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THE BIGGER PICTURE Recent advances in artificial intelligence (AI) and machine learning have brought the
study of human-AI (HAI) teams into sharper focus. An important set of questions for those designing HAI in-
terfaces concerns trust—specifically, human trust in the AI systems with which they form teams. We review
the literature on how perceiving an AI making mistakes violates trust and how such violations might be re-
paired. In doing so, we discuss the role played by various forms of algorithmic transparency in the process
of trust repair, including explanations of algorithms, uncertainty estimates, and performance metrics.
SUMMARY

The study of human-machine systems is central to a variety of behavioral and engineering disciplines,
including management science, human factors, robotics, and human-computer interaction. Recent ad-
vances in artificial intelligence (AI) and machine learning have brought the study of human-AI teams into
sharper focus. An important set of questions for those designing human-AI interfaces concerns trust, trans-
parency, and error tolerance. Here, we review the emerging literature on this important topic, identify open
questions, and discuss some of the pitfalls of human-AI team research. We present opposition (extreme al-
gorithm aversion or distrust) and loafing (extreme automation complacency or bias) as lying at opposite ends
of a spectrum, with algorithmic vigilance representing an ideal mid-point. We suggest that, while transpar-
ency may be crucial for facilitating appropriate levels of trust in AI and thus for counteracting aversive behav-
iors and promoting vigilance, transparency should not be conceived solely in terms of the explainability of an
algorithm. Dynamic task allocation, as well as the communication of confidence and performance metrics—
among other strategies—may ultimately prove more useful to users than explanations from algorithms and
significantly more effective in promoting vigilance. We further suggest that, while both aversive and appre-
ciative attitudes are detrimental to optimal human-AI team performance, strategies to curb aversion are likely
to be more important in the longer term than those attempting to mitigate appreciation. Our wider aim is to
channel disparate efforts in human-AI team research into a common framework and to draw attention to the
ecological validity of results in this field.
INTRODUCTION

The study of human-machine systems is central to a variety of

behavioral and engineering disciplines, including management

science,1–3 human factors,4–7 robotics,8–13 and human-com-

puter interaction.14–24 Recent advances in artificial intelligence

(AI) and machine learning have brought the study of human-AI

(HAI) teams into sharper focus. An important set of questions

for those designing HAI interfaces concerns trust: specifically,

human trust in the algorithmic systems with which they form

teams. Trust in machines has been defined as ‘‘the attitude

that an agent will help achieve an individual’s goals in a situation
This is an open access article under the CC BY-N
characterized by uncertainty and vulnerability.’’17,25 More pre-

cisely, trust is ‘‘a psychological state comprising the intention

to accept vulnerability based on positive expectations of the in-

tentions or behavior of another.’’26 Trust is therefore a subjective

attitude and attribute of the vulnerable party, to be distinguished

from trustworthiness, which is an objective attribute of the

trustee. Just as human collaboration would be impossible

without some degree of trust between team members, some

form of trust in algorithmic systems is necessary for HAI teams

to perform smoothly and effectively. It follows too that if trust is

ever violated, its repair will be crucial in any attempt to rehabili-

tate team performance.
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Here, we briefly review the literature on how perceiving an AI

make mistakes violates trust and how such violations might be

repaired. In doing so, we discuss the role played by various

forms of algorithmic transparency in the process of trust repair.

We then identify and discuss two important questions left open

in this literature: first, concerning what effects the size, fre-

quency, type, and distribution of errors have in the violation

and repair of trust, and second, concerning how various forms

of transparency—in particular explanations of algorithms, confi-

dence and performance metrics, and dynamic allocation

strategies—fare comparatively in the process of trust repair.

We suggest that while transparencymay be crucial for facilitating

trust in AI and thus for counteracting aversive behaviors, trans-

parency should not be conceived solely in terms of explainability.

Our final section discusses some of the pitfalls of HAI team

research. In particular, we worry that the ecological validity of re-

sults in this field is not sufficiently appreciated—at least in

practice.

We should lodge three important caveats at the outset. The

first concerns the nature of the trust in question, given that trust

is, in the first instance, an interpersonal attitude between hu-

mans, not between humans and machines. Interpersonal trust

has been the subject of investigation in organizational and social

psychology for several decades,27–33 and in these fields, trust is

understood to be influenced by at least two factors: (1) the

competence of the trustee and (2) the degree to which the

trustee exhibits good faith/benevolent intentions—e.g., in a

contractual setting, the desire to support the other party’s efforts

in performing the contract—but, more generally, the absence of

ill will or ulterior motives in the trustee.29–33 Recast into language

more appropriate for artificial agents, we can take competence

to denote a system’s accuracy and good faith to denote a sys-

tem’s transparency, as judged by a range of criteria including,

but not limited to, its explainability. It is true that good faith is

not, strictly speaking, the same thing as transparency, and that

transparency is often a means of verifying good faith (as well

as accuracy). However, it is also true that transparency can itself

be an expression of good faith on the trustee’s part, as when

someone who is ‘‘open’’ or ‘‘forthright’’ is understood to harbor

no ill will or hidden agenda. In other words, while good faith en-

compasses more than transparency, it often encompasses at

least that much. Note also that, throughout this paper, we take

transparency to mean any information provided about an AI sys-

tem beyond its model outputs. By explainability, we mean infor-

mation that specifically helps to understand howorwhy a system

produced its outputs.34

Secondly, accuracy and transparency are by no means the

only antecedents of trust in embedded AIs.35,36 Other important,

if less marked, determinants of trust in automation include ergo-

nomic and demographic factors, team size and composition

(e.g., in terms of active versus passive users), and task type

and complexity.

Finally, we note that the AIs considered in this paper are all ex-

amples of what some have termed ‘‘embedded AIs,’’ as

opposed to AI-enabled virtual agents (e.g., Siri or Alexa ) and ro-

bots (e.g., Pepper or Roomba).35 Embedded AIs are forms of AI

that are ‘‘invisible to the user, embedded inside of a computer or

other tool’’ and which thus lack ‘‘a visual representation or a

distinguished identity.’’35 Common examples would be smart-
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phone apps, e-mail spam filters, ranking algorithms, and recom-

mender systems. Less obvious examples include business

systems and automated decision software (e.g., customer credit

rating algorithms, offender recidivism risk tools, etc.).

THE EFFECTS OF ERROR AND TRANSPARENCY
ON TRUST

In an ideal world, only systems that are trustworthy would be

trusted. Distrust may be justified whenever a system performs

considerably worse than a human (or human team) acting alone,

or whenever a system is opaque or ethically suspect. But distrust

is problematic when the distrusting behavior to which it leads—

what has been termed algorithm ‘‘aversion’’—is really an overre-

action to having witnessed the system’s mistakes.5,14,15,37 In the

most extreme case, algorithm aversion results in a refusal to

engage with a system at all or a blatant disregard of its recom-

mendations—an attitude we term ‘‘opposition.’’

Conversely, there is such a thing as too much trust—algorithm

‘‘appreciation’’3—or overtrust, where a human is so impressed

by a system that they cease actively monitoring its outputs4,5

and in the limiting case follow its every recommendation without

question—an attitude we term ‘‘loafing.’’ As one might have

guessed, appreciation is not a problem for systems that pass a

very high threshold of accuracy38,39 (see Box 1). Accordingly,

the AIs of interest to HAI team research are generally trustworthy

in the sense that they are adept at performing a particular task,

but not so adept that overtrust ceases to be a problem (cf., Ban-

sal et al.37) and yet not so error prone that algorithm aversion be-

comes rational. Both aversion and its opposite, appreciation, are

inappropriate attitudes toward systems that are generally trust-

worthy in this sense.4,14

To our knowledge, these various attitudes have never been

cast within a single frame of reference. Papers overwhelmingly

tend to problematize overtrust or distrust, failing to demonstrate

that both phenomena should be understood as part of a broader

inquiry into HAI teams, and that any one system can engender

any of the above attitudes. Hence, we envisage opposition and

loafing as lying at opposite ends of a spectrum, with algorithmic

‘‘vigilance’’ representing an ideal mid-point between them and

aversion and appreciation lying mid-way between this ideal

and each of the two extremes (Figure 1). Algorithmic vigilance,

as we will use the term, is an attitude of active user engagement

and healthy skepticism. It marks the level of trust that a human

(or human team) should display toward an AI from the point of

view of optimal HAI team performance. Confusingly, this attitude

is sometimes given the name ‘‘complementarity,’’ presumably to

indicate that some ideal division of labor has been struck be-

tween human andmachine, such that humanswill focus on tasks

too difficult for machines and vice versa.37

But complementarity in this sense may be compatible with hu-

man loafing (see Box 1), so we prefer the term vigilance.

What counts as vigilance may differ from case to case depend-

ing on the AI under consideration. If vigilance is observed over

time t, each non-ideal attitude of trust voppose, vavert, vappreciate,

and vloaf might be modeled as a related function (Figure 2A).

In human factors engineering and human-computer interac-

tion, overtrust has been extensively researched for close to

four decades.4 In human factors, the phenomenon goes by the



Box 1. Which AIs are the target of human-AI team research?

Human-AI (HAI) team researchers hail from a variety of behavioral and engineering disciplines, including management science,

human factors, robotics, and human-computer interaction. HAI team research is concerned with the alleviation of user distrust

and overtrust in AI, where such attitudes are likely to impede optimal HAI team performance. An AI that fares worse than a human

(or human team) acting alone will rightly arouse distrust. An AI that is vastly superior to a human (or human team) acting alone will

unproblematically elicit overtrust. But systems of the first kind are unlikely to be deployed, unless the HAI team deploying them can

still outperform humans acting alone, while systems of the second kind are rare in team settings, since humansmay be superfluous

once amachine can perform so much better than a human (or human team) acting alone.37 That leaves a wide range of AI systems

as the focus of HAI team research. Humans acting alone will be better than some of these, but not better than the HAI team

comprising them; the rest of these systems will be better than the humans acting alone, but not better than the HAI team

comprising them. For many systems in this range, the attitude conducive to optimal HAI team performance will be vigilance, since

both aversion and opposition, as well as appreciation and loafing, will impede optimal HAI team performance (see Figure 1 for the

meaning of these terms). Is there a way of schematically demarcating the range of such systems? Perhaps surprisingly, no one has

ever attempted to specify the class of systems that is the proper target of HAI team research. But without a clear, shared under-

standing of which systems require vigilance, which do not, and which should not be used at all, investigations into a large array of

systems, each having different levels of reliability, make for a cluttered and confusing terrain.

Assume (plausibly) that every human (or human team) interacting with an AI in the specified range will introduce human errors (e.g.,

Dietvorst et al.15 and Bansal at al.37) Assume further (for simplicity) that all errors are equally significant, be they human or AI. Let the

rate at which humans introduce errors be denoted H, and the rate at which humans spot AI errors be denoted S. As we said, either

the AI acting alone will fare better than the humans acting alone, but not better than the HAI team; or the humans acting alone will

fare better than the AI acting alone, but not better than the HAI team (we ignore the case where humans acting alone can outper-

form both the AI and the HAI team, as the AI here would simply not be deployed). Then whenever H < S, humans will be spotting

more AI errors than the errors they themselves introduce. By contrast, whenever H > S the AI will fare better than both the humans

acting alone and the HAI team, because in this case the humans will be introducing more errors than those they are able to spot in

the AI’s outputs. Systems performing at or higher than the level at which H > S will be best served by removing humans from the

loop altogether.15,37 If for whatever reason humans are kept in the loop, however, the emergence of appreciation and loafing will

not be detrimental to HAI team performance.

To illustrate, we plot user trust as a function of system reliability in Figure 3. The plot depicts a well-calibrated user trust function

over a range of system performance levels (trust is said to be ‘‘well calibrated’’ when user expectationsmatch system capabilities).

Assume that performance at theH <S level marks the point at which a systemperforms better than a user alone, but not better than

an HAI team (e.g., assume that a human alonemakes 200 errors, an AI alonemakes 100 errors, but that the HAI teamwill make only

40 errors, because the human spots all 100 AI errors and introduces only 40 of their own for a net total of 40 HAI team errors). As a

system’s performance gradually improves on this benchmark, S falls because there are progressively fewer errors for the user to

spot (e.g., AI2 will make 99 errors, AI3 will make 98 errors, etc., while—we assume for simplicity—a user will continue to introduce

40 errors). Eventually a system will reach the point at which H = S (e.g., AI61 will make 40 errors). Any system whose performance

exceeds this level (i.e., when H > S) will perform better than the HAI team (e.g., AI62 will make 39 errors, but while the human will

spot all 39 they will introduce 40 of their own, for a net total of 40 HAI team errors). Thus, when a system performs at theH < S level,

vigilance will be the ideal user response. When a system performs at the H > S level, loafing will be the ideal user response.

We said that systems performing at or higher than theH > S level will be best served by removing humans from the loop altogether.

However, this may not be technically, ethically, or politically feasible. In any event, as we noted, the emergence of appreciation and

loafing in such cases will not be detrimental to HAI team performance. But to the extent that these systems are not invulnerable to

errors that a human might witness, the risk of aversion and opposition will persist. Strategies to mitigate this risk, such as allowing

humans tomanipulate the algorithm even if doing somay degrade the system’s performanc,15 are still preferable to giving aversion

and opposition free rein (again, so long as the HAI team performs better than the humans acting alone).15
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names of ‘‘automation complacency’’ and ‘‘automation bias.’’40

Although similar, these effects are not the same. Automation

complacency describes the state of passivity, diffidence, or

deference into which the user of a system falls when uncritically

relying on a technology they deem more proficient than them-

selves.41 In effect, it is the failure to attend to the possibility

that a system may be wrong through failure to seek out either

confirmatory or disconfirmatory evidence.7 Automation bias is

a more extreme variant of this attitude and manifests when a hu-

man user actively prefers a system’s signals over actual—i.e.,

overtly—contradictory information, including information from

more reliable sources such as the user’s own senses.7,41
Crucially, it is the perception of a system’s superior performance

that induces these states: they are rarely observed when a sys-

tem is considered liable to even occasional error.5,7,42–44

By contrast, algorithm aversion has not been nearly as well re-

searched or theorized. But some results are notable. Users of AI

in many lab-based settings have been shown to display unreal-

istically high levels of trust initially, only for that trust to drop pre-

cipitously in response to seeing a system err.5,14,15 Users then

typically retreat to human judgment, even when doing so leads

demonstrably to even more errors.5,14,15 For example, during

an incentivized task, when given the choice between relying on

their own judgment exclusively or relying on an algorithm’s
Patterns 3, April 8, 2022 3



Figure 1. Scale of user attitudes toward AI in
human-AI teams
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forecasts exclusively, most participants who had not seen the al-

gorithm perform chose to rely on the algorithm exclusively, while

most of those who had seen the algorithm perform (and hence

err) chose to rely on human judgment, despite observing the al-

gorithm’s better performance.14 It has been suggested that this

effect is greater for obvious errors than for subtle ones, because

obvious errors can quite drastically upset a user’s initially high

expectations of a system’s competence.5 Moreover, a user’s

expertise can affect their perception of machine errors.3 Users

who are expert or self-confident in tasks that have been dele-

gated to automation tend to ignore machine advice45 and, as a

result, make less-accurate predictions relative to lay people

willing to follow machine advice.5,14,15

The pattern of trust/ error/ distrust, in which trust becomes

difficult to restore despite impressive system performance, could

be explained by users’ ‘‘diminishing sensitivity to error.’’ Over the

course of five studies, Dietvorst and Bharti46 found that partici-

pants displayed error intolerance when confronted with decision

makers that were highly reliable on average but incapable of per-

fect forecasts, and error tolerance when confronted with decision

makers that were less reliable on average but that had at least a

chance of making near-perfect forecasts. If users have diminish-

ing sensitivity to error, it would plausibly explain why AIs that

make even a single error are penalized so harshly: users’ hopes

for near-perfect automated forecasting having thus been dashed,

the more volatile and error-prone decision-making option (human

judgment) suddenly looks like the most appealing one (human

forecasters can at least stumble on near-perfect forecasts after

all). In any event, errors seem to have a stronger impact on trust

than correct outputs.5,7 This phenomenon is indeed so pro-

nounced that cumulative feedback about a system’s superior per-

formance presented at the end of a task session may not be

enough to counteract users’ misgivings after having had their ex-

pectations disappointed over the course of a task session.5

Curiously, while higher levels of trust generally lead to greater

reliance, trust and reliance are not monotonic. An untrustworthy

system may rightly arouse distrust (measured subjectively by

self-evaluation and report) and yet continue to be relied upon

(judging by actual usage data).5,7,47 The converse of this situa-

tion has also been observed, so that even when the subjective

feeling of trust eventually recovered after witnessing a system

failure, immediate post-failure behavior (e.g., scrupulous cross-

checking) did not revert to the pre-failure norm.7

In the remainder of this section, we single out four categories

of transparency—explanations, performance metrics, dynamic

allocation strategies, and confidence information—that we think

have special significance in HAI team coordination.

Explanation as a form of transparency
No doubt themost pertinent form of transparency is explanation,

which can enhance a user’s understanding of how an algorithm

works and hence why it might commit the sorts of errors it
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does.5,37,48 While important, and a well-at-

tested means of establishing appropriate
levels of trust,49 explanations can easily backfire. Some explana-

tions of AI systems, for example, appear to induce automation

complacency.5,37,50 Feature importance explanations—which

discover which input features exert the most influence on a

model’s outputs—are particularly prone to misleading users in

this regard,51–53 although similar example-based explanation

methods have, admittedly, been shown to be conducive to HAI

team performance.54,55 In the same vein, when explanations

are provided before users are in a position to assess a situation

for themselves, users may be led to anchor on the first data

they receive, conditioning subsequent deliberation.37 More

perversely, ‘‘too much transparency can cause people to incor-

rectly follow amodel when it makes amistake, due to information

overload.’’24 On other occasions, poor or confusing explanations

can lead to algorithm aversion.24

Performance metrics
Many of these results could easily lead one to the cynical conclu-

sion that the best way for AI systems to promote the right amount

of trust is simply by shielding users from information about the

system’s decisions—in effect, by being less transparent.5,14

(Dzindolet et al.5 report that ‘‘eliminating operators’ awareness

of an automated decision aid’s obvious errors [through blinding

the participants to the decisions of the aid] was useful in promot-

ing appropriate automation reliance if participants were continu-

ally reminded of their and their aid’s performance. Unfortunately,

applying these techniques outside the laboratory is problematic.

It would not be reasonable to provide someone with an auto-

mated decision aid but not allow them to see the decisions the

aid has made.’’) Yet there is reason to believe that a better cali-

bration of trust to a system’s actual level of accuracy can be

achieved by providing more of the right kind of transparency:

not just cumulative performance feedback (delivered at the

end of a task session), but continuous performance feedback

that allows the user to maintain a better picture of the system’s

relative superiority in real time5,56 (see Figure 2B). Some re-

searchers have even noticed a pattern in the way accuracy infor-

mation interacts with user attitudes. Metainformation about low-

reliability automation runs the risk of promoting overtrust (as

measured by higher trust ratings), but metainformation about

high-reliability automation seems to have the opposite effect.

Presumably this is because, in the first case, users are placed

on notice, ready to step in and override the system when it fails,

which could, perversely, contribute to a sense that the system is

actually more reliable than it is; while, in the second case, meta-

information may consolidate users’ unrealistic expectations,

which are inevitably contradicted on witnessing errors, with the

attendant fallout.57

User control and dynamic allocation
Because explanations ultimately satisfy a need to be in control,

an effective alternative strategy may be to allow users a degree



A B Figure 2. User trust in automation after
witnessing system failures
(A) Five possible trust trajectories over time. Notice
that the default attitude toward automation is
generally one of high trust that falls by some mea-
sure in response to seeing a system err. The vigilant
user of AI recalibrates their initially unrealistic esti-
mate of a system’s capabilities gradually, but not to
the point where their attitude becomes aversive.
(B) The hypothesized role of transparency in trust
calibration
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of latitude over whether to accept an algorithm’s outputs at face

value. For instance, provided that they can modify its forecasts,

users are apparently willing to take an algorithm seriously even

after seeing it make occasional mistakes. What is more, the pre-

cise degree of control seems to be irrelevant: the ability tomodify

a forecast even slightly may be sufficient to induce appropriate

reliance.15 Control can be exercised in various ways, including

through cognitive ‘‘forcing’’ functions that prompt users to

request additional information in the form of explanations should

they desire them.50

The static versus dynamic nature of task allocation is also

important, because tasks in which control flexibly shifts between

human and machine in accordance with user needs are better at

sustaining operator vigilance.47 HAI teams in which allocation is

dynamic can be further divided between those in which the allo-

cation is adaptable, where users dictate the allocation, and those

in which the allocation is adaptive, where the allocation is auto-

mated.47,58 Allocation can then proceed along several lines,

but perhaps themost intuitive is along lines of difficulty. A human

is likely to find some tasks easy that a machine will find hard and

others hard that a machine will find easy. (From the machine’s

perspective, difficulty can be understood in terms of the degree

of uncertainty exhibited in regard to a specific prediction.)59

Generally, human trust in AI is higher when tasks involve objec-

tive calculation—to the point of trusting the AI even after seeing it

make mistakes60—and lower when tasks involve social and

emotional intelligence.2 Both adaptive and adaptable forms of

allocation can go someway toward achieving an optimal division

of labor from the point of view of difficulty. For example, under

adaptable allocation, humans can reserve all the tasks they

consider easy for themselves and delegate the remaining ones

to a machine. Under adaptive allocation, a machine could vary

the difficulty of the tasks it reserved for the human, so that it
Figure 3. Trust versus reliability
referred to both moderately difficult as well as easy tasks to

them, in an attempt to keep users vigilant (e.g., via so-called

‘‘catch trials’’). In one study, adaptable allocation was found to

have a marginal advantage over adaptive allocation, and (unsur-

prisingly) happens to be easier to design.58 However, adaptive

systems may be able to leverage uncertainty information in

ways that aremore effective than adaptable systems (catch trials

for one)61 (see Box 2).

Confidence information
A different form of transparency involves presenting users with

system confidence information. There is growing evidence that

suitably formatted confidence data (e.g., in the form of uncer-

tainty estimates, confidence intervals, confidence levels, etc.)

may improve trust calibration.6,55,64 To the extent that humans

have the capacity to incorporate an AI system’s uncertainty

appropriately, this will result in better performance. However,

we highlight two significant challenges: (1) humans are often

poor at handling numeric information, so presentation and

design may be important.69,70 Indeed, there is evidence that hu-

mans may be prone to ‘‘information overload’’ so that providing

confidence measures might lead to worse performance.37 (2) In

fact, it is typically challenging to provide reliable, well-calibrated

uncertainty estimates. An unfortunate property of current AI sys-

tems is that they are prone to being overconfident on examples

where they might perform poorly.71

OPEN QUESTIONS

There are at least two important sets of issues whose resolution

is outstanding. First, it is unclear what effects the size, frequency,

type, and distribution of errors have in the loss and recovery of

trust after users witness automation errors. Second, we know lit-

tle about how different forms of transparency compare in the

course of rebuilding that trust. In particular, almost nothing is

known about how explanations, confidence data, performance

metrics, and dynamic allocation strategies measure up against

each other from the standpoint of optimal HAI team per-

formance.

Error size, frequency, type, and distribution
Beyond common intuitions, little is known about the precise ef-

fects of an error’s size on trust violation and repair. It is reason-

able to suppose that an error’s size need not refer to simply to its

deviation from an ideal quantity or range, as in the case of risk

scores that are off by some measure. By referring to an error’s

size one could equally well intend to convey, more generally,

how surprising the error given widely held assumptions among
Patterns 3, April 8, 2022 5



Box 2. Example of dynamic task allocation

Allocation strategies can help a humanmaintain algorithmic vigilance.47 In an adaptable HAI team, the user dictates the allocation a

priori.58 This allows humans to select which tasks they want to outsource to machines. Humans may elect to keep easy tasks for

themselves, leaving harder tasks for machines, or may instead keep the difficult tasks (e.g., tasks requiring the exercise of discre-

tion), allowingmachines to focus on rote tasks. In an adaptive HAI team, by contrast, the machine dynamically determines the allo-

cation strategy.58

A large body of research in aviation demonstrates the potential advantages of adaptive allocation.62 Air traffic controllers manage

aircraft flow and intervene if aircraft separation is too low.63 The controller is provided with an automated decision aid to handle

multiple tasks. In these scenarios, an adaptive allocation strategy is usually preferred.62,64 One advantage of adaptive strategies

is that they can accommodate the use of ‘‘catch trials.’’ The point of a catch trial is to ensure that the controller is alert and situ-

ationally aware.65,66 They may take the form of randomly generated system errors to ‘‘catch out’’ the user or (more commonly)

abstentions in which the system declines to recommend a course of action in a specific instance, leaving the user to fall back

on their own skills.

When both the human and machine find a task easy, it likely does not matter which agent provides a response (although decision

fatigue is an ever-present risk).67,68 More interesting are cases in which both machine and human struggle with a task. One

approach here would be to select an agent at random. If the human is selected, then the human must make a decision without

the machine’s recommendation; if the machine is selected, then the human would be shown the machine’s recommendation

before making a decision (i.e., the human would have a choice whether to accept the machine’s recommendation). Future

work might explore the efficacy of similar tie-breaking strategies when machines and humans both struggle with the same tasks.
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users about how the world ought to be. As we already sug-

gested, mistakes on easy tasks (i.e., obvious mistakes) may be

judged more harshly and be more corrosive of trust, than those

on tasks perceived to be more difficult. We also noted evidence

that continuous performance feedback may be an effective

means of encouraging appropriate reliance after users witness

automation errors. But it is not clear whether this kind of feed-

back is powerful enough to withstand the blow dealt to trust by

the commission of large or obvious automation errors (e.g., Dzin-

dolet et al.5 found that such feedback is only effective when

users are shielded from seeing obvious errors altogether). Again,

beyond common intuitions, little can be said about the precise

effects of the frequency of errors either. But, as one might

expect, users do seem able to recover more readily from isolated

or acute system failures than they do from chronic ones.48,72

Less still is known about the effects of distinct types of error on

trust. Some studies purport to show that false alarms andmisses

affect trust differently, with false alarms having a greater negative

impact than misses; while some report no significant difference

along this dimension,36 interpreting these conflicting results by

suggesting that the consequences of false alarms versus misses

determine the effects observed. In a contest between a false

alarm that poses only a ‘‘minor inconvenience’’ (e.g., a trigger-

happy smoke alarm) and a miss that could be lethal (a smoke

alarm that operates intermittently), it is the former that will have

less deleterious effects on trust than the latter. But as they

note: ‘‘the relative influence of other types of automation failures,

such as breakdowns and error messages, has yet to be deter-

mined’’ (our emphasis).

Perhaps least understood of all is the effect of the distribution

of system errors over time. For example, are two large errors in

quick succession as detrimental to trust as two large errors

spaced apart (e.g., one at the beginning and one in the middle

of a task session)? If so, are such ‘‘clustered’’ errors also more

difficult to repair than temporally dispersed ones? We do not

know. There are some indications that the earlier during a ses-

sion that an error occurs, the sharper and more significant the
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decline in trust and the more difficult it will be to recover, despite

reliable performance otherwise.7 This makes sense—if an ac-

quaintance betrays your trust very early on in your dealings

with them, you may find it harder to ‘‘forgive and forget’’ a single

infraction than if you had been friends for 20 years. Nonetheless,

such adverse events can be beneficial too, inducing appropriate

reliance (as against algorithm aversion). The studies by Manzey

et al.,7 for instance, revealed that participants exposed to auto-

mation failures earlier on in a task session were less susceptible

to both automation complacency and automation bias. But

beyond this we know little.

Comparative performance of transparency regimes
We already noted some of the drawbacks of AI-generated expla-

nations in fostering well-calibrated user trust. Most notable

among these is the risk of overtrust. What requires further inves-

tigation is whether the merits of various alternatives to explana-

tions, on balance,make themmore suitable than explanations. In

particular, which forms of transparency aremost effective inmiti-

gating the risk of aversion and opposition after seeing an AImake

a mistake? This latter question is more important than the ques-

tion over which forms of transparency will best mitigate the risk

of appreciation and loafing, because AI systems can be ex-

pected to improve over time, and perhaps radically. In that event,

a trust surfeit arising from the use of explainable algorithms will

not prove nearly as hazardous as a trust deficit arising from the

use of alternative algorithms—at least in safety-critical domains.

Hence the bar that any of the alternatives to explainable algo-

rithms will have to meet may need to be set progressively higher,

roughly in line with gains to system accuracy.

Be that as it may, model confidence data (e.g., uncertainty es-

timates) have been shown to bemore helpful to users than expla-

nations in at least one study.55 In another, confidence data

‘‘helped pilots make better decisions about task allocation and

compliance with [system] recommendations and thus resulted

in improved performance and safety.’’6 Even so, the precise

experimental setup was limited to a restricted range of
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confidence levels (high, low, and variable) and a binary solution

space (the presence of ice on the jet wing or jet tail). As the

study’s authors noted, more realistic experimental conditions

are necessary before one is warranted in drawing firmer conclu-

sions. Indeed, greater comparative investigation of the efficacy

of confidence data and explanations—under as close to real-

life scenarios as possible—is what is really needed.55 The

same goes for dynamic performance metrics displaying an AI’s

superior ‘‘running average’’ against its human counterpart/s.

As we noted earlier in this section, whether continuous perfor-

mance feedback of this sort mitigates aversive tendencies

emerging after users witness large or obvious errors is not

known. Allowing users to manipulate algorithmic outputs may

be all that it takes to set the reverse of these tendencies in mo-

tion.15 It is possible, too, that adaptive allocation paradigms,

which exploit the full possibilities of model uncertainty, will prove

more effective overall in promoting vigilance than adaptable allo-

cation. But again, whether any of these paradigms are preferable

to explanations and to what extent remains unclear.

Incorrect, deceptive, or misleading transparency
Recall our definition of transparency as any information provided

about an AI system beyond its model outputs. While transpar-

ency is often beneficial, we briefly note several potential dan-

gers.73 Just as model outputs can be wrong, so too can

additional transparency information. Since this informationmight

be relied upon in making decisions, incorrect transparency can

cause harm. Incorrect transparency might be unintentional74 or

could be deliberately deceptive.75–77 Furthermore, even correct

information might be misleading. In human communication, we

often leave certain points unsaid, assuming our counterpart

has background knowledge of the context. This creates the po-

tential for information to be misleading if it is not carefully pre-

sented.78 Hence, ideally, algorithmic transparency should satisfy

what linguists would call pragmatic desiderata. However, these

are not easy to measure or satisfy in practice and remain an

important focus of machine learning research.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

We have considered how various forms of algorithmic transpar-

ency may promote user vigilance. More broadly, however, we

have sought to provide a practical framework for the study of

HAI teams that (1) brings the same phenomena investigated by

a variety of fields under a unified descriptive apparatus, (2) clar-

ifies the scope of the technical systems that are the proper target

of these investigations, and (3) identifies the overriding concern

of these investigations with the maintenance of algorithmic vigi-

lance. Our hope is that, by presenting the above research within

this framework, we might inspire those who study HAI teams to

seek to forge stronger connections despite the persistence of

disciplinary boundaries (in practice if not in principle). At the

moment, HAI team research is siloed. To take just one case,

the authors of a recent (and high-quality) peer-reviewed study

took themselves to be challenging ‘‘the widespread assertion

that people are averse to algorithms’’ on the basis that the

participants in their study ‘‘were quite willing to rely on algo-

rithmic advice before seeing the algorithm err.’’3 Human factors

engineerswould be unmoved by the finding that humans are pre-
pared to trust—indeed overtrust—algorithms, having invested

great efforts over the years in dealing with the problematic con-

sequences of this very tendency. In our view, HAI team research

should comprise a unified branch of study with a basic modus

operandi and lingua franca, albeit drawing from expertise across

several autonomous subfields. Our framework offers a prag-

matic way forward.

Perhaps the greatest challenge in the study of HAI teams,

however, is simply resisting the urge to overgeneralize experi-

mental results.47 Indeed, we think that ecological validity is an

underappreciated problem in this area. Findings in aviation and

shipping contexts are of questionable value in court and law

enforcement contexts, which in turn may have little bearing on

how the automation of medical diagnoses should be ap-

proached.38 In legal andmedical contexts, initial trust in automa-

tion is actually quite low, presumably due to the expertise of the

users involved.79,80, This is at odds with the general findings we

reviewed above.

Insofar as ecological validity is acknowledged, too often it fea-

tures as an afterthought: a mere warning to readers of the limita-

tions of the study concerned along with a reminder to keep those

limitations in mind when applying results in real-world settings.7

This is a good start, but it has not prevented occasionally sweep-

ing claims being made about how ‘‘people’’ using ‘‘algorithms’’

react in this or that situation3,5,14,15 (cf. Carton et al.51).To illus-

trate, we can take an otherwise excellent and justly influential

study whose authors fell into this trap. At one point, the authors

state their take-home message as follows: ‘‘observing an auto-

mated decision aid make errors leads to distrust of the auto-

mated decision aid, unless an explanation is provided explaining

why the aid might err.’’5 A little further down the same page (p.

715), however, one finds the customary discussion of limitations.

First, they noted that ‘‘the task was very simple and artificial.’’

Second, the study necessarily ignored ‘‘[t]he effect of one per-

son’s view of the automated aid’s trustworthiness on other group

members’ reliance decisions,’’ because the study limited itself to

examining the dyad of a single user with an automated aid; and

so on. When the findings of a branch of study are taken up with

the vim and vigor typical in HAI team research, ecological con-

cerns become too important to squeeze into general dis-

claimers. How canwe be certain that the limitations do not vitiate

the generalizations entirely? Ideally, authors should premise all

substantive claims so that even such rudiments as titles and ab-

stracts are expressed tentatively. In the illustration just given, the

take-homemessage cannot quite be: people distrust automated

aids whose errors they witness unless an explanation is pro-

vided. Somethingmore tentative is called for: in very simple auto-

mated tasks involving a single person, people tend to distrust

automated aids whose errors they witness, unless an explana-

tion is provided. Every algorithm, every interface, every task, is

unique after all.

Perhaps the most effective way to meet the ecological chal-

lenge is for HAI team research to proceed in a task-specific

fashion that takes account of the precise nature of the task

and its setting. Note that task specificity is distinct from domain

specificity. Domain-specific investigation would confine

research and its results to a more or less widely defined domain

of activity (such as maritime shipping or criminal justice). Task-

specific investigation, by contrast, would confine research by
Patterns 3, April 8, 2022 7



ll
OPEN ACCESS Review
the nature of the task under consideration (such as adjudication

between disputing parties, regardless of whether it is carried out

by a court of law, a mediator, or a human resources officer).

Since the basis of investigation and extrapolation in the latter

case is the similarity of the tasks undertaken, regardless of

domain, task-specific investigation may harness results from

research conducted across what are in fact very distinct do-

mains of activity (as the examples just given show). Conversely,

a task-specific orientation may mean that results from one

experiment are not presumed to generalize to another setting,

despite the fact that both tasks occur within the same domain

(e.g., results from an experiment testing the behavior of judges

using recidivism risk algorithms in sentencing or bail applications

may fail to generalize to a setting in which judges use algorithms

to determine the likelihood of a repeat psychotic episode in a

parent suing for child custody).

Our impression is that sweeping claims are more typical in the

literature of organizational behavior and machine learning than

they are in those of, say, ergonomics and human factors. The

latter fields have always had several parallel streams of inquiry

running alongside one another (e.g., one for ocean navigation,

one for aviation and air traffic control, one for autonomous vehi-

cles, another for nuclear power, etc.), and this has meant that

conclusions in these fields have always been implicitly circum-

scribed. It is in the nature of task-specific research to constrain

the applicability of results.

An emphasis on task-specific inquiry may seem in tension

with our call for HAI team research to espouse greater cross-

disciplinary cohesion and coordination. But what we are calling

for in the latter case is simply an end to the kind of siloed

research in which differences in terminology serve no purpose,

and where people from one field are unaware of discoveries in

another relating to the exact same subject matter. Cross-disci-

plinary activity, as such, is compatible with task-specific inves-

tigation: the field of human factors itself offers an excellent

model of domain- and task-specific research worth emulating

at a larger scale. This transition may not be easy to achieve.

HAI team researchers, whose main experience is in machine

learning, may find it especially difficult. The machine learning

community on the whole values task-independent, model-

agnostic and scalable, general models to solve as many varia-

tions of a problem as possible. This work is not misconceived.

Indeed, there is a delicate balance to be struck between the ne-

cessity of controlled and (to a sometimes considerable extent)

contrived experimental conditions on the one hand, and real-

world applicability on the other. We appreciate that experi-

mental conditions must strive to isolate the psychological

processes underlying team behaviors, and that without a

certain amount of artifice in experimental design there can be

no generalizable results at all. However, our aim here is to

direct attention to the importance of real-world applicability

and, more specifically, to intra-ecological generalizability. We

propose that task specificity is an effective means of securing

this form of generalizability. Then, within a task-specific orien-

tation, the familiar give-and-take between laboratory and real

life can proceed in accordance with the principles of sound

applied science. But task specificity is an imperative if the ma-

chine learning community is to contribute meaningfully to HAI

team research.
8 Patterns 3, April 8, 2022
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