabolic pathways are

reported in supplementary table S2, Supplementary Material

online. Class 1 consists of the highest number (26) of path-

ways. The reactions and enzyme domain compositions of

these pathways are largely conserved. The majority of path-

ways in this category synthesize and degrade the metabolites

essential for all cellular organisms: fatty acids, amino acids,

energy, and carbohydrates. This “metabolic core” arises in

the early stage of life and remains highly conserved (Morowitz

1999; Peregrin-Alves et al. 2003). Isozymes are thought to
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optimize temporal/tissue-specific metabolic demands in multi-

cellular organisms (Wilson 2003). However, contrary to this

notion, we found abundant protein duplications in both

eukaryote and prokaryote clades. The pathways of fatty acid

metabolisms—fatty acid elongation in mitochondria (KEGG ID

00062) and fatty acid metabolism (KEGG ID 00071)—possess

high rates of protein duplications along the branches cellular

organism–eukaryote, cellular organism–prokaryote, and

eutheria–euarchontoglires. Their network evolutionary pat-

terns conform with the global patterns of network changes

in figure 5, with stronger enrichment along those branches.

In contrast, the pathways of amino acid metabolism possess

high rates of protein duplications along several other

branches, in addition to the three branches with high global

duplication rates. For instance, the pathway of alanine, aspar-

tate, and glutamate metabolism (KEGG ID 00250) encounters

37 and 30 protein duplications along the branches of cellular

organism to prokaryote and eukaryote, 18 protein duplica-

tions along the branches of eutheria–euarchontoglires and

prokaryote–proteobacteria, and 10 protein duplications

along the branch of euarchontoglires–mouse. Similarly, the

pathway of valine, leucine, and isoleucine biosynthesis

Table 1

Four Categories of Metabolic Network Evolution and Their Constituent Pathways

Category Pathway Pathway

Protein duplication Fatty acid elongation Fatty acid metabolism

Alanine, aspartate, and glutamate metabolism Valine, leucine, and isoleucine biosynthesis

Biosynthesis of alkaloids Trna metabolism

Starch degradation Folate transformation

Pyrimidine metabolism Methionine degradation

Nicotine degradation Lysine, threonine, and methionine biosynthesis

Glycolysis Tca cycle

Entner–Doudoroff pathway Gluconeogenesis

Serine-isocitrate lyase pathway Peptidoglycan biosynthesis

Aspartate superpathway Ribose and deoxyribose phosphate degradation

Arginine, ornithine, and proline metabolism Udp-sugar interconversion

Formaldehyde assimilation Formyithf biosynthesis

Folate transformation Heterolactic fermentation

Reaction creation Steroid biosynthesis Bile acid metabolism

DDT degradation Chlorocyclohexane and chlorobenzene degradation

Benzene metabolism Polyketide metabolism

Peptidoglycan biosynthesis Nitrotoleucine degradation

Indole alkaloid biosynthesis Monoterpenoid biosynthesis

Insect hormone biosynthesis Palmitate biosynthesis

Noradrenaline and adrenaline degradation Actinorhodin biosynthesis

Tryptophan degradation Myristate biosynthesis

Protein generation Oxidative phosphorylation Purine metabolism

Alanine metabolism C5-branched dibasic acid metabolism

Carbon fixation in prokaryotes Thiamine metabolism

Kinases Phosphatidylinositol signaling system

mTOR signaling pathway KDO2-lipid a biosynthesis

Lipopolysaccharide biosynthesis Arginine and polyamine biosynthesis

Aromatic compound degradation Foraldehyde assimilation

Phospholipid biosynthesis Ascorbate biosynthesis

Acetyl-CoA assimilation Bifidum pathway

PIP metabolism Atrazine degradation

Novel domain/protein

and reaction creation

Glycan biosynthesis Glycosaminoglycan biosynthesis

Glycosaminoglycan degradation Inositol phosphate metabolism

Glycosylphosphatidulinositol-anchor biosynthesis Sphingolipid metabolism

Glycosphingolipid biosynthesis Biotin metabolism

Dolichyl-diphosphooligosaccharide biosynthesis Heparan sulfate biosynthesis

Zymosterol biosynthesis Cholesterol biosynthesis

Thyronamine and iodothyronamine metabolism Thyroid hormone metabolism

BMP signaling pathway Adenosylcobalamin biosynthesis

NAD biosynthesis Ergosterol biosynthesis
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(KEGG ID 00290) encounters 37 and 14 protein duplications

along the branches of cellular organism to prokaryote and

eukaryote and 6 protein duplications along the branch of

euarchontoglires–mouse.

Supplementary figure S4, Supplementary Material online,

visualizes the DPR subnetwork evolution of the fatty acid elon-

gation pathway. Both domains and reactions are relatively

conserved. Eleven of 14 domains and 6 of 9 reactions in

human already appear in the common ancestor of cellular

organisms. From the common ancestor of cellular organisms,

there are three domain creations, three protein creations,

and seven reaction creations. Protein duplications occur

primarily along the branches cellular organism–eukaryote

(10), cellular organism–prokaryote (29), and eutheria–euarch-

ontoglires (10).

Class 2 consists of 16 pathways. They have excessive num-

bers of reaction creations, whereas the rates of changes on

enzyme proteins and domain compositions do not exceed the

background rates. Neofunctionization—novel reactions are

catalyzed by conserved proteins—may explain the patterns

on these pathways. Class 2 includes pathways involved in

steroid biosynthesis, bile acid biosynthesis, xenobiotics meta-

bolism, secondary metabolite biosynthesis, and metabolism of

terpenoids and polyketides. Among them, steroid biosynthesis

is almost restricted to eukaryotes (Ourisson et al. 1994).

The steroid biosynthesis pathway in supplementary figure

S5, Supplementary Material online, presents a remarkable

example of class 2 patterns. Steroids are precursors of many

signaling molecules in animals, plants, and fungi. On the one

hand, the majority of reactions are created along the branches

of eukaryote–opisthokonta (18 reaction creations), opisthoko-

nta–coelomata (32 reaction creations), and coelomata–

eutheria (8 reaction creations). On the other hand, half of

the enzymes in the human subnetwork (10 of 20) have origins

in the common ancestor of cellular organisms. From the root

to human, there are only 6 domain creations, 6 protein crea-

tions, and 24 protein duplications. By examining the enzymes

of steroid biosynthesis in human, we found most of their

domains arise before the eukaryote/prokaryote split. For

instance, squalene monooxygenase catalyzes the first oxyge-

nation step in sterol biosynthesis (Squalene! (S)-Squalene-

2,3-epoxide, EC number 1.14.99.7) (Laden et al. 2000). It

consists of two domains: PF01266 (FAD-dependent oxidore-

ductase) and PF08491 (Squalene epoxidase). PF01266 also

appears in cholesterol oxidase of M. tuberculosis (Bryzostek

et al. 2007), suggesting that squalene monooxygenase may

have an ancient origin.

Class 3 consists of 20 pathways and exhibit an opposite

pattern from class 2. The rates of expanding the repertoire of

domain compositions—domain and protein creations and

domain-protein edge additions—are higher than the back-

ground values, yet those of reaction creations do not exceed

the background rates. The members in class 3 cover a variety

of biological processes including purine metabolism, signal

transduction (e.g., protein kinases, phosphatidylinositol signal-

ing system, and mTOR signaling pathway), and lipid metabo-

lism (e.g., KDO2 lipid A biosynthesis and phospholipid

biosynthesis).

The evolutionary history of protein kinases in supplemen-

tary figure S6, Supplementary Material online, provides a

remarkable example of the way to achieve systems complex-

ity. In eukaryotes, regulatory signals are propagated by trans-

fers of phosphate groups on tyrosines or serines/threonines of

proteins (Gu and Gu 2003). Operating on a small number of

reactions of the same type (phosphorylations/dephohsphory-

lations of amino acid residues), a diverse family of protein

kinases have been evolved in eukaryotes. These kinases

respond to different environmental stimulations and regulate

distinct biological processes in a wide variety of cell types (Gu

and Gu 2003). There are 172 domains, 482 proteins, and 26

reactions in human, and 50 domains, 17 proteins, and 3 reac-

tions in the common ancestor of cellular organisms. The

majority of human kinases are evolved from protein duplica-

tions and incorporations of novel domains to duplicated pro-

teins (domain-protein edge additions). Along the branch of

cellular organisms–eukaryote, there are 37 domain creations,

151 protein duplications, 8 protein creations, and 128

domain-protein edge additions but no reaction creations.

Along the branch of opisthokonta–coelomata, there are 52

domain creations, 4 protein duplications, 6 protein creations,

54 domain-protein edge additions, and 17 reaction creations.

Along the branch of coelomata–eutheria, there are 22 domain

creations, 89 protein duplications, 2 protein creations, 69

domain-protein edge additions, and no reaction creations.

Class 4 consists of 18 pathways and have high rates of

expansions of both domain compositions (domain and protein

creations and domain-protein edge additions) and reactions

(reaction creations) relative to the background rates.

Strikingly, most pathways involved in glycan and glycosami-

noglycan metabolism fall into this category. The domains,

proteins, and reactions of glycan and glycosaminoglycan bio-

synthesis pathways arise primarily in the coelomata common

ancestor. However, the pathway of glycosaminoglycan degra-

dation (KEGG ID 00531) is conserved between human and

E. coli.

Supplementary figure S7, Supplementary Material online,

visualizes the DPR network evolution of glycosaminoglycan

biosynthesis pathway (KEGG ID 00532). The majority of

domains, proteins, and reactions arise in the common ances-

tors of coelomata and eutheria. There are 2 domains, 1 pro-

tein, and no reaction in the common ancestor of cellular

organisms; 11 domains, 23 proteins, and 15 reactions in

human; and no domains, proteins, or reactions in E. coli.

From opisthokonta to coelomata, there are six domain crea-

tions, three protein creations, and five reaction creations.

From coelomata to eutheria, there are two domain creations,

three protein duplications, four protein creations, and five

reaction creations. There are frequent protein duplications
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from euarchontoglires to human and mouse (17 and 12,

respectively) but no creations of domains, proteins, or reac-

tions. Therefore, the entire apparatus of glycosaminoglycan

biosynthesis is probably established after the emergence of

animals with body cavity (coelomata). Glycosaminoglycans

form an essential component of connective tissues and may

bind to proteins to form proteoglycans, which play important

roles in cell adhesion and cellular matrix formation, signal

transduction, and immune response (Gabius 1997). Diverse

varieties of protein kinases and proteoglycans are both hall-

marks of complex multicellular organisms. Metabolism of both

families is catalyzed by novel domain compositions. However,

protein phosphorylations/dephosphorylations involve in a

small number of highly conserved reactions, whereas glycan

and glycosaminoglycan biosynthesis requires novel reactions

arising after the emergence of animals with body cavity.

Principles Underlying the Evolution of DPR Networks

A DPR network consists of two types of information pertaining

to enzyme proteins: their domain architectures and catalytic

functions. Intuitively, these two aspects should be tightly

coupled. However, it remains unclear whether this intuition

can be systematically substantiated from the evolutionary his-

tory of DPR networks. Here, we describe two quantitative

principles linking the evolution of domain architectures and

catalytic functions of enzymes.

Protein duplications are a dominant mechanism of network

changes. Many proteins have homologous counterparts with

similar or identical domain compositions in multiple species. It

is sensible to assume that these duplicated proteins perform

similar functions. To verify this hypothesis, we examined the

reactions catalyzed by groups of homologous proteins. We

divided the 15,052 enzymes in the 13 species into 1,146

families. Each family has a disjoint protein tree from the

inferred evolutionary history of the DPR networks, thus con-

sists of orthologous and paralogous proteins. We extracted

the EC numbers of reactions catalyzed by proteins in each

family. Each EC number consisted of four digits representing

numerical classes of more refined levels. Thus, reactions shar-

ing more EC digits are functionally more similar. For each

protein family, we examined the first two EC digits of the

catalyzed reactions and identified the dominant EC subclass

containing the largest number of reactions. We then calcu-

lated the fraction of reactions belonging to the dominant EC

subclass in each protein family and showed its distribution in

the left part of figure 6. As anticipated, the majority of the

protein families are dominated by one EC subclass. Among

the 1,024 protein families with known EC numbers, 762 of

them (74.41%) are dominated by one EC subclass (>90% of

the reactions belonged to the same EC subclass). The results

confirm functional similarity of duplicated proteins.

Domain creations are less frequent than protein duplica-

tions but still comprise a conspicuous portion of DPR network

evolution. Although there are novel domains evolved to cata-

lyze conserved reactions (e.g., kinases along the eukaryotes

lineage), we suspect that the majority of novel domains arise

to satisfy new catalytic demands. To verify this hypothesis, we

performed two tests. First, we counted the occurrences of

domain creations and reaction creations along each branch

of the species tree. The right part of figure 6 shows the scatter

plot of occurrences of domain and reaction creations along

the 22 branches. The two quantities are weakly correlated

(correlation coefficient 0.33). A close examination indicates

that the correlation coefficient is compromised by outliers

on the branches from the euarchontoglires common ancestor

to human and mouse and from the enterobacteriaceae

common ancestor to E. coli. These branches encounter smaller

numbers of domain creations and much larger numbers of

reaction creations. By removing this outlier, the correlation

coefficient between domain and reaction creations becomes

0.64. The results suggest that the rates of reaction creations

are proportional to the rates of domain creations.

Second, we counted the total numbers of novel and con-

served reactions catalyzed by novel or conserved domains.

Conserved domains catalyze far more reactions than novel

domains (40,047 vs. 868), but a disproportionally higher

fraction of reactions catalyzed by novel domains are novel

reactions. Only 7.6% (3,039 of 40,047) of reactions catalyzed

by conserved domains are novel, whereas 26.5% (230 of 868)

of reactions catalyzed by novel domains are also novel. The

�2 P value < 10�16 and the hypergeometric P value

� 1:42� 10�61. The results further confirm the strong rela-

tions between domain and reaction creations.

Discussion

From the reconstructed DPR networks, we are able to deduce

a high-level history of metabolic network evolution; 44% of

domains and 34% of reactions appeared in the common

ancestor of cellular organisms. After the prokaryote/eukaryote

split, the ancestors of both kingdoms underwent frequent

“innovation events”: creations of new domains, reactions,

and domain recruitments/reshufflings. Creations of novel

domains and domain combinations in prokaryotes slow

down after their early ancestor. Instead, existing domain com-

binations are assigned to more catalytic functions. In contrast,

a large number of innovation events occur in the ancestors of

animal/fungus group (opisthokonta), animals with body cavity

(coelomata), and placental mammals (eutheria). These innvo-

tations pertain to multicellular physiology: signal transduction,

cell adhesion, tissue-specific metabolic demands, and so on.

Protein duplications are considered as a major mechanism

to expand gene repertoires (Ohno 1970). In metabolic net-

work evolution, protein duplications comprise the largest por-

tion of network change events. They serve two roles:

1) increase the redundancy (isozymes) of enzymes and

2) acquire additional catalytic functions on reactions with
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similar chemical operations. Surprisingly, protein duplications

dominate the network change mechanisms in the early evolu-

tion of both eukaryotes and prokaryotes. Despite the promi-

nent differences in their proteome sizes, the number of

protein duplications in human is about twice as the number

of those in E. coli (5,111 vs. 2,230).

The pathways involved in metabolism of primary

metabolites—energy, carbohydrates, amino acids, and

nucleotides—are highly conserved among all living organisms.

These pathways constitute the backbone of metabolic systems

that dated back to primitive organisms 3.8 billion years ago. In

contrast, the pathways involved in metabolism of phospholi-

pids, peptidoglycans, glycoproteins, steroids, glycolipids, phos-

phorylated proteins, and environmental toxins all exhibit

lineage-specific variations. Most of these metabolites are

required for multicellular physiology such as signal transduc-

tion, cell–cell communication, and extracellular matrix forma-

tion. Intriguingly, multiple pathways involved in cell–cell

communication and signaling possess distinct patterns of evo-

lutionary mechanisms. Steroid biosynthesis has enriched reac-

tion creations but retains a relatively conserved repertoire of

domain compositions and proteins. Protein kinases possess

many domain and protein creations but retain conserved

reactions. Glycosaminoglycan and glycan metabolism has a

high rate of protein and reaction creations and domain

recruitments.

Simultaneous reconstruction of domain architectures and

catalytic functions of enzyme proteins can both provide more

complete characterization about metabolic systems and give

more accurate predictions of one type of features with infor-

mation of another type of features. To justify the benefits of

joint optimization in prediction, we compare our simultaneous

reconstruction algorithm with a benchmark method of sepa-

rate reconstructions of protein phylogenies and domain-pro-

tein and protein-reaction edge presence. For protein

phylogeny reconstruction, we incurred simulation studies by

introducing perturbations (errors) to the initial protein phylo-

genies. Simultaneous reconstruction outperforms the bench-

mark when the perturbation rate is high (� 0:1), indicating

the benefit of including protein function information when

sequence-based phylogenetic reconstruction is erroneous.

For domain-protein and protein-reaction edge inference, we

incur cross validations to predict the presence/absence of

edges in a test set giving a separate training set. Simultaneous

reconstruction yields poorer specificity (accuracy on nonedges)

but better sensitivity (accuracy on edges) and overall accuracy

than the benchmark.

Every model has to balance the tradeoff between tracta-

bility of the problem and fitness to the phenomena. Our

reconstruction algorithm is based on several simplifying

assumptions thus cannot handle the following events of

DPR network evolution. First, domain fusions are not consid-

ered as they violate the assumption of a single parent of each

protein. Second, HGTs are also discarded as they cause the

parent species of a protein to differ from that of its host

genome and would drastically increase model complexity.

FIG. 6.—General rules relating domains and reactions in the DPR networks. Left: Distribution of the fraction of reactions in the dominant EC class among

all protein family. Horizontal axis: fraction of reactions in the dominant EC class. Vertical axis: distribution of the reaction fraction among all protein families.

Right: Scattered plot of the numbers of domain creations and reaction creations along each branch of the species tree.
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Third, the model assigns a unique domain composition to

each protein thus ignores its multiple splice variants. Fourth,

permutations of domain orders are also ignored due to pro-

blem tractability and scarcity of the events. Fifth, frequent

emergence of the same domain architecture in multiple

lineages may distort the initial protein trees and thus affect

the reconstructed network evolutionary history. Despite these

limitations, our reconstruction algorithm sheds lights on gen-

eral patterns of evolutionary mechanisms of the DPR net-

works. More detailed and precise reconstruction of DPR

network evolution requires more accurate protein phyloge-

nies, complete information of protein functions and domain

architectures in multiple species, and a more comprehensive

and complex model to characterize the aforementioned

mechanisms of network changes.

Supplementary Material

Supplementary text, figures S1–S7, and tables S1–S3 are avail-

able at Genome Biology and Evolution online (http://www

.gbe.oxfordjournals.org/).
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